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We present a new explanation for a quantum eraser. The erasure and reappearance of an interference pattern
have been explained that a revolvable linear polarizer erases or marks the information of ”which-path markers”,
which indicate the photon path. Mathematical description of the traditional explanation requires quantum-
superposition states. However, the phenomenon can be explained without quantum-superposition states by
introducing unobservable potentials which can be identified as an indefinite metric vector with zero probability
amplitude. In addition, a delayed choice experiment can also be explained without entangled states under the
assumption that an definite orientation of the unobservable potentials configured by a setup of the experiment
determines the polarization of the photon pairs in advance.

INTRODUCTION

Quantum theory has paradoxes related to the reduction of
the wave packet typified by ”Schrödinger’s cat” and ”Ein-
stein, Podolsky and Rosen (EPR)”. [1, 2] In order to inter-
pret the quantum theory without paradoxes, de Broglie and
Bohm had proposed so called ”hidden variables” theory. [3, 4]
Although, ”hidden variables” has been negated,[5] the the-
ory has been extended to consistent with relativity and ontol-
ogy. [6–10] However the extension has not been completed so
far. A.Aspects’ experiments [11–13] have demonstrated that
Bell’s inequalities are always violated confirming the quan-
tum mechanics theory on the non-locality of the photon and
demonstrating the absence of ”hidden variables” for the local
representation. However, as A.Aspect has confirmed himself,
hidden variables may quite well exist within a non-local rep-
resentation, for example a photon representation with a real
wave function.

The author has reported the alternative interpretation for
quantum theory utilizing quantum field formalism with un-
observable potentials that can be identified as unobservable
gauge fields such as Aharonov-Bohm effect [14–16] and rigor-
ous mathematical treatment using tensor form. The interpre-
tation can omit the quantum paradoxes and be applied to elim-
ination of zero-point energy, spontaneous symmetry breaking,
mass acquire mechanism, non-Abelian gauge fields and neu-
trino oscillation, which can lead to the comprehensive the-
ory. For example, as reported in reference[15], single photon
and electron interference can be calculated without quantum-
superposition state by introducing the states represent a sub-
stantial (localized) photon or electron and the unobservable
potentials, which are expressed as following Maxwell equa-
tions respectively.
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The gauge invariance of the localized electro magnetic field
or electron flow (electric current) enables this partition. Pho-
ton creation and annihilation operators ˆa†1 andâ1 are obtained
by the quantization of (1). When (2) is quantized, operators
expressing the unobservable potentials can be expressed by
using the operators as follows.

â2 =
1
2
γeiθ/2â1 −

1
2
γe−iθ/2â1

â†2 =
1
2
γe−iθ/2â†1 −

1
2
γeiθ/2â†1 (3)

whereγ2 = −1 ( i. e., γ corresponds to the square root of
the determinant of Minkowski metric tensor

√
|gµν| ≡

√
g ≡√

−1 = γ) which stands for requirement of indefinite metric
andθ is a phase difference between the localized and unob-
servable potentials. By using tensor form, we can identify
these operators as scalar potentials with modification of a sign
and spontaneously obtain as described later.

The above ˆa2 bears a remarkable resemblance to the expres-
sion ofΞ̃ reported by C. Meis to investigate quantum vacuum
state as follows. [17]

Ξ̃0kλ = ξakλϵ̂kλe
iφ + ξ∗a†kλϵ̂

∗
kλe
−iφ (4)

wherek, λ, ϵ, ξ andφ stand fork mode,λ polarization, a
complex unit vector of polarization, a constant and a phase
parameter respectively.

If we identify ξ andξ∗ as 1
2γ and− 1

2γ and introduce polar-
ization vectors as described later in (8), then (3) corresponds
to (4).

When state vector|ζ⟩, which represents the unobservable
potentials (2), is introduced in Schrödinger picture as follows,
the vector can be identified as indefinite metric vector with
zero probability amplitudes.

|ζ⟩ ≡
(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩ (5)
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FIG. 1. Typical setup for the Quantum Eraser. Pol1 and Pol2 are
fixed linear polarizers with polarizing axes perpendicular (x and y).
Pol3 is a revolvable linear polarizer.

Where|1⟩ represents a photon state. Therefore when there is
no phase difference the expectation value of arbitrary phys-
ical quantity Â and provability amplitude of|ζ⟩ are zeros
(⟨ζ |Â|ζ⟩ = 0 , ⟨ζ |ζ⟩ = 0), which means the unobservable po-
tentials can not be observed alone in the literature. More detail
treatment of these operators and vectors have been discussed
in reference[15].

Aharonov and Bohm have pointed out the unobservable po-
tentials can cause electron wave interferences [16] and we
should realize all of physical interactions are regulated by
gauge fields (gauge principle), which can not be observed
alone. [18–21]

In this letter, we show the existence of the unobservable
potentials can explain not only the interferences but also the
quantum eraser and delayed choice experiment. In addition,
we also shows the interference between photons and the unob-
servable potentials violates Bell’s inequalities in keeping with
the locality, which is consistent with relativity. This fact is the
most important novel aspect of this report that the violation of
Bell’s inequalities can not justify the non-locality of quantum
theory and the absence of hidden variables.

TRADITIONAL EXPLANATION FOR QUANTUM ERASER

Figure 1 shows a typical setup for the quantum eraser. [22]
Without any polarizers, an interference pattern which is com-
posed of dark and bright fringes can be observed on the screen
because light passing on the left of the wire is combining,
or ”interfering,” with light passing on the right-hand side. In
other words, we have no information about which path each
photon went.

When polarizers 1 and 2, which are called ”which-path
markers”, are positioned right behind the wire as shown in
figure 1, the launched light polarized in 45◦ direction from
the Laser is polarized in perpendicular (x-polarized and y-
polarized) by these polarizers. Then the interference pattern
on the screen is erased because ”which-path makers” have
made available the information about which path each pho-
ton went.

When polarizer 3 is inserted in front of the screen with the
polarization angle+45◦ or -45◦ in addition to ”which-path

makers”, the interference pattern reappears because polarizer
3 has made the information of ”which-path makers” unusable.

We can produce a mathematical description of the erasure
and reappearance of the interference pattern as follows. x-
polarized and y-polarized photon passing through polarizer 1
and 2 can be expressed by the quantum-superposition state as
follows.

|x⟩ = 1
√

2
|+⟩ + 1

√
2
|−⟩ (6)

and

|y⟩ = 1
√

2
|+⟩ − 1

√
2
|−⟩ (7)

where ”+” and ”-” represent polarizations+45◦ and -45◦

with respect tox.
The photons pass through polarizer 1 and 2 are polarized

at right angles to each other as seen in the left-hand side of
(6) and (7), which prevent the interference pattern. In other
words, ”which-path makers” have made available the infor-
mation about which path each photon went. Although there
are same polarized states in the right-hand side of (6) and (7),
the interference patterns consisting of bright and dark fringes
made by+45◦ and -45◦ polarized states are reverted images
and annihilate each other. Therefore sum total of the images
has no interference pattern.

When polarizer 3 is inserted with the polarization angle
+45◦ or -45◦, only |+⟩ or |−⟩ can pass through polarizer 3.
Then the interference pattern made by either|+⟩ or |−⟩ of both
(6) and (7) reappears, which means we can not identify which-
path the photons had passed through, i.e., polarizer 3 has made
the information of ”which-path makers” unusable.

NEW EXPLANATION FOR QUANTUM ERASER

The mathematical description of the photon states passing
through polarizer 1 and 2 for the traditional explanation re-
quires the quantum-superposition states (6) and (7) respec-
tively.

If Maxwell equations are deemed to be classical wave equa-
tions whose electro-magnetic fields obey the superposition
principle, then the description is valid. However, applying
the superposition principle to particle image, e.g., inseparable
single photon, leads to quantum paradoxes.

Here we take advantage of the unobservable potentials that
can eternally populate the whole of space as waves indepen-
dent of existence of the substantial photons. Therefore we can
replace the photon state|x⟩ with |x⟩ + |ζ⟩, where|ζ⟩ is a state
represent the unobservable potentials whose probability am-
plitudes⟨ζ |ζ⟩ = 0 in initial states as described in (5) (when
there are no phase or polarization angle differences as de-
scribed below.). The unobservable potentials can be polarized
by the polarizers because the potentials also the electromag-
netic potentials which obey Maxwell equations and populate
the whole of space-time.
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Note that the unobservable potentials and localized poten-
tials that represent the substantial photons can be superposed
because the both are originally a pair of Maxwell equations,
i.e., (1)+ (2).

Then the following states, which are identified as [15] intro-
ducing polarization terms as same manner as [17], can gener-
ate the same interference as the quantum-superposition states
(6) and (7).

|x⟩ + |ζϕ,x⟩ = |x⟩ +
1
2
γeiϕeiθ/2|x⟩ − 1

2
γe−iϕe−iθ/2|x⟩

|y⟩ + |ζϕ+ 1
2π,y
⟩ = |y⟩ + 1

2
γei(ϕ+ 1

2π)e−iθ/2|y⟩

−1
2
γe−i(ϕ+ 1

2π)eiθ/2|y⟩ (8)

whereγ2 = −1, ϕ andθ are the indefinite metric, the polar-
ization angle of polarizer 3 measured from x-axis and phase
difference between left and right paths respectively.

Therefore when we observe only|x⟩ with polarizer 3, i. e.,
θ = 0, the intensity of the interference⟨I⟩ can be calculated as
follows.

⟨I⟩ ∝
(
⟨x| + ⟨ζϕ,x|

) (
|x⟩ + |ζϕ,x⟩

)
= ⟨x|x⟩ − 1

2
⟨x|x⟩ + 1

2
⟨x|x⟩ cos(2ϕ + θ)

=
1
2
+

1
2

cos(2ϕ + θ) =
1
2
+

1
2

cos(2ϕ) (9)

Hence the output intensity by rotation angle of polarizer 3 is
correctly-reproduced.

When we observe|x⟩ and|y⟩ with polarizer 3, the intensity
is obtained as follows.

⟨I⟩ ∝
(
⟨x| + ⟨ζϕ,x| + ⟨y| + ⟨ζϕ+ 1

2π,y
|
)

·
(
|x⟩ + |ζϕ,x⟩ + |y⟩ + |ζϕ+ 1

2π,y
⟩
)

(10)

Because⟨x|y⟩ = ⟨y|x⟩ = 0, then

⟨I⟩ ∝
(
⟨x| + ⟨ζϕ,x|

) (
|x⟩ + |ζϕ,x⟩

)
+

(
⟨y| + ⟨ζϕ+ 1

2π,y
|
) (
|y⟩ + |ζϕ+ 1

2π,y
⟩
)

(11)

By using (9), we can obtain

⟨I⟩ ∝ 1
2
+

1
2

cos(2ϕ + θ) +
1
2
+

1
2

cos(2ϕ + π − θ)

= 1+
1
2

cos(2ϕ + θ) − 1
2

cos(2ϕ − θ) (12)

Whenϕ = ±π, ± 1
2π then ⟨I⟩ ∝ 1 andϕ = ± 1

4π then ⟨I⟩ ∝
1± sinθ, which reproduces the interference correctly.

In this new explanation, the polarization of substantial pho-
tons is fixed and the photons can not pass through the polar-
izer whose polarization angle is different from that of pho-
tons. However, the unobservable potentials create the same
interference as the superposition state of|+⟩ and |−⟩ as de-
scribed above. In case of single photon, the interference
can be calculated by (8) replacing|y⟩ with |0⟩. Then ⟨I⟩ ∝
1+ 1

2 cos(2ϕ + θ)− 1
2 cos(2ϕ − θ) is obtained. Note that when

we calculate the single photon interference by using photon
number operatorn = â†1â1, we can obtain exact expression
⟨I⟩ ∝ 1

2 +
1
2 cos(2ϕ + θ) because⟨0|0⟩ = 1 , ⟨0|n|0⟩ = 0.

Whereâ1 is the operator obtained from (1). [15]
The above calculations are based on Schrödinger picture.

We can obtain the same results based on Heisenberg picture.
In Heisenberg picture, the photon number operator should
be replaced byn = (â†1 + â†p)(â1 + âp). [15] Whereâ1 and
âp (p : polarization= x, y, · · · ,etc.) are the operator obtained
from (1) which represents the substantial photons and modi-
fied operator introduce the polarization terms in (3) as follows
which represents the polarized unobservable potentials.

âx =
1
2
γeiϕeiθ/2â1 −

1
2
γe−iϕe−iθ/2â1

â†x =
1
2
γe−iϕe−iθ/2â†1 −

1
2
γeiϕeiθ/2â†1 (13)

We can calculate (9) and (10) in Heisenberg picture as follows.

⟨I⟩ = ⟨n|(â†1 + â†x)(â1 + âx)|n⟩
= ⟨n|n|n⟩ + ⟨n|â†xâx|n⟩

∝ 1− 1
2
+

1
2

cos(2ϕ + θ) =
1
2
+

1
2

cos(2ϕ) (14)

⟨I⟩ = ⟨n|(â†1 + â†x + â†1 + â†y)(â1 + âx + â1 + ây)|n⟩
= ⟨n|n|n⟩ + ⟨n|â†xâx|n⟩ + ⟨n|n|n⟩ + ⟨n|â†yây|n⟩

= 1+
1
2

cos(2ϕ + θ) − 1
2

cos(2ϕ − θ) (15)

Note that when we study (1) and (2) in Heisenberg picture, x-
polarized photon should be represented by ˆa1 + âx instead of
â1. [15] Then when there are x- and y-polarized photons, the
operator should be represented by (ˆa1+ âx)+ (â1+ ây). Where
ây can be obtained by replaceϕ with ϕ + 1

2π in (13).
The new explanation can describe that ˆap or |0⟩ + |ζ⟩ which

can be identified as vacuum, creates and annihilates the sub-
stantial photons through the interference.

Loosely speaking, the unobservable potentials are oriented
by the polarizers such as (8) or (13). Then the substantial
photons surf on the sea of the oriented potentials which can
change into substantial photons through the interference.

Note that (8) are not the superposition states of|+⟩ and|−⟩.
Instead, the states are composed of substantial states|x⟩ or |y⟩
and states of unobservable potential|ζ⟩. These combination
of the states create the same interference as the superposition
states of|+⟩ and |−⟩. Therefore there is no wave packet re-
duction and fulfillment of engineering applications utilizing
the wave packet reduction such as quantum teleportation or
computer will be pessimistic conclusion.

NEW EXPLANATION FOR DELAYED CHOICE QUANTUM
ERASER

In this section, we show new explanation for Delayed
Choice Quantum Eraser as shown in figure 2 which consists
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FIG. 2. Typical setup for the Delayed Choice Quantum Eraser.
QWP1 and QWP2 are quarter-wave plates aligned in front of the
double slit with fast axes perpendicular. Pol1 is a linear polarizer.
BBO (β−BaB2O4) crystal generates entangled photons by sponta-
neous parametric down-conversion. [23]

of an entangled photon source and two detectors. The delayed
choice has been demonstrated when the distance from BBO
to polarizer 1 is longer than that from BBO to the double slit.
[23]

Here we should take particular note of the fact that the po-
larization angle of polarizer 1 has been chosen before the en-
tangled photons are generated. S. P. Walbornet et al. [23] have
pointed out that ”the experiment did not allow for the observer
to choose the polarization angle in the time period after photon
s was detected and before detection ofp”. From the principle
of causality, their point will be reasonable.

However, mathematical description for the phenomenon re-
quires entangled state such as

|ψ⟩ = 1
√

2

(
|x⟩s|y⟩p + |y⟩s|x⟩p

)
(16)

The entangled state declares that the state of the whole sys-
tem is a quantum-superposition state consist of|x⟩s|y⟩p and
|y⟩s|x⟩p. Therefore when the state of one photon (s or p) is
observed and determined to be|x⟩, that of the other photon (p
or s) suddenly changes from the quantum-superposition state
into |y⟩ even if the photons separate from each other, which
postulates the existence of long-range correlation beyond the
causality (spooky action at a distance).

Hence we consider physical phenomenon from the moment
we choose the polarization angle of polarizer 1 to the moment
BBO generates the entangle photon pairs.

The unobservable potentials, which can change from the
potentials into substantial photons, eternally populate the
whole of space not forgetting the space between BBO and Po-
larizer 1 independent of substantial photons. Hence the space
will be populated by the unobservable potentials which are
oriented by polarizer 1 as described above. More precisely,
the potentials determine the polarization of substantial pho-
tons in the space in advance depending on the polarization
angle of polarizer 1.

For example, if we choose the polarization angle of polar-
izer 1 toϕ which is measured from the polarization angleψ
of created photons, the vacuum is oriented to|0⟩ + |ζϕ⟩ =

|0⟩ + 1
2γei(ϕ−ψ)eiθ/2|0⟩ − 1

2γe−i(ϕ−ψ)e−iθ/2|0⟩ at polarizer 1 and
propagate to BBO. BBO is forced to generate the photon pair
with polarizationp : ϕ ands : ϕ ± 1

2π according to the arrival
potentials. More precise explanation is as follows. By apply-
ing a photon creation operator ˆaψ† to the polarized vacuum, i.
e.,

âψ
†|0⟩ + âψ

†|ζϕ⟩ =

|ψ⟩ + 1
2
γei(ϕ−ψ)eiθ/2|ψ⟩ − 1

2
γe−i(ϕ−ψ)e−iθ/2|ψ⟩ (17)

can be calculated as the created photon state at BBO. There
is no phase differenceθ = 0 because there is no other path
in the setup. Then the intensity of the created photon can be
calculated as follows.

⟨I⟩ ∝ 1
2
+

1
2

cos(2ϕ − 2ψ) (18)

In order to create a photon, i. e.,⟨I⟩ = 1, ψ = ϕ will be
required.

Then the polarization of the photon pair is fixed by the un-
observable potentials instead of the entangle state (16). There-
fore when the polarization angle is set to the fast axis of QWP
(Quarter-wave plate) 1 or 2, the interference pattern can be
observed.

Because the unobservable potentials can not be observed,
we are not aware of the determination of the polarization of
the photon pair by the unobservable potentials. This is the
reason why the state seems to be ”entangled” and the choice
of the polarization angle of polarizer 1 seems to be ”delayed”.

In order to confirm the new explanation, we should make
experiments with a shutter between BBO and polarizer 1 as
follows. First, close the shutter not to make a definite orienta-
tion of the unobservable potentials. After the entangled pho-
ton pairs are generated, open the shutter. When the photons is
measured by Ds, close the shutter again. After a time period,
we excite BBO to generate the next entangled photon pairs.
When the next pairs are generated, open the shutter again. By
repeating these procedures, we can make a comparison be-
tween the traditional results and new result. If the definite
orientation of the unobservable potentials as mentioned above
is valid, no interference pattern can be observed even if the
polarization angle of Polarizer 1 is set to the fast axis of QWP
1 or 2 throughout the experiment.

Note that because the unobservable potentials obeying
Maxwell equations propagate at the speed of light, the above
time period that prevents the unobservable potentials from be-
ing oriented should be longer than the distance between BBO
and the shutter divided by the speed of light.

The above new explanation is based on the preselected po-
larization by the setup. However even if the polarizations
of the photon pair are randomly selected, the measurement
results seem to have the long-range correlation beyond the
causality as follows. From (8), the measurement results of
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photonss andp are expressed as follows.

⟨Is⟩ ∝ =
1
2
+

1
2

cos(2ϕ)

⟨Ip⟩ ∝ =
1
2
− 1

2
cos(2ϕ) (19)

There is no such a classical correlation and the above re-
sults violate Bell’s inequalities. Therefore, the confirmation
method described the above have to be carefully implemented.
When there are no polarizers, the polarization is randomly se-
lected. Hence the appearance frequency proportional to the
intensity of measured photon will be extremely lower than the
case when there are polarizers. The difference of the appear-
ance frequency will be the only way to distinguish the new
explanation from traditional one.

Whatever the results, the interference between the photons
and unobservable potentials makes the long-range correlation
beyond the causality that does not really exist in nature look
exist.

TENSOR FORM OF THE ELECTROMAGNETIC FIELDS

We have introduced the operator by usingγ2 = −1 such as
(13), which expresses the unobservable potentials in heuristic
method in the above. When we use tensor form of the electro-
magnetic fields, the operator and results can be spontaneously
introduced as following manner. The followings is almost as
same as the appendix of reference [15].

The electromagnetic potentials are expressed as following
four-vector in Minkowski space.

Aµ = (A0, A1, A2, A3) = (ϕ/c, A) (20)

The four-current are also expressed as following four-vector.

jµ = ( j0, j1, j2, j3) = (cρ, i) (21)

When we set the axises of Minkowski space tox0 = ct, x1 =

x, x2 = y, x3 = z, Maxwell equations with Lorentz condition
are expressed as follows.

□Aµ = µ0 jµ

∂µA
µ = 0 (22)

In addition, the conservation of charge divi + ∂ρ/∂t = 0 is ex-
pressed as∂µ jµ = 0. Where∂µ = (1/c∂t, 1/∂x, 1/∂y, 1/∂z) =
(1/∂x0, 1/∂x1, 1/∂x2, 1/∂x3) and □ stands for the
d’alembertian:□ ≡ ∂µ∂µ ≡ ∂2/c2∂t2 − ∆.

The transformation between covariance and contravari-
ance vector can be calculated by using the simplest form of
Minkowski metric tensorgµν as follows.

gµν = g
µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Aµ = gµνA

ν

Aµ = gµνAν (23)

The following quadratic form of four-vectors is invariant un-
der a Lorentz transformation.

(x0)2 − (x1)2 − (x2)2 − (x3)2 (24)

The above quadratic form applied a minus sign expresses the
wave front equation and can be described by using metric ten-
sor.

−gµνxµxν = −xµxµ = x2 + y2 + z2 − c2t2 = 0 (25)

This quadratic form which includes minus sign is also intro-
duced to inner product of arbitrarily vectors and commutation
relations in Minkowski space.

The four-vector potential satisfied Maxwell equations with
vanishing the four-vector current can be expressed as follow-
ing Fourier transform in terms of plane wave solutions. [24]

Aµ(x) =
∫

dk̃
3∑
λ=0

[a(λ)(k)ϵ(λ)
µ (k)e−ik·x + a(λ)†(k)ϵ(λ)∗

µ (k)eik·x]

(26)

k̃ =
d3k

2k0(2π)3
k0 = |k| (27)

where the unit vector of time-axis directionn and polarization
vectorsϵ(λ)

µ (k) are introduced asn2 = 1, n0 > 0 andϵ(0) = n,
ϵ(1) andϵ(2) are in the plane orthogonal tok andn

ϵ(λ)(k) · ϵ(λ′)(k) = −δλ,λ′ λ , λ′ = 1, 2 (28)

ϵ(3) is in the plane (k, n) orthogonal ton and normalized

ϵ(3)(k) · n = 0 , [ϵ(3)(k)]2 = −1 (29)

Then ϵ(0) can be recognized as a polarization vector of
scalar waves,ϵ(1) and ϵ(2) of transversal waves andϵ(3) of a
longitudinal wave. Then we take these vectors as following
the easiest forms.

ϵ(0) =


1
0
0
0

 ϵ(1) =


0
1
0
0

 ϵ(2) =


0
0
1
0

 ϵ(3) =


0
0
0
1

 (30)

When the Fourier coefficients of the four-vector potentials
are replaced by operators asÂµ ≡

∑3
λ=0 â(λ)(k)ϵ(λ)

µ (k), the com-
mutation relations are obtained as follows.

[Âµ(k), Â†ν(k
′)] = −gµνδ(k− k′) (31)

The time-axis component (corresponds toµ, ν = 0 scalar
wave, i. e., scalar potential becauseϵ(0)

µ (k) = 0 (µ , 0)) has the
opposite sign of the space axes. Because⟨0|Â0(k)Â†0(k′)|0⟩ =
−δ(k− k′) then

⟨1|1⟩ = −⟨0|0⟩
∫

dk̃| f (k)|2 (32)

where|1⟩ =
∫

dk̃ f(k)Â†0(k)|0⟩. Therefore the time-axis com-
ponent is the root cause of indefinite metric. Note that the
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products of the operators replaced from the four-vectors must
introduce the same formalism.

Â†Â = −gµνÂµ†Âν (33)

In order to utilize the indefinite metric as followings, Coulomb
gauge that removes the scalar potentials should not be used. In
case of using Coulomb gauge, alternate unobservable poten-
tials such as (2), which are derived from gauge invariance, are
required for the interference.

Here we can recognize the potentials before passing
through the polarizers 1 and 2 as

Aµ = (A0, A1, A2, 0) (34)

where, we neglect the longitudinal wave which is consid-
ered to be unphysical presence, i. e.,A3 = 0 for simplicity.
When there are an x-polarized photon and scalar potential and
pass through the each polarizers, then the potentials passing
through the polarizers can be expressed as

A(x pol 1) µ =

(
1
2

eiθx/2A(x)0, A(x)1, 0, 0

)
A(x pol 2) µ =

(
1
2

e−iθx/2A(x)0, 0, 0, 0

)
(35)

When these scalar potentials undergo a|ϕ| phase shift, i. e.,
the angle of the polarizer 3, by passing through the polarizer
3, the phase terms will be shifted to±i (|ϕ| + θx/2). Here we
identify the number operators as⟨1|A†0A0|1⟩ = ⟨1|A†1A1|1⟩ =
⟨1|A†2A2|1⟩ = 1 because of the Lorentz invariance. Hence the
single photon interference (9) or (19) is obtained as follow-
ings.

A(x pol 1, 2→3) µ ≡ A(x pol 1→3) µ + A(x pol 2→3) µ

=

(
cos(|ϕ| + θx

2
)A(x)0, A(x)1, 0, 0

)
(36)

⟨Is⟩ ∝ ⟨1|A†(x pol 1, 2→3)A(x pol 1, 2→3)|1⟩

=
1
2
− 1

2
cos(2|ϕ| + θx) (37)

Similarly, in case of a y-polarized photon

A(y pol 1) µ =

(
1
2

eiθy/2A(y)0, 0, 0, 0

)
A(y pol 2) µ =

(
1
2

e−iθy/2A(y)0, 0, A(y)2, 0

)
(38)

A(y pol 1, 2→3) µ ≡ A(y pol 1→3) µ + A(y pol 2→3) µ

=

(
cos(|ϕ| +

θy

2
)A(y)0, 0, A(y)2, 0

)
(39)

Then

⟨Ip⟩ ∝ ⟨1|A†(y pol 1, 2→3)A(y pol 1, 2→3)|1⟩

=
1
2
− 1

2
cos(2|ϕ| + θy) (40)

By choosingθ ≡ θx = −(θy + π), i. e., the potentials undergo
π phase shift and the relatively-same phase shift at polarizer 1
and 2 when divided,

⟨Is⟩ ∝
1
2
− 1

2
cos(2|ϕ| + θ)

⟨Ip⟩ ∝
1
2
+

1
2

cos(2|ϕ| − θ) (41)

Hence we should chooseθ = θ+π to correct the reversed signs,
which is attributed to the difference between usingγ2 = −1
and tensor form.

In case of both polarization photon exist, the potentials just
before the polarizer 3 will be expressed by summation of (35)
and (38). Then the potentials undergo a|ϕ| phase shift by the
polarizer 3 can be expressed as follows.

A(x, y pol 1, 2→3) µ =(
A(x)0 cos(|ϕ| + θx

2
) + A(y)0 cos(|ϕ| +

θy

2
), A(x)1, A(y)2, 0

)
(42)

Therefore the output intensity of the polarizer 3 can be cal-
culated as follows.

A†(x, y pol 1, 2→3)A(x, y pol 1, 2→3)

= −A†(x)0A(x)0 cos2(|ϕ| + θx

2
) − A†(y)0A(y)0 cos2(|ϕ| +

θy

2
))

−(A†(x)0A(y)0 + A†(y)0A(x)0) cos(|ϕ| + θx

2
) cos(|ϕ| +

θy

2
)

+A†(x)1A(x)1 + A†(y)2A(y)2 (43)

Then by choosingθ ≡ θx = −(θy + π),

⟨1|A†(x, y pol 1, 2→3)A(x, y pol 1, 2→3)|1⟩

= 1− 1
2

cos(2|ϕ| + θ) + 1
2

cos(2|ϕ| − θ)

−⟨1|(A†(x)0A(y)0 + A†(y)0A(x)0)|1⟩ cos(|ϕ| + θ
2

) sin(|ϕ| − θ
2

)

(44)

Here we should recognize|1⟩ = α(|x⟩ + |y⟩) and A(x)0 and
A(y)0 annihilate x and y-polarized photon respectively, i. e.,
A(x)0|1⟩ = |1⟩ − α|x⟩ = α|y⟩ andA(y)0|1⟩ = |1⟩ − α|y⟩ = α|x⟩.
Because⟨x|y⟩ = 0, then

−⟨1|(A†(x)0A(y)0 + A†(y)0A(x)0)|1⟩ = −
(
α2⟨y|x⟩ + α2⟨x|y⟩

)
= 0
(45)

Hence (44) corresponds to (12) and (15) except the sign.

CONCLUSIONS

We have presented the quantum eraser can be explained
without quantum-superposition states by introducing the
states represent the unobservable potentials whose probabil-
ity amplitudes are zero. The explanation presents a image of
vacuum that can create and annihilate the substantial photons.
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We have also investigated the delayed choice experiment
under the assumption that the polarization of the photon pairs
is determined by the unobservable potentials which are ori-
ented by the setup of the experiment in advance. In addition to
these discussions based on a heuristic method, we have shown
rigorous mathematical treatment using tensor form.

The new explanations obtained in the present letter are
more general and appear to be physically more consistent than
traditional explanations which require paradoxical quantum-
superposition states and entangled states.

The other experiments and considerations have been re-
ported, which seem like paradoxes. [11–13, 25–27] We be-
lieve the paradoxes can be avoided by the new explanation and
conclude that engineering application utilizing wave packet
reduction or entangled states will fail.
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