Switching Equivalence in Symmetric *n*-Sigraphs-V

P.Siva Kota Reddy, M.C.Geetha and K.R.Rajanna

(Department of Mathematics, Acharya Institute of Technology, Soldevanahalli, Bangalore-560 090, India)

E-mail: pskreddy@acharya.ac.in

Abstract: An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, \dots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ $(\mu : V \to H_n)$ is a function. In this paper, we introduced a new notion S-antipodal symmetric *n*-sigraph of a symmetric *n*-sigraph and its properties are obtained. Also we give the relation between antipodal symmetric *n*-sigraphs and S-antipodal symmetric *n*-sigraphs. Further, we discuss structural characterization of S-antipodal symmetric *n*-sigraphs.

Key Words: Symmetric *n*-sigraphs, Smarandachely symmetric *n*-marked graph, symmetric *n*-marked graphs, balance, switching, antipodal symmetric *n*-sigraphs, S-antipodal symmetric *n*-sigraphs, complementation.

AMS(2010): 05C22

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple (a_1, a_2, \dots, a_n) is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, \dots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A Smarandachely k-marked graph (Smarandachely k-signed graph) is an ordered pair $S = (G, \mu)$ ($S = (G, \sigma)$) where G = (V, E) is a graph called underlying graph of S and $\mu : V \to \{\overline{e}_1, \overline{e}_2, ..., \overline{e}_k\}$ ($\sigma : E \to \{\overline{e}_1, \overline{e}_2, ..., \overline{e}_k\}$) is a function, where $\overline{e}_i \in \{+, -\}$. An *n*tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \leq k \leq n$. Let $H_n = \{(a_1, a_2, ..., a_n) :$ $a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \leq k \leq n\}$ be the set of all symmetric *n*-tuples. A Smarandachely symmetric *n*-marked graph (Smarandachely symmetric *n*-signed graph) is an ordered pair $S_n = (G, \mu)$ ($S_n = (G, \sigma)$) where G = (V, E) is a graph called the underlying graph of S_n and $\mu : V \to H_n$ ($\sigma : E \to H_n$) is a function. Particularly, a Smarandachely 1-marked graph (Smarandachely 1-signed graph) is called a marked graph (signed graph).

¹Received February 25, 2012. Accepted September 9, 2012.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An *n*-tuple (a_1, a_2, \dots, a_n) is the *identity n*-tuple, if $a_k = +$, for $1 \leq k \leq n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*. Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [7], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [4]):

Definition 1.1 Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_n is the identity n-tuple, and

(ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Note 1.1 An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [7].

Proposition 1.1 (E. Sampathkumar et al. [7]) An n-sigraph $S_n = (G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with v. Complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1.1 ([10]).

In [7], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows (See also [2,5,6,10]):

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label (a_1, a_2, \dots, a_n) then $\phi(u)\phi(v)$ is an edge in S'_n with label (a_1, a_2, \dots, a_n) .

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph. Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n . We make use of the following known result (see [7]).

Proposition 1.2 (E. Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G

as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the *n*-tuples on the edges incident at v. Complement of S is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma')$, where for any edge $e = uv \in \overline{G}$, $\sigma'(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1.1.

§2. S-Antipodal n-Sigraphs

Radhakrishnan Nair and Vijayakumar [3] has introduced the concept of S-antipodal graph of a graph G as the graph $A^*(G)$ has the vertices in G with maximum eccentricity and two vertices of $A^*(G)$ are adjacent if they are at a distance of diam(G) in G.

Motivated by the existing definition of complement of an *n*-sigraph, we extend the notion of S-antipodal graphs to *n*-sigraphs as follows:

The S-antipodal n-sigraph $A^*(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is $A^*(G)$ and the n-tuple of any edge uv is $A^*(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called S-antipodal n-sigraph, if $S_n \cong A^*(S'_n)$ for some n-sigraph S'_n . The following result indicates the limitations of the notion $A^*(S_n)$ as introduced above, since the entire class of *i*-unbalanced n-sigraphs is forbidden to be S-antipodal n-sigraphs.

Proposition 2.1 For any n-sigraph $S_n = (G, \sigma)$, its S-antipodal n-sigraph $A^*(S_n)$ is i-balanced.

Proof Since the *n*-tuple of any edge uv in $A^*(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Proposition 1.1, $A^*(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated S-antipodal n-sigraph $A^*(S_n)$ of S_n is defined as follows:

$$(A^*)^0(S_n) = S_n, (A^*)^k(S_n) = A^*((A^*)^{k-1}(S_n))$$

Corollary 2.2 For any n-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(A^*)^k(S_n)$ is ibalanced.

In [3], the authors characterized those graphs that are isomorphic to their \mathcal{S} -antipodal graphs.

Proposition 2.3(Radhakrishnan Nair and Vijayakumar [3]) For a graph G = (V, E), $G \cong A^*(G)$ if, and only if, G is a regular self-complementary graph.

We now characterize the *n*-sigraphs that are switching equivalent to their S-antipodal *n*-sigraphs.

Proposition 2.4 For any n-sigraph $S_n = (G, \sigma)$, $S_n \sim A^*(S_n)$ if, and only if, G is regular

self-complementary graph and S_n is i-balanced n-sigraph.

Proof Suppose $S_n \sim A^*(S_n)$. This implies, $G \cong A^*(G)$ and hence G is is a regular self-complementary graph. Now, if S_n is any n-sigraph with underlying graph as regular self-complementary graph, Proposition 2.1 implies that $A^*(S_n)$ is *i*-balanced and hence if S is *i*-unbalanced and its $A^*(S_n)$ being *i*-balanced can not be switching equivalent to S_n in accordance with Proposition 1.2. Therefore, S_n must be *i*-balanced.

Conversely, suppose that S_n is an *i*-balanced *n*-sigraph and *G* is regular self-complementary. Then, since $A^*(S_n)$ is *i*-balanced as per Proposition 2.1 and since $G \cong A^*(G)$, the result follows from Proposition 1.2 again.

Proposition 2.5 For any two vs S_n and S'_n with the same underlying graph, their S-antipodal *n*-sigraphs are switching equivalent.

Remark 2.6 If G is regular self-complementary graph, then $G \cong \overline{G}$. The above result is holds good for $\overline{S_n} \sim A^*(S_n)$.

In [16], P.S.K.Reddy et al. introduced antipodal *n*-sigraph of an *n*-sigraph as follows:

The antipodal n-sigraph $A(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is A(G) and the n-tuple of any edge uv in $A(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called antipodal n-sigraph, if $S_n \cong A(S'_n)$ for some n-sigraph S'_n .

Proposition 2.7(P.S.K.Reddy et al. [16]) For any n-sigraph $S_n = (G, \sigma)$, its antipodal n-sigraph $A(S_n)$ is i-balanced.

We now characterize *n*-sigraphs whose S-antipodal *n*-sigraphs and antipodal *n*-sigraphs are switching equivalent. In case of graphs the following result is due to Radhakrishnan Nair and Vijayakumar [3].

Proposition 2.8 For a graph G = (V, E), $A^*(G) \cong A(G)$ if, and only if, G is self-centred.

Proposition 2.9 For any n-sigraph $S_n = (G, \sigma)$, $A^*(S_n) \sim A(S_n)$ if, and only if, G is selfcentred.

Proof Suppose $A^*(S_n) \sim A(S_n)$. This implies, $A^*(G) \cong A(G)$ and hence by Proposition 2.8, we see that the graph G must be self-centred.

Conversely, suppose that G is self centred. Then $A^*(G) \cong A(G)$ by Proposition 2.8. Now, if S_n is an *n*-sigraph with underlying graph as self centred, by Propositions 2.1 and 2.7, $A^*(S_n)$ and $A(S_n)$ are *i*-balanced and hence, the result follows from Proposition 1.2.

In [3], the authors shown that $A^*(G) \cong A^*(\overline{G})$ if G is either complete or totally disconnected. We now characterize *n*-sigraphs whose $A^*(S_n)$ and $A^*(\overline{S_n})$ are switching equivalent.

Proposition 2.10 For any signed graph $S = (G, \sigma)$, $A^*(S_n) \sim A^*(\overline{S_n})$ if, and only if, G is either complete or totally disconnected.

The following result characterize n-sigraphs which are S-antipodal n-sigraphs.

Proposition 2.11 An n-sigraph $S_n = (G, \sigma)$ is a S-antipodal n-sigraph if, and only if, S_n is *i*-balanced n-sigraph and its underlying graph G is a S-antipodal graph.

Proof Suppose that S_n is *i*-balanced and G is a A(G). Then there exists a graph H such that $A^*(H) \cong G$. Since S_n is *i*-balanced, by Proposition 1.1, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in $H, \sigma'(e)$ is the *n*-marking of the corresponding vertex in G. Then clearly, $A^*(S'_n) \cong S_n$. Hence S_n is a S-antipodal *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a S-antipodal *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $A^*(S'_n) \cong S_n$. Hence G is the $A^*(G)$ of H and by Proposition 2.1, S_n is *i*-balanced.

§3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a *sigraph*) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, \dots, a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$. For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, \dots, a_n)$ replaced by a^m . For an *n*-sigraph $S_n = (G, \sigma)$, the $A^*(S_n)$ is *i*-balanced (Proposition 2.1). We now examine, the condition under which *m*-complement of $A(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Proposition 3.1 Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if $A^*(G)$ is bipartite then $(A^*(S_n))^m$ is i-balanced.

Proof Since, by Proposition 2.1, $A^*(S_n)$ is *i*-balanced, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $A^*(S_n)$ whose k^{th} co-ordinate are - is even. Also, since $A^*(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $A^*(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(A^*(S_n))^t$ is *i*-balanced. \Box

Problem 3.2 Characterize these n-sigraphs for which

(1) $(S_n)^m \sim A^*(S_n);$ (2) $(\overline{S_n})^m \sim A(S_n);$ (3) $(A^*(S_n))^m \sim A(S_n);$ (4) $A^*(S_n) \sim (A(S_n))^m;$ (5) $(A^*(S))^m \sim A^*(\overline{S_n});$ (6) $A^*(S_n) \sim (A^*(\overline{S_n}))^m.$

References

- [1] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [2] V.Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric nsigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
- [3] R.Radhakrishnan Nair and A.Vijaykumar, S-Antipodal graphs, Indian J. Pure Appl. Math., 28(5) (1997), 641-645.
- [4] R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [5] R.Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
- [6] R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.
- [7] E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [8] E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
- [9] R. Singleton, There is no irregular moore graph, Amer. Math. Monthly, 75(1968), 42-43.
- [10] P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [11] P.S.K.Reddy, S.Vijay and B.Prashanth, The edge C₄ n-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. & Engg. Appl., 3(2) (2009), 21-27.
- [12] P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
- [13] P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
- [14] P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [15] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [16] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.