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We present a new explanation for a quantum eraser. The erasure and reappearance of an interfer-
ence pattern have been explained that a revolvable linear polarizer erases or marks the information of
”which-path markers”, which indicate the photon path. Mathematical description of the traditional
explanation requires quantum-superposition states. However, the phenomenon can be explained
without quantum-superposition states by introducing unobservable potentials which can be identi-
fied as an indefinite metric vector with zero probability amplitude. In addition, a delayed choice
experiment can also be explained without entangled states under the assumption that an definite
orientation of the unobservable potentials configured by a setup of the experiment determines the
polarization of the photon pairs in advance.

INTRODUCTION

Quantum theory has paradoxes related to the reduc-
tion of the wave packet typified by ”Schrödinger’s cat”
and ”Einstein, Podolsky and Rosen (EPR)”. [1, 2] In or-
der to interpret the quantum theory without paradoxes,
de Broglie and Bohm had proposed so called ”hidden
variables” theory. [3, 4] Although, ”hidden variables” has
been negated,[5] the theory has been extended to consis-
tent with relativity and ontology. [6–10] However the ex-
tension has not been completed so far. A.Aspects’ experi-
ments [11–13] have demonstrated that Bell’s inequalities
are always violated confirming the quantum mechanics
theory on the non-locality of the photon and demonstrat-
ing the absence of ”hidden variables” for the local repre-
sentation. However, as A.Aspect has confirmed himself,
hidden variables may quite well exist within a non-local
representation, for example a photon representation with
a real wave function.

The author has reported the alternative interpretation
for quantum theory utilizing quantum field formalism
with unobservable potentials that can be identified as
unobservable gauge fields such as Araronov-Bohm effect.
[14–17] The interpretation can omit the quantum para-
doxes and be applied to elimination of zero-point energy,
spontaneous symmetry breaking, mass acquire mecha-
nism, non-Abelian gauge fields and neutrino oscillation,
which can lead to the comprehensive theory. For exam-
ple, as reported in [15], single photon and electron inter-
ference can be calculated without quantum-superposition
state by introducing the states represent a substantial (lo-
calized) photon or electron and the unobservable poten-
tials, which are expressed as following Maxwell equations
respectively.
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The gauge invariance of the localized electro magnetic
field or electron flow (electric current) enables this parti-

tion. Photon creation and annihilation operators â†1 and
â1 are obtained by the quantization of (1). When (2) is
quantized, operators expressing the unobservable poten-
tials can be expressed by using the operators as follows.

â2 =
1

2
γeiθ/2â1 −

1

2
γe−iθ/2â1

â†2 =
1

2
γe−iθ/2â†1 −

1

2
γeiθ/2â†1 (3)

where γ2 = −1 which stands for requirement of indefinite
metric and θ is a phase difference between the localized
and unobservable potentials.

The above â2 bears a remarkable resemblance to the
expression of Ξ̃ reported by C. Meis to investigate quan-
tum vacuum state as follows. [18]

Ξ̃0kλ
= ξakλϵ̂kλe

iφ + ξ∗a†kλϵ̂
∗
kλe

−iφ (4)

where k, λ, ϵ, ξ and φ stand for k mode, λ polarization,
a complex unit vector of polarization, a constant and a
phase parameter respectively.

If we identify ξ and ξ∗ as 1
2γ and −1

2γ and introduce
polarization vectors as described later in (8), then (3)
corresponds to (4).

When state vector |ζ⟩, which represents the unobserv-
able potentials (2), is introduced in Schrödinger picture
as follows, the vector can be identified as indefinite metric
vector with zero probability amplitudes.

|ζ⟩ ≡
(
1

2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩ (5)
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FIG. 1. Typical setup for the Quantum Eraser. Pol1 and Pol2
are fixed linear polarizers with polarizing axes perpendicular
(x and y). Pol3 is a revolvable linear polarizer.

Where |1⟩ represents a photon state. Therefore when
there is no phase difference the expectation value of ar-
bitrary physical quantity Â and provability amplitude of
|ζ⟩ are zeros (⟨ζ|Â|ζ⟩ = 0 , ⟨ζ|ζ⟩ = 0), which means the
unobservable potentials can not be observed alone in the
literature. More detail treatment of these operators and
vectors have been discussed in [15, 16].
Aharonov and Bohm have pointed out the unobserv-

able potentials can cause electron wave interferences [17]
and we should realize all of physical interactions are reg-
ulated by gauge fields (gauge principle), which can not
be observed alone. [19–22]
In this letter, we show the existence of the unobserv-

able potentials can explain not only the interferences but
also the quantum eraser and delayed choice experiment.
In addition, we also shows the interference between pho-
tons and the unobservable potentials violates Bell’s in-
equalities in keeping with the locality, which is consistent
with relativity. This fact is the most important novel as-
pect of this report that the violation of Bell’s inequalities
can not justify the non-locality of quantum theory and
the absence of hidden variables.

TRADITIONAL EXPLANATION FOR
QUANTUM ERASER

Figure 1 shows a typical setup for the quantum eraser.
[23] Without any polarizers, an interference pattern
which is composed of dark and bright fringes can be ob-
served on the screen because light passing on the left of
the wire is combining, or ”interfering,” with light pass-
ing on the right-hand side. In other words, we have no
information about which path each photon went.
When polarizers 1 and 2, which are called ”which-path

markers”, are positioned right behind the wire as shown
in figure 1, the launched light polarized in 45◦ direction
from the Laser is polarized in perpendicular (x-polarized
and y-polarized) by these polarizers. Then the inter-
ference pattern on the screen is erased because ”which-
path makers” have made available the information about
which path each photon went.

When polarizer 3 is inserted in front of the screen
with the polarization angle +45◦ or -45◦ in addition to
”which-path makers”, the interference pattern reappears
because polarizer 3 has made the information of ”which-
path makers” unusable.

We can produce a mathematical description of the
erasure and reappearance of the interference pattern
as follows. x-polarized and y-polarized photon pass-
ing through polarizer 1 and 2 can be expressed by the
quantum-superposition state as follows.

|x⟩ = 1√
2
|+⟩+ 1√

2
|−⟩ (6)

and

|y⟩ = 1√
2
|+⟩ − 1√

2
|−⟩ (7)

where ”+” and ”-” represent polarizations +45◦ and
-45◦ with respect to x.

The photons pass through polarizer 1 and 2 are polar-
ized at right angles to each other as seen in the left-hand
side of (6) and (7), which prevent the interference pat-
tern. In other words, ”which-path makers” have made
available the information about which path each photon
went. Although there are same polarized states in the
right-hand side of (6) and (7), the interference patterns
consisting of bright and dark fringes made by +45◦ and
-45◦ polarized states are reverted images and annihilate
each other. Therefore sum total of the images has no
interference pattern.

When polarizer 3 is inserted with the polarization an-
gle +45◦ or -45◦, only |+⟩ or |−⟩ can pass through polar-
izer 3. Then the interference pattern made by either |+⟩
or |−⟩ of both (6) and (7) reappears, which means we can
not identify which-path the photons had passed through,
i.e., polarizer 3 has made the information of ”which-path
makers” unusable.

NEW EXPLANATION FOR QUANTUM ERASER

The mathematical description of the photon states
passing through polarizer 1 and 2 for the traditional ex-
planation requires the quantum-superposition states (6)
and (7) respectively.

If Maxwell equations are deemed to be classical wave
equations whose electro-magnetic fields obey the super-
position principle, then the description is valid. However,
applying the superposition principle to particle image,
e.g., inseparable single photon, leads to quantum para-
doxes.

Here we take advantage of the unobservable poten-
tials that can eternally populate the whole of space as
waves independent of existence of the substantial pho-
tons. Therefore we can replace the photon state |x⟩ with
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|x⟩+ |ζ⟩, where |ζ⟩ is a state represent the unobservable
potentials whose probability amplitudes ⟨ζ|ζ⟩ = 0 in ini-
tial states as described in (5) (when there are no phase or
polarization angle differences as described below.). The
unobservable potentials can be polarized by the polariz-
ers because the potentials also the electromagnetic po-
tentials which obey Maxwell equations and populate the
whole of space-time.
Note that the unobservable potentials and localized

potentials that represent the substantial photons can
be superposed because the both are originally a pair of
Maxwell equations, i.e., (1) + (2).
Then the following states, which are identified as [15]

introducing polarization terms as same manner as [18],
can generate the same interference as the quantum-
superposition states (6) and (7).

|x⟩+ |ζϕ,x⟩ = |x⟩+ 1

2
γeiϕeiθ/2|x⟩ − 1

2
γe−iϕe−iθ/2|x⟩

|y⟩+ |ζϕ+ 1
2π,y

⟩ = |y⟩+ 1

2
γei(ϕ+

1
2π)e−iθ/2|y⟩

−1

2
γe−i(ϕ+

1
2π)eiθ/2|y⟩ (8)

where γ2 = −1, ϕ and θ are the indefinite metric, the po-
larization angle of polarizer 3 measured from x-axis and
phase difference between left and right paths respectively.
Therefore when we observe only |x⟩ with polarizer 3,

i. e., θ = 0, the intensity of the interference ⟨I⟩ can be
calculated as follows.

⟨I⟩ ∝ (⟨x|+ ⟨ζϕ,x|) (|x⟩+ |ζϕ,x⟩)

= ⟨x|x⟩ − 1

2
⟨x|x⟩+ 1

2
⟨x|x⟩ cos (2ϕ+ θ)

=
1

2
+

1

2
cos (2ϕ+ θ) =

1

2
+

1

2
cos (2ϕ) (9)

Hence the output intensity by rotation angle of polarizer
3 is correctly-reproduced.
When we observe |x⟩ and |y⟩ with polarizer 3, the in-

tensity is obtained as follows.

⟨I⟩ ∝
(
⟨x|+ ⟨ζϕ,x|+ ⟨y|+ ⟨ζϕ+ 1

2π,y
|
)

·
(
|x⟩+ |ζϕ,x⟩+ |y⟩+ |ζϕ+ 1

2π,y
⟩
)

(10)

Because ⟨x|y⟩ = ⟨y|x⟩ = 0, then

⟨I⟩ ∝ (⟨x|+ ⟨ζϕ,x|) (|x⟩+ |ζϕ,x⟩)

+
(
⟨y|+ ⟨ζϕ+ 1

2π,y
|
)(

|y⟩+ |ζϕ+ 1
2π,y

⟩
)

(11)

By using (9), we can obtain

⟨I⟩ ∝ 1

2
+

1

2
cos (2ϕ+ θ) +

1

2
+

1

2
cos (2ϕ+ π − θ)

= 1 +
1

2
cos (2ϕ+ θ)− 1

2
cos (2ϕ− θ) (12)

When ϕ = ±π, ±1
2π then ⟨I⟩ ∝ 1 and ϕ = ±1

4π then
⟨I⟩ ∝ 1 ± sin θ, which reproduces the interference cor-
rectly.

In this new explanation, the polarization of substantial
photons is fixed and the photons can not pass through
the polarizer whose polarization angle is different from
that of photons. However, the unobservable potentials
create the same interference as the superposition state of
|+⟩ and |−⟩ as described above. In case of single photon,
the interference can be calculated by (8) replacing |y⟩
with |0⟩. Then ⟨I⟩ ∝ 1+ 1

2 cos (2ϕ+ θ)− 1
2 cos (2ϕ− θ) is

obtained. Note that when we calculate the single photon
interference by using photon number operator n = â†1â1,
we can obtain exact expression ⟨I⟩ ∝ 1

2 + 1
2 cos (2ϕ+ θ)

because ⟨0|0⟩ = 1 ̸= ⟨0|n|0⟩ = 0. Where â1 is the opera-
tor obtained from (1). [15]

The above calculations are based on Schrödinger pic-
ture. We can obtain the same results based on Heisen-
berg picture. In Heisenberg picture, the photon number
operator should be replaced by n = (â†1 + â†p)(â1 + âp).
[15] Where â1 and âp (p : polarization = x, y, · · · , etc.)
are the operator obtained from (1) which represents the
substantial photons and modified operator introduce the
polarization terms in (3) as follows which represents the
polarized unobservable potentials.

âx =
1

2
γeiϕeiθ/2â1 −

1

2
γe−iϕe−iθ/2â1

â†x =
1

2
γe−iϕe−iθ/2â†1 −

1

2
γeiϕeiθ/2â†1 (13)

We can calculate (9) and (10) in Heisenberg picture as
follows.

⟨I⟩ = ⟨n|(â†1 + â†x)(â1 + âx)|n⟩
= ⟨n|n|n⟩+ ⟨n|â†xâx|n⟩

∝ 1− 1

2
+

1

2
cos (2ϕ+ θ) =

1

2
+

1

2
cos (2ϕ) (14)

⟨I⟩ = ⟨n|(â†1 + â†x + â†1 + â†y)(â1 + âx + â1 + ây)|n⟩
= ⟨n|n|n⟩+ ⟨n|â†xâx|n⟩+ ⟨n|n|n⟩+ ⟨n|â†yây|n⟩

= 1 +
1

2
cos (2ϕ+ θ)− 1

2
cos (2ϕ− θ) (15)

Note that when we study (1) and (2) in Heisenberg pic-
ture, x-polarized photon should be represented by â1+âx
instead of â1. [15] Then when there are x- and y-
polarized photons, the operator should be represented
by (â1 + âx) + (â1 + ây). Where ây can be obtained by
replace ϕ with ϕ+ 1

2π in (13).
The new explanation can describe that âp or |0⟩+ |ζ⟩

which can be identified as vacuum, creates and annihi-
lates the substantial photons through the interference.

Loosely speaking, the unobservable potentials are ori-
ented by the polarizers such as (8) or (13). Then the sub-
stantial photons surf on the sea of the oriented potentials
which can change into substantial photons through the
interference.

Note that (8) are not the superposition states of |+⟩
and |−⟩. Instead, the states are composed of substantial
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FIG. 2. Typical setup for the Delayed Choice Quantum
Eraser. QWP1 and QWP2 are quarter-wave plates aligned
in front of the double slit with fast axes perpendicular. Pol1
is a linear polarizer. BBO (β−BaB2O4) crystal generates en-
tangled photons by spontaneous parametric down-conversion.
[24]

states |x⟩ or |y⟩ and states of unobservable potential |ζ⟩.
These combination of the states create the same interfer-
ence as the superposition states of |+⟩ and |−⟩. There-
fore there is no wave packet reduction and fulfillment of
engineering applications utilizing the wave packet reduc-
tion such as quantum teleportation or computer will be
pessimistic conclusion.

NEW EXPLANATION FOR DELAYED CHOICE
QUANTUM ERASER

In this section, we show new explanation for Delayed
Choice Quantum Eraser as shown in figure 2 which con-
sists of an entangled photon source and two detectors.
The delayed choice has been demonstrated when the dis-
tance from BBO to polarizer 1 is longer than that from
BBO to the double slit. [24]
Here we should take particular note of the fact that the

polarization angle of polarizer 1 has been chosen before
the entangled photons are generated. S. P. Walbornet et
al. [24] have pointed out that ”the experiment did not
allow for the observer to choose the polarization angle in
the time period after photon s was detected and before
detection of p”. From the principle of causality, their
point will be reasonable.
However, mathematical description for the phe-

nomenon requires entangled state such as

|ψ⟩ = 1√
2
(|x⟩s |y⟩p + |y⟩s |x⟩p) (16)

The entangled state declares that the state of the
whole system is a quantum-superposition state consist
of |x⟩s |y⟩p and |y⟩s |x⟩p . Therefore when the state of one
photon (s or p) is observed and determined to be |x⟩, that
of the other photon (p or s) suddenly changes from the
quantum-superposition state into |y⟩ even if the photons
separate from each other, which postulates the existence

of long-range correlation beyond the causality (spooky
action at a distance).

Hence we consider physical phenomenon from the mo-
ment we choose the polarization angle of polarizer 1 to
the moment BBO generates the entangle photon pairs.

The unobservable potentials, which can change from
the potentials into substantial photons, eternally popu-
late the whole of space not forgetting the space between
BBO and Polarizer 1 independent of substantial photons.
Hence the space will be populated by the unobservable
potentials which are oriented by polarizer 1 as described
above. More precisely, the potentials determine the po-
larization of substantial photons in the space in advance
depending on the polarization angle of polarizer 1.

For example, if we choose the polarization angle of po-
larizer 1 to ϕ which is measured from the polarization
angle ψ of created photons, the vacuum is oriented to
|0⟩+ |ζϕ⟩ = |0⟩+ 1

2γe
i(ϕ−ψ)eiθ/2|0⟩− 1

2γe
−i(ϕ−ψ)e−iθ/2|0⟩

at polarizer 1 and propagate to BBO. BBO is forced to
generate the photon pair with polarization p : ϕ and s :
ϕ± 1

2π according to the arrival potentials. More precise
explanation is as follows. By applying a photon creation
operator âψ

† to the polarized vacuum, i. e.,

âψ
†|0⟩+ âψ

†|ζϕ⟩ =

|ψ⟩+ 1

2
γei(ϕ−ψ)eiθ/2|ψ⟩ − 1

2
γe−i(ϕ−ψ)e−iθ/2|ψ⟩ (17)

can be calculated as the created photon state at BBO.
There is no phase difference θ = 0 because there is no
other path in the setup. Then the intensity of the created
photon can be calculated as follows.

⟨I⟩ ∝ 1

2
+

1

2
cos (2ϕ− 2ψ) (18)

In order to create a photon, i. e., ⟨I⟩ = 1, ψ = ϕ will be
required.

Then the polarization of the photon pair is fixed by
the unobservable potentials instead of the entangle state
(16). Therefore when the polarization angle is set to
the fast axis of QWP (Quarter-wave plate) 1 or 2, the
interference pattern can be observed.

Because the unobservable potentials can not be ob-
served, we are not aware of the determination of the
polarization of the photon pair by the unobservable po-
tentials. This is the reason why the state seems to be
”entangled” and the choice of the polarization angle of
polarizer 1 seems to be ”delayed”.

In order to confirm the new explanation, we should
make experiments with a shutter between BBO and po-
larizer 1 as follows. First, close the shutter not to make
a definite orientation of the unobservable potentials. Af-
ter the entangled photon pairs are generated, open the
shutter. When the photon s is measured by Ds, close
the shutter again. After a time period, we excite BBO to
generate the next entangled photon pairs. When the next
pairs are generated, open the shutter again. By repeating
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these procedures, we can make a comparison between the
traditional results and new result. If the definite orienta-
tion of the unobservable potentials as mentioned above
is valid, no interference pattern can be observed even if
the polarization angle of Polarizer 1 is set to the fast axis
of QWP 1 or 2 throughout the experiment.
Note that because the unobservable potentials obeying

Maxwell equations propagate at the speed of light, the
above time period that prevents the unobservable po-
tentials from being oriented should be longer than the
distance between BBO and the shutter divided by the
speed of light.
The above new explanation is based on the preselected

polarization by the setup. However even if the polariza-
tions of the photon pair are randomly selected, the mea-
surement results seem to have the long-range correlation
beyond the causality as follows. From (8), the measure-
ment results of photons s and p are expressed as follows.

⟨Is⟩ ∝ =
1

2
+

1

2
cos (2ϕ)

⟨Ip⟩ ∝ =
1

2
− 1

2
cos (2ϕ) (19)

There is no such a classical correlation and the above
results violate Bell’s inequalities. Therefore, the confir-
mation method described the above have to be carefully
implemented. When there are no polarizers, the polar-
ization is randomly selected. Hence the appearance fre-
quency proportional to the intensity of measured photon
will be extremely lower than the case when there are po-
larizers. The difference of the appearance frequency will
be the only way to distinguish the new explanation from
traditional one.
Whatever the results, the interference between the

photons and unobservable potentials makes the long-
range correlation beyond the causality that does not re-
ally exist in nature look exist.

CONCLUSIONS

We have presented the quantum eraser can be ex-
plained without quantum-superposition states by intro-
ducing the states represent the unobservable potentials
whose probability amplitudes are zero. The explanation
presents a image of vacuum that can create and annihi-
late the substantial photons.
We have also investigated the delayed choice experi-

ment under the assumption that the polarization of the
photon pairs is determined by the unobservable poten-
tials which are oriented by the setup of the experiment in
advance. The new explanations obtained in the present
letter are more general and appear to be physically more
consistent than traditional explanations which require
paradoxical quantum-superposition states and entangled
states.

The other experiments and considerations have been
reported, which seem like paradoxes. [11–13, 25–27] We
believe the paradoxes can be avoided by the new explana-
tion and conclude that engineering application utilizing
wave packet reduction or entangled states will fail.
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