An elementary proof of Catalan-Mihailescu theorem Jamel Ghanouchi

Ecole Supérieure des Sciences et Techniques de Tunis jamel.ghanouchi@live.com

Abstract

(MSC=11D04) We begin with Catalan equation $Y^{p}=X^{q}+1$ and solve it. (Keywords : Diophantine equations, Catalan equation; Approach) Resolution of Catalan equation

Let Catalan equation :

$$
Y^{p}=X^{q}+1
$$

We have

$$
X^{q-3} Y^{2}-Y^{p-2} X^{3}=A
$$

And

$$
Y^{p-2} Y^{2}-X^{q-3} X^{3}=Y^{p}-X^{q}=1
$$

If $A=0$ then $X^{q-6}=Y^{p-4}$ leads, as $G C D(X, Y)=1$, to $p=4$ and $q=6$. This case has been studied by Lebesgue in the XIX century, it has no solution. Thus $A \neq 0$.
And if $A= \pm 1$ then it means that both
$X^{q-4} Y^{2}= \pm \frac{1}{X}+X^{2} Y^{p-2}$ and
$Y^{p-3} X^{3}=\mp \frac{1}{X}+X^{q-3} Y$ are rationals
it means that $q=3$ and $p=2$.
We have

$$
\frac{X^{q-3}}{A} Y^{2}-\frac{Y^{p-2}}{A} X^{3}=1=Y^{p-2} Y^{2}-X^{q-3} X^{3}
$$

And we have simultaneously

$$
\left(Y^{p-2}-\frac{X^{q-3}}{A}\right) Y^{2}=\left(X^{q-3}-\frac{Y^{p-2}}{A}\right) X^{3}
$$

Or

$$
\left(A Y^{p-2}-X^{q-3}\right) Y^{2}=\left(A X^{q-3}-Y^{p-2}\right) X^{3}
$$

And

$$
\left(Y^{2}+\frac{X^{3}}{A}\right) Y^{p-2}=\left(X^{3}+\frac{Y^{2}}{A}\right) X^{q-3}
$$

Or

$$
\left(A Y^{2}+X^{3}\right) Y^{p-2}=\left(A X^{3}+Y^{2}\right) X^{q-3}
$$

We have four cases with u and v integers

$$
\begin{gathered}
\frac{Y^{2}}{A}=u\left(X^{q-3}-\frac{Y^{p-2}}{A}\right) ; \quad \frac{X^{3}}{A}=u\left(-\frac{X^{q-3}}{A}+Y^{p-2}\right) \\
\frac{Y^{p-2}}{A}=v\left(X^{3}+\frac{Y^{2}}{A}\right) ; \quad \frac{X^{q-3}}{A}=v\left(\frac{X^{3}}{A}+Y^{2}\right)
\end{gathered}
$$

Or

$$
\begin{gathered}
u \frac{Y^{2}}{A}=X^{q-3}-\frac{Y^{p-2}}{A} ; \quad u \frac{X^{3}}{A}=-\frac{X^{q-3}}{A}+Y^{p-2} \\
v \frac{Y^{p-2}}{A}=X^{3}+\frac{Y^{2}}{A} ; \quad v \frac{X^{q-3}}{A}=\frac{X^{3}}{A}+Y^{2}
\end{gathered}
$$

Or

$$
\begin{gathered}
\frac{Y^{2}}{A}=u\left(X^{q-3}-\frac{Y^{p-2}}{A}\right) ; \quad \frac{X^{3}}{A}=u\left(-\frac{X^{q-3}}{A}+Y^{p-2}\right) \\
v \frac{Y^{p-2}}{A}=X^{3}+\frac{Y^{2}}{A} ; \quad v \frac{X^{q-3}}{A}=\frac{X^{3}}{A}+Y^{2}
\end{gathered}
$$

Or

$$
\begin{array}{ll}
u \frac{Y^{2}}{A}=X^{q-3}-\frac{Y^{p-2}}{A} ; \quad u \frac{X^{3}}{A}=-\frac{X^{q-3}}{A}+Y^{p-2} \\
\frac{Y^{p-2}}{A}=v\left(X^{3}+\frac{Y^{2}}{A}\right) ; \quad \frac{X^{q-3}}{A}=v\left(\frac{X^{3}}{A}+Y^{2}\right)
\end{array}
$$

First case

$$
\begin{gathered}
Y^{p}=u v\left(A X^{q}-Y^{p}+A\left(Y^{2} X^{q-3}-Y^{p-2} X^{3}\right)\right) \\
=u v\left(A^{2} X^{q}-Y^{p}+A(A)\right)=u v\left(A^{2} X^{q}+A^{2}-Y^{p}\right)=u v\left(A^{2} Y^{p}-Y^{p}\right)
\end{gathered}
$$

Thus

$$
u v=\frac{1}{A^{2}-1}
$$

As $u v$ is integer, it means that it is impossible thus $u=0$ and $A^{2}=1$ or $A= \pm-1$ (A is an integer and can not equal to $\sqrt{2}$)
it means that $q=3$ and $p=2$.
Second case

$$
\begin{gathered}
u v \frac{Y^{p}}{A^{2}}=X^{q}-\frac{Y^{p}}{A^{2}}+\frac{Y^{2} X^{q-3}-Y^{p-2} X^{3}}{A} \\
=X^{q}-\frac{Y^{p}}{A^{2}}+1=X^{q}+1-\frac{Y^{p}}{A^{2}}=\left(\frac{A^{2}-1}{A^{2}}\right) Y^{p}
\end{gathered}
$$

Thus

$$
u v=A^{2}-1
$$

And

$$
u v\left(Y^{2} X^{q-3}-X^{3} Y^{p-2}\right)=u v A=u\left(X^{2 q-6}-Y^{2 p-4}\right) A=v\left(X^{6}-Y^{4}\right) A
$$

Thus

$$
\begin{gathered}
u=X^{6}-Y^{4} ; \quad v=X^{2 q-6}-Y^{2 p-4} \\
u v=A^{2}-1=\left(X^{6}-Y^{4}\right)\left(X^{2 q-6}-Y^{2 p-4}\right)
\end{gathered}
$$

$$
\begin{gathered}
=\left(Y^{2} X^{q-3}-X^{3} Y^{p-2}\right)^{2}-1=X^{2 q}+Y^{2 p}-Y^{4} X^{2 q-6}-X^{6} Y^{2 p-4} \\
=Y^{4} X^{2 q-6}+X^{6} Y^{2 p-4}-2 X^{q} Y^{p}-1
\end{gathered}
$$

And

$$
\begin{gathered}
X^{2 q}+Y^{2 p}+2 X^{q} Y^{p}=2 Y^{4} X^{2 q-6}+2 Y^{2 p-4} X^{6}-1 \\
=\left(Y^{p}+X^{q}\right)^{2}=\left(2 Y^{p}-1\right)^{2}=4 Y^{2 p}-4 Y^{p}+1
\end{gathered}
$$

If $p \geq 3$ then

$$
\frac{1}{Y}=Y^{3} X^{2 q-6}+Y^{2 p-5} X^{6}-2 Y^{2 p-1}+2 Y^{p-1} \in \mathbb{Z}
$$

And It is impossible! It means that $p=2$.
Third case :
We have here

$$
\begin{gathered}
Y^{2}=u\left(A X^{q-3}-Y^{p-2}\right) ; \quad X^{3}=u\left(-X^{q-3}+A Y^{p-2}\right) \\
v Y^{p-2}=A X^{3}+Y^{2} ; \quad v X^{q-3}=X^{3}+A Y^{2}
\end{gathered}
$$

And

$$
\begin{gathered}
v Y^{p}=u\left(A^{2} X^{q}-Y^{p}+A^{2}\right)=u\left(A^{2}-1\right) Y^{p} \\
v=u\left(A^{2}-1\right) \\
v\left(Y^{2} X^{q-3}-X^{3} Y^{p-2}\right)=v A=u v A\left(X^{2 q-6}-Y^{2 p-4}\right)=A\left(X^{6}-Y^{4}\right) \\
=u^{2} A\left(X^{2 q-6}-Y^{2 p-4}\right)^{2}=v^{2} A
\end{gathered}
$$

Thus

$$
v=1=u\left(A^{2}-1\right)
$$

With u and $A^{2}-1$ integers, it means $A^{2}=2$: Impossible ! Fourth case :

$$
\begin{aligned}
u \frac{Y^{2}}{A}=X^{q-3}-\frac{Y^{p-2}}{A} ; \quad u \frac{X^{3}}{A}=-\frac{X^{q-3}}{A}+Y^{p-2} \\
\frac{Y^{p-2}}{A}=v\left(X^{3}+\frac{Y^{2}}{A}\right) ; \quad \frac{X^{q-3}}{A}=v\left(\frac{X^{3}}{A}+Y^{2}\right)
\end{aligned}
$$

We have here

$$
u Y^{2}=A X^{q-3}-Y^{p-2} ; \quad u X^{3}-A Y^{p-2}=-X^{q-3}
$$

And

$$
Y^{p-2}=A X^{q-3}-u Y^{2}=\left(Y^{2} X^{q-3}-X^{3} Y^{p-2}\right) X^{q-3}-u Y^{2}
$$

Hence

$$
u \frac{Y^{p}}{A^{2}}=v\left(X^{q}-\frac{Y^{p}}{A^{2}}+1\right)=v\left(1-\frac{1}{A^{2}}\right) Y^{p}
$$

Thus

$$
\begin{aligned}
u & =v\left(A^{2}-1\right) \\
u\left(Y^{2} X^{q-3}-X^{3} Y^{p-2}\right)=u A & =A\left(X^{2 q-6}-Y^{2 p-4}\right)=u v\left(X^{6}-Y^{4}\right) A \\
u=X^{2 q-6}-Y^{2 p-4} & =v\left(X^{6}-Y^{4}\right)=u v\left(X^{6}-Y^{4}\right)
\end{aligned}
$$

Thus $u=1$ and $v\left(A^{2}-1\right)=1$ with v and $A^{2}-1$ integers, it means $A^{2}-1=2$: Impossible!
The only solution, in all cases, in $p=2$ and $q=3$.
And $Y^{2}=X^{3}+1$ whose solution is $(X, Y)=(2, \pm 3)$.

Conclusion

Catalan equation $Y^{p}=X^{q}+1$ has solutions only for $q=3$ and $p=2$. We have shown a way to solve it.

Références

[1] Paolo Ribenboïm, The Catalan's conjecture Academic press , (1994).
[2] Robert Tijdeman, On the equation of Catalan Acta Arith, (1976).

