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Abstract

Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRÖDINGER’s 1926
wave functions in general requires the field C of the complex numbers to be formulated.
However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of
Special Relativity (SR) (SCHRÖDINGER, OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an
equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It
is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of
square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties
of the elements and their relations to one another, rather than their precise form as matrices which is important. This
encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations
of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as
quaternions over the complex numbers.
As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H
of the quaternions at one hand and the algebra C⊗C of the bicomplex numbers at the other, the latter being commutative
in contrast to H. As it will later turn out, C ⊗ C contains several pure non-real subalgebras which are isomorphic to
C, letting bicomplex-valued wave functions be considered as composed from facultatively independent quasi-complex-
valued wave functions.
Within this paper, we first consider shortly the basics of the non-relativistic and the relativistic quantum theory. Then
we introduce general hypercomplex algebras and also show how a relativistic quantum equation like DIRAC’s one can
be formulated using hypercomplex coefficients. Subsequently, some algebraic preconditions for some operations within
hypercomplex algebras and their subalgebras will be examined. For our purpose, an exponential function should be able
to express oscillations, and equations akin the SCHRÖDINGER’s one should be able to be set up and solved. Further, like
within C, functions of complementary variables (such like position and momentum) should be FOURIER transforms of
each other. All this should also be possible within a purely non-real subspace. It will turn out that such a subspace also
must be a subalgebra, i.e. it must be closed under multiplication. Furthermore, it is an ideal and hence denoted by J .
It must be isomorphic to C, hence containing an internal identity element. The bicomplex numbers will turn out to fulfil
these preconditions, and therefore, the formalism of QT can be developed within its subalgebras. We also show that the
bicomplex numbers encourage the definition of several different kinds of conjugates. One of these treats the elements
of J precisely as the usual complex conjugate treats complex numbers. This defines a quantity what we call a modulus
which, in contrast to the complex absolute square, remains non-real (but can be called ‘pseudo-real’). However, we do
not conduct an explicit physical interpretation here but we leave this to future examinations.

keywords algebras, bicomplex, hypercomplex, quantum mechanics, quantum theory, quaternions, SCHRÖDINGER equa-
tion, special relativity, wave functions.
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1 Introduction
The history of quantum theory starts with the discovery of the wave-particle-dualism of light (in the broadest sense) by
MAX PLANCK (explanation of black-body-radiation, 1900) and ALBERT EINSTEIN (explanation of the photoelectric
effect, 1905). It means that electromagnetic radiation of frequency ν respectively the pulsatance (angular frequency)
ω = 2πν can be absorbed or emitted in ‘portions’ or quanta of E = hν = ~ω only, where h is PLANCK’s constant (or
quantum of action) and ~ = h

2π ≈ 1, 054 × 10−34Nms is called reduced PLANCK’s constant or Dirac’s constant. This
dualism, however, is not confined to electromagnetic radiation: Searching for a plausible explanation for the stability of
election states within an atom, LOUIS VICTOR DE BROGLIE applied this dualism to matter in 1924, postulating that to
any particle of energy E and momentum ~p, a pulsatance ω = E

~ and the wave vector ~k = ~p
~ can be attributed.

The wave equation and its complex ansatz for a solution ERWIN SCHRÖDINGER seized DE BROGLIES idea in 1926.
He replaced the classical variables by differential operators to develop one of the most important basic equations of
quantum mechanics (QM), the wave functions φ(~x, t) being its solutions. The general real solution

a cos(~k · ~x− ωt) + b sin(~k · ~x− ωt), a, b ∈ R (1)

turned out as unable to solve the equation not least because it is of 1st order in time derivative which requires some kind
of exponential function to solve it. Due to LEONHARD EULER’s formula eiϕ = cos(ϕ) + i · sin(ϕ), the complex-valued
ansatz

zei(
~k·~x−ωt) = ze

i
~ (~p·~x−Et)), z ∈ C. (2)

turns out to be apt because it unifies the trigonometric functions with exponential functions and thus solves linear differ-
ential equations of different orders including the 1st and the 2nd.1

Interpretation of the wave function Not least because of their complex (hypercomplex, respectively) values, a lively
debate on the nature of these wave functions soon arose. SCHRÖDINGER considered them as representations of physical
waves at that time, he thought e.g. of a distribution of charge density.
However, the majority of physicists disagreed. Within the year, MAX BORN suggested an interpretation for the absolute
square of the wave function as the probability density which is still valid today. This lead to the Kopenhagen interpretation
which in some aspects seem akin to positivism. Its most famous proponent NIELS BOHR regarded the wave function as
nothing but a useful mathematical aid without any physical reality.
In this point, we disagree. We consider complex-valued functions to have special physical properties and being much more
than just a mathematical aid [16], for we are convinced that no such aid or pure formalism could have real physical effects,
e.g. in form of destructive interference requiring the wave functions themselves to interfere, not simply the probabilities.
This quantum realism also holds for hypercomplex approaches, these obviously being inevitable for a consistent depiction
of nature. Note that it is false to identify real values with measurable and imaginary values with not measurable; the real
part of a wave function is as little measurable as its imaginary part. Actually, the only thing to measure are eigenvalues of
Hermitian operators; however, it is possible to reconstruct probability densities, i.e. the absolute squares discussed above
by multiple measurements on identically prepared quantum systems. It is the phase which remains unknown.2

Special relativity and hypercomplex extensions Roughly at the same time as QT, the special relativity theory (SRT,
EINSTEIN, 1905, see appendix C) came to existence as an offspring of the cognizance that like to the laws of mechanics,
GALILEI’s principle of relativity also applies to JAMES CLERK MAXWELL’s electrodynamics which implies that c =
299792458m

s
3, the vacuum speed of light and other electromagnetic waves has to be the same in any inertial system, being

independent of its velocity. Involving SRT in wave mechanics, the scalar complex ansatz turned out to be insufficient for
the purpose of fully describing matter. The problem was solved by PAUL DIRAC in 1928 by setting up an equation with
hypercomplex coeffizients. These are written as quadratic matrices, while the equation’s solution are vectors of functions.

Conventions for the following text Universal constants like c or ~ are actually artifacts of the measuring system (see
appendix C) and don’t reveal anything deeper about mathematical relations. Therefore theoretical physicists prefer natural
units in which they are equal to unity or at least a simple dimensionless number. So we do, using a system of measurement
with ~ = 1, c = 1 unless an exception is explicitly indicated. So, (2) becomes

zei(~p·~x−Et). (3)

In conformity with the conventions of relativity theory, especially general relativity, we further use Greek indices if the
set of indices includes zero and Latin ones otherwise. Double indices, especially when one of them is an upper (not to be

1As relativistic QT shows, a real equation with special real 2 × 2-matrix coefficients and a real wave function 2 component vector as a solution
would work as well, though less elegant. However, the coefficients then were isomorphic to complex numbers.

2An exception may be some special states in photons known as coherent states; in this case, the number of ‘particles’ is not sharply defined.
3this is the today value which is exact by definition since the redefinition of the meter by GCPM in 1983, being within the last error (1973).
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confused with powers!) and one is a lower, will be summed over unless explicitly negated. Integrals without bounds are
not to be taken as indefinite but as improper, i.e. the integration is to be calculated over the entire range of the integrand.
Last, we write operators of the form

∂

∂x
,
∂2

∂x2
,
∂

∂t
,
∂2

∂t2
, · · ·

in a space-saving manner like ∂x, ∂2x, ∂t, ∂
2
t , . . . unless there is anyway a fraction.

2 Matrix mechanics and wave mechanics
QT is formulated in two manners which look profoundly dissimilar at the first sight: matrix mechanics (WERNER
HEISENBERG et al., 1925) and wave mechanics (ERWIN SCHRÖDINGER et al., 1926). SCHRÖDINGER, indeed, proved
both manners as equivalent [20, 21, 22].
Matrix mechanics is more general and coordinate-independent. It deserves primacy in respect of that any wave mechanics
have to be expressible in terms of matrix mechanics4, and it provides all concepts and formalism described in appendix
B.1. In B.2, a two-state-system and a space of wave functions (in position representation) are shown as two mostly dif-
ferent examples of HILBERT spaces, i.e. spaces of quantum states. Wave mechanics is hence a special case of matrix
mechanics. However, it is more graphic since it describes a “particle” by functions in space and time. Additionally, it
promotes the usage of complex-valued functions which correspons to our purpose of a hypercomplex extension of QT;
this is why we mainly consider it below.

2.1 The SCHRÖDINGER equation and its solutions
HAMILTON vs. energy operator According to classical mechanics, the HAMILTON function of generalized coordinates
xr an momenta pr of a system is equal to its entire energy:

E = H(pr, xr) ≡
1

2m

∑
r

p2r + U(xr) (4)

Replacing the variables by operators and their application to a state |φ〉 leads to the relationship

Ê|φ〉 = Ĥ|φ〉 ≡

(
1

2m

∑
r

p̂2r + U(x̂r)

)
|φ〉 (5)

between the energy and the HAMILTON operator which is nothing less than the SCHRÖDINGER equation in terms of
matrix mechanics. Note that Ĥ and Ê are essentially different operators - (5) were trivial otherwise - because Ê depicts
the temporal behaviour of |φ〉, Ĥ its spatial behaviour and the effects of a potential. Of course, they share the same
eigenfunctions |φ(E)〉 corresponding to the same eigenvalues E. For an Ê- (or Ĥ-)eigenstate |φ(E)〉, the operator Ê can
be replaced by the value E which leads to the stationary Schrödinger equation

Ĥ|φ(E)〉 = E|φ(E)〉. (6)

To link to wave theory, we use (3) to express the momentum operators and the energy operator in position representation:

p̂r = i−1∂xr
= −i∂xr

(7)
Ê = −i−1∂t = i∂t. (8)

SCHRÖDINGER equation Substituting (7) and (8) in (5) immediately yields (SCHRÖDINGER, 1926)

Ĥφ(~x, t) =

(
−∇2

2m
+ U(~x)

)
φ(~x, t) = i

∂

∂t
φ(~x, t). (9)

In spatial representation and using (7), equation (6) becomes

Ĥφ =

(
−∇2

2m
+ U(~x)

)
φ = Eφ (10)

whose solutions, according to (3) have the form φ(~x, t) = φ(~x) · e−iEt whose stationary part φ(~x) already solves (10).
Unlike the time-dependent solution which contains the factor eiEt but not e−iEt, this function may be real and is to be
understood as an interference of solutions of opposite momenta, i.e. a standing wave, e.g. describing a particle in a box.

4and indeed is whereas the opposite is not always possible; e.g. there is no position representation of a spin state
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2.2 Special relativistic wave mechanics
The quantization of SRT emanates from the relativistic energy-momentum-relationship (see appendix C, (99)). Like in
the SCHRÖDINGER case, replacing physical quantities by their operators leads to a differential equation (here for a free
particle, OSKAR KLEIN, WALTER GORDON, 1926):

(p̂µp̂µ −m2)φ = (ηµρpµpρ −m2)φ = 0 (11)

At one hand, this equation must always be satisfied. At the other, it fails to fully depict the behaviour of the most quantum
systems not least for being 2nd order in all derivatives5. Some non-number coefficients γµ are required to set up the
following 1st order equation (PAUL DIRAC, 1928) [4, 5]:

(γµp̂µ −m)φ = 0. (12)

The γµ must neither be real nor complex, for squaring the operator on the left side yields

(γµp̂µ −m)2φ = (γµγρp̂µp̂ρ +m2 − 2mγµp̂µ)φ

= (γµγρp̂µp̂ρ −m2 − 2mγµp̂µ + 2m2)φ

= (γµγρp̂µp̂ρ −m2)φ− 2m(γµp̂µ −m)φ︸ ︷︷ ︸
=0

= 0

⇒ (γµγρp̂µp̂ρ −m2)φ = 0,

(13)

where we remind the reader of the fact that γµγρp̂µp̂ρ is a sum containing any pair of indices in any order. For φ(xµ)
must also solve (11), the γµ must both anti-commute pairwise to make mixed terms cancel out ans square to ±1̂ which
generalize the numbers ±1.6. Altogether, they satisfy the relationship

γµγρ + γργµ = 2ηµρ1̂, (14)

where ηµρ (also see (98)) is the metric tensor. The spatial coefficients display the same behaviour as the imaginary
units of H, the division ring of quaternions. Indeed, the DIRAC coefficients can be interpreted using biquaternions (i.e.
quaternions over C instead of R, see 3.1.3) in a more compact way than usually.

3 Hypercomplex algebas and their applications to QT
A hypercomplex algebra generalizes (often extents, though not always) the field C as an algebra and hence as a vector
space over R. Essentially, the algebra has to be unitary i.e. contain unity and hence R itself. Using a basis where 1
explicitly belongs to an element of such algebra is written as [11, 7]

q = a0 + a1i1 + · · ·+ anin (15)

where the non-real basis elements ir, r = 1, . . . , n are often called “imaginary units” [11] regardless of the rules how they
are multiplied. We do not adopt this term for two reasons: The first one is that in algebra, the word “unit” implies the
existence of a multiplicative inverse whereas an “imaginary unit” in the above meaning can be a zero divisor which forbids
division by them. The second has something to do with the term “imaginary”: At least if 1 and a non-real basis element
form a 2D subalgebra, this is easy to show containing a non-real element which squares to one of the real elements -1, 0
or 1; it is such an element we wish to reserve the term “imaginary” for.
However, multiplication always distributes over addition from both sides [2, 24] whereas any other property of multiplica-
tion like reversibility (i.e. division), associativity or even commutativity are not constitutive. These properties are exactly
what the differences between algebras of the same dimension essentially consist of, for a basis transformation can alter
the rules of multiplication such that it becomes at least difficult to recognize an algebra. At the other hand, different rules
of multiplication don’t automatically mean a different algebra.
In general, the product of two basis elements is a linear combination of the entire basis, i.e.

iris =

n∑
µ=0

prsµiµ = prs0 + prs1i1 + · · ·+ prsnin (16)

where i0 := 1. Note that this has nothing to do with the imaginary unit i0 introduced below. In the following, we confine
our considerations to algebras which have a basis in which for any ordered pair (r, s) and hence any product iris, there is
at most one nonzero coefficient prsµ, i.e.

∀r, s ∈ {1, · · · , n}∃µ ∈ {0, · · · , n} : iris ∈ {0,−iµ,+iµ}. (17)

Of course, we are going to presume such basis as given. In this case, there are finitely many possible rules of multiplica-
tion, (2n+ 3)n

2

being an upper boundary.
5A 2nd order equation has more solutions than a 1st order one.
6For example, in an n× n matrix ring, 1̂ means the n× n unit matrix.
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Subspaces and subalgebras A (proper) subspace U ⊂ A is a (proper) subalgebra of A iff

∀α, β ∈ U : αβ ∈ U ∧ βα ∈ U . (18)

Ideals and zero divisors A (proper) subalgebra J ( A is a (proper) ideal of A iff

∀γ ∈ A, β ∈ J : βγ ∈ J ∧ γβ ∈ J . (19)

An algebra is called simple iff it contains no proper ideals except of {0}.
Two elements α, β ∈ A \ {0} are called zero divisors7 iff α · β = 0. In R-algebras, zero divisors use to belong to ideals.
It is obvious that α ∈ J1, β ∈ J2 are zero divisors if J1 ∩ J2 = {0}. Division by β ∈ J is always impossible:

- If γ /∈ J , the equations βξ = γ and ξβ = γ have no solution ξ ∈ A, namely if γ = 1, i.e. there is no β−1.

- If γ ∈ J , the solution is ambiguous at least in general due to dimA > dimJ .

We will see that zero divisors can play a vital role in eigenvalue equations (see appendix C.4, esp. (108)).

3.1 Familiar examples
3.1.1 Algebras with one imaginary unit

Beside of C itself which certainly is the most famous such algebra there is also the algebra of the dual numbers whose
imaginary unit which is often called Ω squares to zero8 and the (much more interesting) algebra of the split-complex
numbers whose imaginary unit which is called E or σ squares to +1; we prefer σ due to the PAULI matrices which square
to the 2× 2 unit matrix. They are also called hyperbolic numbers due to the property

(a0 + a1σ)(a0 − a1σ) = a20 − a21 (20)

which is often called the modulus and characterizes hyperbolas in the split-complex plane just like the norm of complex
numbers a circle9. It corresponds to the square of the MINKOWSKI weak norm. The algebra contains the two non-trivial
(i.e. non-unity) idempotent elements

1

2
(1± σ). (21)

These three algebras are indeed the only two-dimensional hypercomplex algebras because, for a non-real basis element i
with i2 = a+ bi, a, b ∈ R, it is easy to find an imaginary element which squares to a real number and can be normalized
if non-zero [11]:

i2 − bi +
b2

4
=

(
i− b

2

)2

= a+
b2

4
∈ R (22)

⇒
i− b

2√
|a+ b2

4 |+ δ4a,−b2
=


Ω, 4a = −b2

σ, 4a > −b2

i, 4a < −b2
(23)

3.1.2 Quaternions

Unlike the examples above, the following ones contain C as a subalgebra and hence are really an extensions of the
complex numbers. Trying to find a reversible multiplication for 3D space vectors, WILLIAM ROWAN HAMILTON, though
unsuccessful in his original purpose, found the quaternions [9] in 1843 by adding a real component; due to him, the
algebra was later called H. There are 3 imaginary units; a quaternion q is hence written as 10

q = a0 + a1i1 + a2i2 + a3i3, aρ ∈ R. (24)

The rules of multiplication are summarized in Table 1; as H is not commutative, the order is relevant and to be understood
as row times column [9, 10]. Like in C, every q ∈ H has a conjugate

q = a0 − a1i1 − a2i2 − a3i3 (25)

which can be used to compute

<(q) =
q + q

2
, =(q) =

q − q
2

, |q| =
√
qq.

7To speak more exactly, α is called a left and β is called a right zero divisor.
8In [8], such ‘numbers’ are also called pseudo-nul or roots of zero.
9Except split-complex numbers with modulus 0 which characterize the asymptotes of the hyperbolas and are certainly zero divisors.

10Usually, the imaginary units are denoted by i, j, k but these symbols will be used differently.
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1 i1 i2 i3
1 1 i1 i2 i3
i1 i1 −1 i3 −i2
i2 i2 −i3 −1 i1
i3 i3 i2 −i1 −1

Table 1: Multiplication of the quaternions

Note the difference from C where, in an element a0 + a1i, it is the (real) coefficient a1 which is called the imaginary part,
rather than a1i. For the quaternion q, <(q),=(q) are also called its scalar and vector part.
A right quaternion q= is defined by <(q=) = 0 and formally denotable as a scalar product ~v ·~ı (~ı := T (i1, i2, i3)). A
product of two right quaternions q=1 q

=
2 is

−~v1 · ~v2 + (~v1 × ~v2) ·~ı,

i.e. in some sense, quaternion multiplication unifies the scalar and the cross product. Quaternions can also used to describe
spatial rotations[11]. The imaginary units share so many properties with spatial dimensions that this suggests to regard
space as something essentially imaginary - just like the imaginary MINKOWSKI norms of space-like four-vectors in SRT.
H is a skew field or division ring, i.e. it satisfies all field axioms except of commutativity. Any plane of H containing R
is a subalgebra isomorphic to C since the imaginary units are algebraically equivalent. An overview of the features of H
and other algebras is provided in appendix A.2.

3.1.3 Biquaternions

The (HAMILTON-CAYLEY) biquaternions C ⊗ H are an extension of both quaternions and the bicomplex numbers dis-
cussed below. They can be perceived as an algebra over C = Span({1, i0}) with three ‘outer’ imaginary units i1, i2, i3
which anti-commute pairwise while they commute with the ‘inner’ imaginary unit i0, i.e. i0ir = iri0 =: σr, r = 1, 2, 3
for which individually

σ2
r = (iri0)2 = i2ri

2
0 = (−1) · (−1) = +1. (26)

Like the ir, the σr anti-commute pairwise which, εqrs being the totally antisymmetric LEVI-CIVITA pseudo-tensor, yields

σqσr = i20iqir = −i20iriq = −δqr − εqrsis = δqr + εqrsi0 · σs. (27)

In terms of algebraic relationships, these ‘new’ imaginary units σr are isomorphic to the PAULI matrices and hence apt
to be used in relativistic QT equations like the DIRAC equation (see appendix C) and its non-relativistic PAULI approach.
An Overview of the rules of multiplication is shown in Table 2; as above, it is to be taken as row times column.

1 i0 i1 i2 i3 σ1 σ2 σ3
1 1 i0 i1 i2 i3 σ1 σ2 σ3
i0 i0 −1 σ1 σ2 σ3 −i1 −i2 −i3
i1 i1 σ1 −1 i3 −i2 −i0 σ3 −σ2
i2 i2 σ2 −i3 −1 i1 −σ3 −i0 σ1
i3 i3 σ3 i2 −i1 −1 σ2 −σ1 −i0
σ1 σ1 −i1 −i0 σ3 −σ2 1 −i3 i2
σ2 σ2 −i2 −σ3 −i0 σ1 i3 1 −i1
σ3 σ3 −i3 σ2 −σ1 −i0 −i2 i1 1

Table 2: Multiplication of biquaternions

Inner and outer conjugate For a complex number z = x + iy, x, y ∈ R, its conjugate is unambiguously defined,
namely by z̄ = x− iy. In principle this holds for a q ∈ H for all imaginary units are equivalent.
In contrast, C⊗H contains different types of imaginary units. Particularly, it can be understood as an algebra over C and
thus a biquaternion q = α+β0i0 +

∑3
r=1(βrir+βr+3σr), α, βµ ∈ R can also be written as q = a0 +

∑
r arir, aµ ∈ C.

Beside the ‘plain’ conjugate q̆ = α + β0i0 +
∑3
r=1(βrir + βr+3σr), q there are hence the ‘outer’ conjugate q =

a0 −
∑
r arir and the inner conjugate q∗ = ā0 +

∑
r ārir as well[17, 25]. Additionally, these types can be combined to

q† = ā0 −
∑
r ārir.
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3.1.4 Bicomplex numbers

An additional hypercomplex algebra containing C is the algebra C⊗C of the bicomplex numbers first described in 1892
by CORRADO SEGRE who had studied the quaternions before. They can be regarded as complex numbers a + i1b ∈
C1, a, b ∈ C0 := 〈{1, i0}〉 with the additional ‘inner’ imaginary unit i0. Unlike their superalgebra C ⊗ H, C ⊗ C is
commutative [3, 23] and contains only one ‘outer’ imaginary unit which makes it principally interchangeable with the
‘inner’ one. Altogether, the multiplication rules in canonical basis are given in Table 3.

1 i0 i1 σ
1 1 i0 i1 σ
i0 i0 −1 σ −i1
i1 i1 σ −1 −i0
σ σ −i1 −i0 1

Table 3: Multiplication of bicomplex numbers (canonical basis)

In contrast to H, C ⊗ H is not a division algebra but contain 〈{1, σ}〉 as a subalgebra isomorphic to the split-complex
numbers which are known to contain zero divisors. Like the latter, it contains the non-unity idempotent elements(

1± σ
2

)2

=
12 ± 2σ + σ2

4
=

2± 2σ

4
=

1± σ
2

, (28)

each of it belonging to a purely non-real subalgebra which is even an ideal. An overview of C ⊗ C and other algebras is
given in appendix A.2.

3.2 Hypercomplex generalizations of operations used in wave mechanics
In the following, we are going to examine the criteria a hypercomplex-valued function must satisfy to be interpreted as a
wave function in the SCHRÖDINGER sense:

1. Oscillations and waves must be expressible by exponential functions to formulate a wave function which solves the
SCHRÖDINGER equation or/and its relativistic pendants (KLEIN-GORDON, DIRAC).

2. A FOURIER transform must be applicable bidirectionally to interchange between representations (e.g. ~x, ~p).

To describe systems which cannot be measured directly, we additionally demand a purely non-real subspace (which will
turn out to be a subalgebra and even an ideal) to satisfy these both conditions. In the following, the basis elements of the
demanded ideal will generally denoted by α and β whose features will be examined.

3.2.1 Algebraic conditions for wave functions and SCHRÖDINGER-like equations

Oscillations and series expansions In C (d.h. α = 1, β = i), EULER’s formula

eipx = cos(px) + i sin(px), p, x ∈ R

links exponential functions to trigonometric functions and hence to oscillations which is also recognizable with help of
the TAYLOR series, its even exponent summands forming the cosine series and its odd ones the sine series multiplied by i:

eipx =

∞∑
n=0

in(px)n

n!
=

∞∑
r=0

(
i2r(px)2r

(2r)!
+
i(2r+1)(px)(2r+1)

(2r + 1)!

)

=

∞∑
r=0

(−1)r
(px)2r

(2r)!
+ i

∞∑
r=0

(−1)r
(px)2r+1

(2r + 1)!

= cos(px) + i sin(px)

(29)

In a hypercomplex algebra A and its subspaces/subalgebras, the series expansion can show in a corresponding manner
whether an exponential function αeβpx, α, β ∈ A describes oscillations and waves. For this purpose, powers must be
well-defined which requires A and its subalgebras to be at least power associative and flexible (see appendix A.1) which
is automatically satisfied by alternative and associative algebras. We propose both power associativity and flexibility. The
power series expansion αeβpx is

αeβ(px) = α

∞∑
n=0

βn(px)n

n!
= α

∞∑
r=0

(
β2r(px)2r

(2r)!
+
β(2r+1)(px)(2r+1)

(2r + 1)!

)

= α

∞∑
r=0

β2r (px)2r

(2r)!
+ αβ

∞∑
r=0

β2r (px)(2r+1)

(2r + 1)!
.

(30)
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To make the functions represented by (30) periodical, β must behave like an imaginary unit in the sense of C, i.e., there
must be γ ∈ A whose span is isomorphic to R and which satisfies β2 = −1 · γ2. If so, there is also λ ∈ R with γ2 = λγ.
This implies λ−1γ =: ε to be idempotent, i.e. εm = ε∀m ∈ N (including the possibility of ε = 1). Then, β2 = −λ2ε and

αeβ(px) = αε

∞∑
r=0

(−1)r
(λ(px))2r

(2r)!
+
αβ

λ
ε

∞∑
r=0

(−1)r
(λ(px))(2r+1)

(2r + 1)!

= αε cos(λ(px)) + α
β

λ
ε sin(λ(px)).

(31)

Within the first line, we used the idempotency of ε to factor it out thus obtaining functions of real arguments. For
simplicity, we assume λ = 1. Obviously, Span({ε, β}) is a subalgebra of A which is isomorphic to C and might also
contain α (not necessarily, as purely imaginary oscillations in H show).

The role of the idempotent element Idempotent elements like ε must be either 1 or zero divisors because

ε2 = ε⇒ ε · ε = 1 · ε⇒ (ε− 1)ε = 0, (32)

and thus our proposal that Span({ε, β}) is a purely non-real subalgebra of A implies that A cannot be a division algebra.

Oscillation and differential equations A ‘deeper’ approach to oscillations than that via series and trigonometric func-
tions are differential equations because they elementarily describe the behaviour of a system. A function f(x) which is to
depict a harmonic oscillation with x being the phase must solve a differential equation of the form

∂2xf(x) = −p2f(x). (33)

If f(x) = αeβpx and α, β ∈ A,

∂2xαe
βpx = αβ2p2eβpx

!
= −αp2eβpx ⇒ α(β2 + 1) = 0, (34)

which implies β2 = −1 if A is simple and does not contain any zero divisors.

Schrödinger equation for free particles The SCHRÖDINGER equation is a kind of wave equation which relates mo-
mentum and (in free particle case kinetic) energy. Thus, for a momentum and energy eigenstate φ,

p2

2m
φ = Eφ.

Using the ansatz φ = αeβ(px−Et), the first derivative with respect to t is

∂tφ = αβ(−E)eβ(px−Et) = −Eαβeβ(px−Et)

= ∓Eβφ, if αβ = ±βα,
(35)

Thus β2α = αβ2 = −α leads to
β∂tφ = ∓Eβ2φ = ±Eφ, (36)

because φ contains α as a factor. The 2nd derivative with respect to x is

∂2xφ = αβ2p2eβ(px−Et) = −p2φ, (37)

making φ be an eigenfunction of the operator−∂2x corresponding to the eigenvalue p2. Thus the SCHRÖDINGER equation
takes the form

− ∂2

2m∂x2
φ = ±β ∂

∂t
φ (38)

depending on whether α and β commute or anti-commute.

Oscillation and SCHRÖDINGER equation in quaternions The quaternions have infinitely many subalgebras which
are isomorphic to C and hence allow oscillations; their basis elements are unity and an arbitrary unit right quaternion
which is defined by

~ıa = a1i1 + a2i2 + a3i3 with a21 + a22 + a23 = 1.

Since the ir anti-commute pairwise, making mixed terms cancel out,

~ı 2a = a21i
2
1 + a22i

2
2 + a23i

2
3 = (−1)a21 + (−1)a22 + (−1)a23 = −1,
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it is isomorphic to i ∈ C. A function e~ıapx thus depicts an oscillation which certainly holds for~ıbe~ıapx where

~ıb = b1i1 + b2i2 + b3i3 mit b21 + b22 + b23 = 1

is another unit quaternion. If, additionally, ~ıa ⊥ ~ıb, i.e.
∑3
r=1 arbr = 0, the oscillation takes place within a purely

imaginary subspace. Such an exponential function within a purely imaginary plane may e.g. be

i3e
i1px = i3 ·

(
1 +

i1px

1!
− 1

(px)2

2!
− i1

(px)3

3!
+ 1

(px)4

4!
+ i1

(px)5

5!
+ . . .

)
= i3 + i2

px

1!
− i3

(px)2

2!
− i2

(px)3

3!
+ i3

(px)4

4!
+ i2

(px)5

5!
− . . .

= i3 cos(px) + i2 sin(px).

(39)

Of course, such a function also satisfies (34). According to (38) and using φ = i3e
i1(px−Et), the pairwise anti-

commutativity of the imaginary unit leads to a free particle SCHRÖDINGER equation

− ∂2

2m∂x2
φ = −i1

∂

∂t
φ. (40)

Thus quaternions allow oscillations to be depicted by exponential functions and even a SCHRÖDINGER equation to be
formulated even with a purely imaginary wave function, though with the time derivative having a negative sign in contrast
to the complex case.

3.2.2 Algebraic propositions for FOURIER transform

In the following, we elaborate the criteria for a FOURIER transform to be implemented within a plane of A by denoting
the basis elements of the plane by α and β and by examinating the conditions for their multiplication rules.

Starting from 1D-FOURIER transform in C A function F (x) can often be written as a sum of many periodic functions
or at least as an integral over a continuum of functions G(p):

F (x) =
1√
2π

∫
G(p)eipx dp (41)

The function of amplitudes is computable via

G(p) =
1√
2π

∫
F (x)e−ipx dx (42)

Hypercomplex generalizations In the following, the above procedure is generalized to two hypercomplex elements α
and β yet not specified:

F (x) =
1√
2π

∫
G(p)αeβpx dp (43)

G(p) =
1√
2π

∫
F (x)αe−βpx dx (44)

A concrete value of F can be extracted via DIRACS’s delta function11 defined by the identity∫ ∞
−∞

f(x)δ(x) dx = f(0) ∀f(x) (45)

and hence

F (x) =

∫ ∞
−∞

F (x′)δ(x− x′) dx′. (46)

Using the hypercomplexly generalized integral representation of the delta function,

δ(x− x′) =
1√
2π

∫ ∞
−∞

αeβp(x−x
′) dx′, (47)

11This is actually a distribution which is a specific functional acting on functions rather than on numerical values. It can be interpreted as a function
via the nonstandard analysis formulated by ABRAHAM ROBINSON in 1961 which defines different nonzero infinitesimals and infinite elements, e.g. as
a normalized GAUSS function with an infinitesimal standard deviation.
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this is ∫ ∞
−∞

F (x′)δ(x− x′) dx′ =
1√
2π

∫ ∞
−∞

F (x′) dx′
∫ ∞
−∞

αeβp(x−x
′) dp

=
1√
2π

∫ ∞
−∞

F (x′)αe−βpx
′

dx′
∫ ∞
−∞

αeβpx dp (48)

=
1√
2π

∫ ∞
−∞

G(p)αeβpx dp

from which following conditions for the exponential function emanate:

αeβp(x+x
′) = αeβpx · αeβpx

′
(49)

eixeix
′

= (cosx+ i sinx)(cosx′ + i sinx′)

= cosx cosx′ + i cosx sinx′ + i sinx cosx′ + i sinx sinx′ (50)
= cos(x+ x′) + i sin(x+ x′)

αeβxαeβx
′

= αeβ(x+x
′)
[

(49)
= α cos(x+ x′) + β sin(x+ x′)

]
= (α cosx+ β sinx)(α cosx′ + β sinx′) (51)
= α cosx cosx′ − α sinx sinx′ + β sinx cosx′ + β sinx′ cosx

= α2 cosx cosx′ + β2 sinx sinx′ + βα sinx cosx′ + βα sinx′ cosx

By comparing the coefficient we obtain

α2 = α β2 = −α αβ = βα = β. (52)

Thus the subalgebra has to be isomorphic to C anyway, i.e. have the same rules of multiplication. For a purely imaginary
subalgebra, this means that α must be an internal identity element (and hence a zero divisor, due to (32)).

Application to the quaternions As H is a division algebra, it cannot have subalgebras with internal identity elements
and so fails to satisfy our proposals for FOURIER transforming within purely imaginary subalgebras.

3.3 Non-real complex-isomorphic subalgebras of the bicomplex numbers
From (28) we already know that the bicomplex numbers contain the non-unity idempotent elements 1±σ

2 which are both
‘candidates’ for k. We choose 1+σ

2 =: k which makes 1−σ
2 = 1−k = k12. Beside these elements there are 1

2 (i0−i1) =: j
with (

i0 − i1
2

)2

=
i20 − 2i0i1 + i21

2
=
−1− σ

2
= −k

and
1 + σ

2

i0 − i1
2

=
i0 − i1

2

and further 1
2 (i0 + i1) = i− j = j with(

i0 + i1
2

)2

=
i20 + 2i0i1 + i21

2
=
σ − 1

2
= k − 1

and
1− σ

2

i0 + i1
2

=
i0 + i1

2
.

Since j and k are linearly independent separately and with 1 and i as well, they can be used as basis elements instead
of i0, i1. If we depict the canonical basis as orthogonal, the j- and k-axes are diagonal. Hence we refer to this basis
{1, i, j, k} shortly as a oblique basis. These multiplication rules are listed in Table 4.
The bicomplex numbers thus have four C-isomorphic subalgebras, two of them being purely non-real (see Table 5).13

The subalgebras J ,J consist of elements which are ‘·′-conjugates of each other. Additionally, they are ideals with
J ∩ J = {0} which implies

ab = 0∀a ∈ J , b ∈ J
e.g. 1/4(1 + σ)(1− σ) = k(1− k) = 0 and 1/4(i0 − i1)(i0 + i1) = j(i− j) = 0.
Below we focus on

Span({1, i}) = C and Span({1 + σ, i0 − i1}) = Span({k, j}) = J .
12The non-real elements k and k = 1− k are inter-convertible.
13The angle brackets and the braces within them mean linear span and can also be denoted by Span({1, i}).
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1 i j k
1 1 i j k
i i −1 −k j
j j −k −k j
k k j j k

Table 4: Multiplication for the bicomplex numbers represented by its oblique basis

Symbolic Denotation canonical basis oblique basis
C1 〈{1, i1}〉 〈{1, i}〉
C0 〈{1, i0}〉 〈{1, (i− 2j)}〉
J 〈{1 + σ, i0 − i1}〉 〈{k, j}〉
J 〈{1− σ, i0 + i1}〉 〈{1− k, i− j}〉 = 〈{k, j}

Table 5: C-isomorphic planes in C⊗ C

3.4 Application of the bicomplex number to QT
In the following, we examine how linear operators known from QM act on C- and J -valued wave functions. For simplic-
ity, we focus on plane waves with a certain wave vector (=̂ momentum) ~p (wave number p in 1D).

3.4.1 Ideal-valued wave functions

If we denote (3) by φC and interpret C - where the values come from - as a subalgebra, its J -valued pendant with the
same ~p and E has the form

φJ (~x, t) ∝ kej(~p·~x−Et). (53)

By the way, the latter equals kei(~p·~x−Et) as well because

k · i = k · j = j (54)

like series expansion can show. For our rather elementary consideration only requires 1D, we rewrite the functions as

φC = ei(px−Et) (55)

φJ = kej(px−Et)
(54)
= kei(px−Et) = kφC. (56)

Both functions can be interpreted as parts of an entire wave function φ = φC + φJ . Even ejpx can be denoted by φJ as
it is seen by the series expansion, namely φJ − k + 1.

3.4.2 Operators and the SCHRÖDINGER equation

Again we start from standard QM. The partial wave function φC is the eigenfunction of the momentum operator −i∂x
corresponding to the eigenvalue p:

−i∂xφC = −i∂xei(px−Et) = −i · i︸ ︷︷ ︸
=1

pei(px−Et) = pφC. (57)

The operator should also apply to the entire wave function which implies that it should apply to the partial wave function
φJ as well; the latter turns out to be an eigenfunction of the same operator corresponding to the same eigenvalue as well:

−i∂xφJ = −i · jpkej(px−Et) = −i · jpej(px−Et) = pkej(px−Et) = pφJ = −j∂xφJ (58)

Reversely, the k-fold of the momentum operator should apply to the entire wave function and therefore to φC(x) as well,
and via

k · (−i∂x)φC = −j∂xφC = −j · ipei(px−Et) = −j · ipei(px−Et) = pkei(px−Et) = kpφC = k · −i∂xφC, (59)

this leads to a non-real eigenvalue kp. In contrast, the application of this operator to φJ yields

k · (−i∂x)φJ = −j∂xφJ = −j · jpkej(px−Et) = −j · jpej(px−Et) = pkej(px−Et) = pφJ = kpφJ , (60)

i.e. the eigenvalue is ambiguous inasmuch as φJ , as an eigenfunction of the operator, can be interpreted as corresponding
both to kp and to p. A physical interpretation of this result will be considered in future examinations. However, the only
way to obtain an unambiguously non-real eigenvalue is to apply an J -valued operator on an at least partly C-valued wave
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function.
As an eigenfunction of the momentum operator corresponding to the eigenvalue p, both φC and φJ obviously solve the
SCHRÖDINGER equation (9), e.g. for U = 0:

ĤCφC = − ∂2x
2m

φC =
−i2p2

2m
φC =

p2

2m
φC = i

∂

∂t
φC = i · (−i)EφC = EφC (61)

ĤCφJ = − ∂2x
2m

φJ =
−j2p2

2m
φJ =

kp2

2m
φJ =

p2

2m
φJ = i

∂

∂t
φJ = i · (−j)EφJ = kEφJ = EφJ (62)

Applying the k-fold of the SCHRÖDINGER equation to functions yields

ĤJ φJ = −k ∂
2
x

2m
φJ = −kj2 p

2

2m
φJ = k

p2

2m
φJ = j

∂

∂t
φJ = j · (−j)EφJ = kEφJ = EφJ (63)

ĤJ φC = −k ∂
2
x

2m
φC = −ki2 p

2

2m
φC = k

p2

2m
φC = j

∂

∂t
φC = j · (−i)EφC = kEφC. (64)

This shows that the SCHRÖDINGER equation in both the C and the J form (i.e. with or without k which can never be got
out if once in because J is an ideal) applies to φJ , obtaining the same ambiguity as with the momentum operators.

Conclusion: For kφJ and φJ are indistinguishable, the partial wave function φJ leads to eigenvalues which can be
interpreted as k-valued but also as real as well. It is distinguishable only whether the normal operator or their k-fold are
applied to the C-valued function. For physical interpretation, this suggests to regard the operators, rather than the wave
functions, as the extension of QT which is made even more plausible as far as in the description of photons[12], the carrier
of the actual physical quantities like e.g. the electric field intensity is not the wave function but the operators.

3.4.3 Change of representation and FOURIER transform

Just like φC, φJ should have a momentum and energy representation which is obtained by FOURIER transform according
to (44). In 1D which is clearly sufficient for showing it in principal, this is

φJ (p) =
1√
2π

∫ ∞
−∞

φJ (x)ke−jp
′x dx =

1√
2π

∫ ∞
−∞

kej(p−p
′)x−Et) dx = kδ(p− p′)ejEt. (65)

The delta function is obtained by, roughly14 speaking, phase factors cancelling out within the infinitely narrow p-range
p′ = p, leaving the integrand constant and thus the integral infinite. This does not happen if one tries to apply the C
FOURIER transform to φJ :

1√
2π

∫ ∞
−∞

φJ (x)ke−ip
′x dx =

1√
2π

∫ ∞
−∞

ke(jp−ip
′)x−jEt dx (66)

Here the integrand stays periodic for p′ = p, leaving the integral bounded. This holds for applying the J FOURIER
transform to φC. A physical interpretation of this will be given in future examinations.

3.4.4 Double conjugate, modulus and expectation value

In QT, the absolute square φ1(x)φC(x)15 of a wave function of an observable x is interpreted as a probability density
for measuring a certain value of x, the wave function being complex-valued and hence the conjugation unambiguously
defined. As we have seen, in C ⊗ H different types of conjugates can be defined thus and in C ⊗ C as well. Beside a
“plain” conjugate which maps any imaginary component to its negative, there is an ‘outer’ one which does so with i1 and
thus with σ and an ‘inner’ which maps i0 and σ to their negatives. Both map an element from J to one from J whose
product with the former is always zero, hence yielding φJ φJ ≡ 0.
There is also a combined or double conjugate of q ∈ C⊗ C which is defined by q† := q∗ = q∗. For i†0 = −i0, i†1 = −ii,
σ† = (−i0)(−i1) = σ and thus k† = k, j† = −j, the conjugate of a J -valued function being like in C just with k in the
place of 1.
Of course, the product q†q, still being non-real as it contains the factor k, may not be called absolute square; according to
the wording for split-complex numbers, we call it the “modulus”. The modulus of a momentum operator eigenfunction is
spatially constant; its non-real value is to point up that it is not a probability density which were measurable in principal:16

14Or in terms of nonstandard analysis where infinite and infinitesimal quantities are well-defined.
15Or φ∗C(x)φC(x) like usual in physics
16This does not allow with equalize “imaginary” to “not measurable” with “real” to “measurable”! The real part of a usual QT wave function is no

more measurable than the imaginary part. Reversely, SRT suggests to equalize “imaginary” with “space like” when MINKOWSKI norms are considered.
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kejpxke−jpx = (k cos(px) + j sin(px))(k cos(px)− j sin(px))

= k2 cos2(px)− j2 sin2(px)

= k
(
cos2(px) + sin2(px))

)
= k.

(67)

The choice of the conjugate is also important for defining an expectation value or some pendant of it, respectively. As the
expectation value of the operator −i∂x in the state φC is naturally

〈φC| − i∂x|φC〉 = e−i(px−Et) · −i∂xei(px−Et) = e−i(px−Et) · −i · i · p · ei(px−Et) = p (68)
〈φC|i∂t|φC〉 = e−i(px−Et) · i∂tei(px−Et) = e−i(px−Et) · i · −i · E · ei(px−Et) = E, (69)

and taking φ† as the conjugate, the expectation value of the same operator in the state φJ is

〈φJ | − i∂x|φJ 〉 = ke−j(px−Et) · −i∂xkej(px−Et) = kp

= e−i(px−Et) · −j∂xei(px−Et) = 〈φC| − j∂x|φC〉
= ke−j(px−Et) · −j∂xkej(px−Et) = 〈φJ | − j∂x|φJ 〉.

(70)

〈φJ |i∂t|φJ 〉 = ke−j(px−Et) · i∂tkej(px−Et) = kE

= e−i(px−Et) · j∂tei(px−Et) = 〈φC|j∂t|φC〉
= ke−j(px−Et) · j∂tkej(px−Et) = 〈φJ |j∂t|φJ 〉

(71)

and thus is k-valued wherever the wave function or the operator is J -valued, even where the eigenvalue is ambiguous.
Note that kei(px−Et) = kej(px−Et) and hence kφC = φJ .

4 Summary and prospects
Initially we sketched QT in its fundamentals and saw that, in Newtonian approximation, its formulation requires complex
numbers (or something isomorphic to it).
Further we saw that a correct and complete relativistic QT (especially the DIRAC equation) requires even more, i.e. a
higher dimensioned and non-commutative hypercomplex algebra for its coefficients.
Before we went into details, we first described the general properties of hypercomplex algebras. Then we considered
some examples of low dimension, some of which being extensions rather than generalizations of C. Beside the division
ring or skew field H of the quaternions which is by far the best known hypercomplex algebra we became acquainted with
an extension of H, namely the algebra C ⊗ H of the (HAMILTON-CAYLEY) biquaternions which soon turned out to be
apt to formulate the DIRAC equation though some difficulties of interpretation arose which are to be concerned about in
future examinations. Beside the ‘plain’ conjugate which means to negate all imaginary components, the biquaternions
provide different kinds of conjugates which we called the ‘inner’ and the ‘outer’ one, and their combination as well.
Subsequently we considered C ⊗ C, a subalgebra of the bicomplex numbers which, in contrast to H, is commutative
and, like the biquaternions, contains zero divisors and hence elements division by which is impossible and some of which
being idempotent that later turned out to be important.
Our main issue was an extension for QT with a hypercomplex algebra which at least contains one purely non-real sub-
space S such that S-valued QT should be performable in the same manner as in normal complex values. This implies
that S-valued exponential functions should describe oscillations and waves and so the formulation and solution of a
SCHRÖDINGER equation should be able as well, which still holds for the quaternions.
Furthermore, it implies the possibility of FOURIER transforms to change the basis from position to momentum represen-
tation and vice versa. Such a purely non-real subspace turned out to have to be a subalgebra isomorphic to C. From this
follows the existence of an internal identity element which must be idempotent and, for being nun-unity, also a zero divi-
sor, thus making the subalgebra S be (or belong to) a proper ideal hence denoted by J . This excludes division algebras
and therefore H.
Last we found the bicomplex numbers to satisfy our postulates because they contain two idempotent elements k and k
and j, j with j2 = −k, j2 = −k spanning the ideals J := Span({k, j}) and J := Span({k, j}). Additionally, 1, i, j, k
span the entire algebra, and we use them as the new basis.
In the end, we introduced two partial wave functions φC = eipx and φJ = kejpx and applied the original SCHRÖDINGER
equation and its J -valued version to both. The eigenvalue obtained by the application of the J -valued version to φJ
turned out to be ambiguous insofar as it can be interpreted as k-valued but as real-valued as well. Last we used the
combined conjugate defined above to assign a nonzero modulus to φJ and to compute expectation values for the state φJ
which, in contrast to the eigenvalues, all are unambiguous.
Future examinations will have to physically interpret the J -valued partial wave functions and the C ⊗ C-valued entire
wave function according to our results here.
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7, LOB-Lehmanns Media. Beiträge zur Frühjahrstagung in Kassel, Tagungs-CD des Fachverbandes Didaktik der
Physik in der Deutschen Physikalischen Gesellschaft.

[11] KANTOR, I. L., AND SOLODOWNIKOW, A. S. Hyperkomplexe Zahlen. BSB BG. Teubner Verlagsgesellschaft,
1973.

[12] KUHN, W., AND STRNAD, J. Quantenfeldtheorie. Photonen und ihre Deutung. Viehweg und Sohn Verlagsge-
sellschaft mbH, 1995.

[13] LORENTZ, A. Simplified Theory of Electrical and Optical Phenomena in Moving Systems. In Proceedings of the
Royal Netherlands Academy of Arts and Sciences (1899), pp. 427–442.

[14] MINKOWSKI, H. Das Relativitätsprinzip. In Annalen der Physik, vol. 47 of 4. Verlag von Johann Ambrosius Barth,
Leipzig, 1907/1915, pp. 927–938.

[15] MINKOWSKI, H. Raum und Zeit. In Jahresberichte der Deutschen Mathematiker- Vereinigung. Verlag von B.G.
Teubner, Leipzig und Berlin, 1908/1909.

[16] OTTE, R. Versuch einer Systemtheorie des Geistes. No. ISBN 978-3869559179. Cuvillier, E, 2011.

[17] RAETZ, G. Quaternion quantum mechanics. http://home.pcisys.net/˜bestwork.1/QQM/
QuaternionQuantumMechanics.htm, 2010.

[18] RAWAT, S., AND NEGI, O. Quaternion dirac equation and supersymmetry. arXiv:hep-th/0701131.

[19] SCHAFER, R. D. An Introduction to Nonassociative Algebras. Gutenberg, 1966.
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APPENDIX

A Superordinate properties of hypercomplex algebras

A.1 general properties
Distributivity is both related to addition and multiplication at once inasmuch as the latter distributes over the former.
All other properties are related to both individually. In the following, we consider these properties of the multiplication
because in algebras, addition is always associative, commutative and reversible.

Distributivity Distributivity, which means
a(b+ c) = ab+ ac

(b+ c)a = ba+ ca
(72)

is a basic proposition for any hypercomplex algebra.

Associativity and its dilutions An algebra A is called associative if

(ab)c = a(bc) ∀a, b, c ∈ A. (73)

Examples are, of course, R,C and H and all n × n matrix rings as well. Reversely, associative hypercomplex algebras
have a matrix representations [2], unity being represented by n× n unit matrices. Eventual zero divisors then show up as
singular matrices. Another formulation for associativity is that the associator [a, b, c] =: (ab)c− a(bc) vanishes.
A is called alternative if

(aa)b = a(ab) ∀a, b ∈ A. (74)

One example is the algebra O of the octonions but all associative algebras are alternative as well. The name is due to the
fact that the associator is alternating, i.e. [a, b, c] = −[a, c, b] and so on [2, 19].
A is called flexible if

(ab)a = a(ba) ∀a, b ∈ A (75)

and power-associative if
am+n = (am)(an) ∀a ∈ A,m, n ∈ N. (76)

One example is the algebra S of the sedenions but all alternative algebras are both flexible and power-associative as well.

Commutativity and anti-commutativity A is called commutative or rather anti-commutative if

ab = ±ba∀a, b ∈ A; (77)

this is immediately visible in the multiplication table since this is symmetric or anti-symmetric to the main diagonal.
However, strict anti-commutativity does not exist in hyperkomplex algebras because they contain the real numbers which
commute with any other element. Nevertheless, there will be certain anti-commuting elements unless A is commutative.

General reversibility of multiplication A is called a division algebra if

z1z = z2 and zz1 = z2 (78)

have a unique solution z for all z1, z2 ∈ A. If z1 is a zero divisor and belongs to an ideal I, respectively, there is no
solution for z2 /∈ I and many, often even a whole continuum of solutions for z2 ∈ I.

A.2 Properties of the algebras examined in this paper
For the algebras explicitly mentioned and examined in this paper, we summarize their properties, i.e. the properties of the
multiplication, in a table: Biquaternions and bicomplex numbers do not form division algebras, as, particularly well seen
in the so-called oblique basis (table 4) where zero divisors are basis elements denoted here as k and j. The columns and
rows for j and k neither contain 1 nor i but each two incidents of j and k instead.
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name symbol distributive associative commutative reversible
complex numbers C yes yes yes yes

dual numbers - yes yes yes no
split-complex numbers - yes yes yes no

quaternions H yes yes no yes
biquaternions C⊗H yes yes no no

bicomplex numbers C⊗ C yes yes yes no

Table 6: Properties of several

B Formalism of QT

B.1 Summary of the most important basic concepts
HILBERT spaces and quantum states Matrix mechanics generalizes the analytical geometry of the familiar 3D space
which is a special case of vector spaces over R or C with named after DAVID HILBERT: It has a scalar product and
therefore the euclidean norm and additionally is complete, i.e. all CAUCHY sequences converge within the space. 17

These properties are common to any HILBERT space.
In QT, a quantum state is represented by a vector from H which, according to PAUL DIRAC, is denoted by |φ〉. Any
complex multiple z|φ〉, z ∈ C represents the same state of a particle or a system, thus the state itself which |φ〉 represents
can be identified with Span(|φ〉) ⊂ H which is actually a whole 1D subspace.
HILBERT spaces can have very different dimension including infinite and even uncountably infinite. An example for a
HILBERT space of such dimension is the function space L2(R3) of which links to wave mechanics: The wave function
φ(~x, t) is straightly a specific (here: position) representation of the quantum state |φ〉. Position space, according to its
properties, is clearly itself a HILBERT space but as far as this HILBERT space of spatial functions is concerned, it is just a
kind of index set.

Combination of several HILBERT spaces Tensor product H = H(1) ⊗ · · · ⊗ H(n) of n HILBERT spaces is itself a
HILBERT spaces, its elements being |φ〉 = |φ〉1 · · · |φ〉n. Note that the Hr can be completely different. There are many
cases where such the Combination is required to provide a complete description of particles especially if they have a
spin. For example, for a spin 1

2 particle such as the electron, its spin HILBERT space being H = C2. Thus a complete
description of such a particle requires the tensor product L2(R3) ⊗ C2 its elements being the solutions of WOLFGANG
PAULI’s equation.

Dual space and scalar product A quantum state |φ〉 ∈ H corresponds to a vector 〈φ| of H∗, the dual space of H which
is actually a linear map H → K, namely the map of an arbitrary vector |ψ〉 to its scalar product with |φ〉 which is thus
denoted by 〈φ|ψ〉. In general, K = C. Perhaps according to duality, the complex conjugate is often denoted as z∗ instead
of z in QT.

Normalization and orthonormal basis As a HILBERT space, H consists of elements which have a norm by it can
be divided to normalize it. Hence, L2(R3) is defined by consisting of square integrable functions φ(~x) for which∫
φ∗φ d3x <∞. The function |φ〉 and φ(~x, t), respectively, is called normalized if

〈φ|φ〉 =

∫
{~x}

φ∗(~x, t = const.)φ(~x, t = const.) d3x = 1. (79)

An orthonormal basis (ONB) or complete orthonormal system (CONS) is a basis {|r〉} (where r belongs to an index set
which may be continuous) of H with

〈r|s〉 = δrs =

{
1, r = s

0, r 6= s
(80)

It is a somewhat annoying that ansatz (3) itself lacks a norm and thus does not actually belong to L2(R3). However,
strictly periodical functions (i.e. such with sharply defined ~p) are something idealized.
Multiplication by a, extremely flat-angle normalized function18 leads to a square-integrable wave function whose progress
is hardly discernible from (3) over a wide range. In the following, the functions are to be assumed as normalized.

17 Unlike Q3 because there are rational CAUCHY sequences with an irrational limit.
18Preferably a GAUSSIAN since it is its own FOURIER transform.
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Operators The concept of a matrix is generalized in H by that of a linear operator Â. With reference to a certain CONS
|r〉, Â has a matrix representation 〈r|Â|s〉 where r, s are indices which are continuous if H is a function space. If Â
represents an observable A, it is Hermitian, i.e. 〈s|Â|r〉 = 〈r|Â|s〉∗ which implies 〈r|Â|r〉 ∈ R; this matrix element is
called the expectation value of Â in the state |r〉.

Eigenvalues and eigenvectors, measurements A quantum state |v〉 for which Â|v〉 = av|v〉 is called an eigenstate
of Â corresponding to the eigenvalue av ∈ A = {a} and represents a quantum state where measurements of A yield
the value av without emphprincipal deviations. Of course, av is the expectation value of Â in the state |v〉 as well, and
〈v|Â|v〉 = 〈v|av|v〉 = av〈v|v〉 = av .

Expansion in eigenstates, FOURIER transform Anything which can be measured are eigenvalues of Hermitian oper-
ators like e.g. Â which holds for the case that |φ〉 not an eigenstate of Â because it can be EXPANDED in eigenstates of Â
which generalizes linear combination:

|φ〉 =
∑
a∈A

z(a)|a〉 bzw. |φ〉 =

∫
A

z(a)|a〉 da (81)

There z(a) is the complex probability amplitude and z∗(a)z(a) ≡ |z(a)|2 is the probability or probability density of a
measurement of a in the state |φ〉. An example for the expansion of a wave function φ(~x, t) in functions of the type (3)
which is actually the FOURIER transform

φ(~p, t) = F(φ(~x, t)) = (2π)−
3
2

∫
{~x}

φ(~x, t)e−i~p·~x d3x., (82)

where φ(~p, t) provides the coefficients which quantify the ratio of the momentum eigenfunction for any ~p, i.e., |φ(~p, t)|2
is the probability density for a certain momentum measurement. Reversely, they can be used to re-compose the function
by the inverse transform

φ(~x, t) = F(φ(~p, t)) = (2π)−
3
2

∫
{~p}

φ(~p, t)ei~p·~x d3p. (83)

The fact that functions that are FOURIER transforms of each other are apt to be taken as momentum and position repre-
sentation of the same quantum state is due to MARC ANTOINE PARSEVAL’s theorem which says∫

|φ(~x, t)|2d3x =

∫
|φ(~p, t)|2d3p. (84)

Uncertainty relation Standard deviations of such functions are reciprocal, i.e. the FOURIER transform of a function
with a flat progression is practically zero outside of an extremely small neighbourhood of 0 but with huge values inside,
being a finite approach of DIRAC’s delta function. The product of these standard deviations never falls below ~/2 (in
conventional units), only reaching it in the case of GAUSSIANS which are a fixed point of the FOURIER transform.
This relation generally applies o two observables whose operators Â, B̂ have a fixed commutator [Â, B̂] and hence no
eigenstates in common (HEISENBERG, 1925). If the commutator itself is an operator, there may be common eigenstates
as this is the case for the components of an angular momentum, namely if |~L| = 0.

B.2 Examples of notation in QT
DIRAC’s bra-ket notation allows to denote quantum states in a very abstract and general manner which contains extreme
examples like a two basis state space at one hand or a space of position wave functions containing an entire continuum of
basis states at the other. We concretize the notation for both extreme cases.

B.2.1 Two basis state system

In this case and in matrix notation,

〈φ| =
(
c∗φ,1 c∗φ,2

)
, |ψ〉 =

(
cψ,1
cψ,2

)
⇒ 〈φ|ψ〉 =

(
c∗φ,1 c∗φ,2

)(cψ,1
cψ,2

)
=

n∑
r=1

c∗φ,rcψ,r. (85)

In such a HILBERT space and with respect to some given standard basis then written as{(
1
0

)
,

(
0
1

)}
,
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Â is a 2× 2 matrix (ars), r, s = 1, 2 and

〈φ|Â|ψ〉 =
(
c∗φ,1 c∗φ,2

)(a11 a12
a21 a22

)(
cψ,1
cψ,2

)
=

n∑
r=1

n∑
s=1

c∗φ,rarscψ,s. (86)

If |φ〉 and |ψ〉 form a basis of H as well, Â is represented by matrix elements(
〈φ|Â|φ〉 〈φ|Â|ψ〉
〈ψ|Â|φ〉 〈ψ|Â|ψ〉

)
, (87)

with respect to this basis, the diagonal elements being the expectation values of Â in the states Span(|φ〉) and Span(|ψ〉).

Spin system as an example Eigenvalues of spin direction are always projections of the spin to a given axis. The z
axis traditionally is the rotation axis in 3D space like it is easily seen by means of the definition of spherical coordinates.
Hence it is conventional to take the orientation relatively to the z axis as the standard basis. Eigenstates in other directions
may be expanded in z eigenstates, of course; for example, the y eigenstates are denoted by

1√
2

(|+〉 ± i|−〉) =
1√
2

(
1
±i

)
(88)

according to convention. They are the eigenstate of the PAULI matrix σ2 = σy:(
0 −i
i 0

)(
1
±i

)
=

(
±1
i

)
. (89)

In the ‘+’ case, the vector corresponds with the eigenvalue 1, in the ‘-’ case with the eigenvalue -1 (the scale factor can
be omitted in eigenvalue equations). These Eigenvalues are certainly the expectation values of the operator σy in the
eigenstates (88) as well. The non-diagonal elements provide 0 because both eigenstates are orthogonal. Thus the operator
is

1

2

(
(〈+|+ i〈−|)σy(|+〉+ i|−〉) (〈+|+ i〈−|)σy(|+〉 − i|−〉)
(〈+| − i〈−|)σy(|+〉+ i|−〉) (〈+| − i〈−|)σy(|+〉 − i|−〉)

)
=

(
1 0
0 −1

)
(90)

with respect to the basis of its own eigenstates, exactly like the operator σ3 or σz in the standard basis.

B.2.2 Position wave function

If H = L2(R3(~x)), the vectors are functions and sums become integrals:

〈φ|~x〉 = φ∗(~x, t), 〈~x|ψ〉 = ψ(~x, t) ⇒ 〈φ|ψ〉 =

∫
{~x}

φ∗(~x, t)ψ(~x, t) d3x (91)

In this case and with respect to |φ〉, |ψ〉, the matrix element is

〈φ|Â|ψ〉 =

∫
{~x}

φ∗(~x, t)Â ψ(~x, t) d3x (92)

or, more generally

〈φ|Â|ψ〉 =

∫
{~x}

∫
{~x′}

φ∗(~x, t)〈~x|Â|~x ′〉ψ(~x ′, t) d3x d3x′. (93)

For |ψ〉 = |φ〉, this is the expectation value. If 〈~x|v〉 = φv(~x, t) is an eigenstate of Â corresponding to the eigenvalue av ,

〈v|Â|v〉 =

∫
{~x}

φ∗v(~x, t)Â φv(~x, t) d3x =

∫
{~x}

φ∗v(~x, t)av φv(~x, t) d3x

= av

∫
{~x}

φ∗v(~x, t)φv(~x, t) d3x = av,

(94)

exactly as it should be since the expectation value must equal the eigenvalue because it is exact in this case.
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C Special Relativity and its quantization

C.1 Relativity principle and Special Relativity
One of the basic principles of classical mechanics is the relativity principle (RP) first discovered by GALILEO GALILEI.
It means that within two coordinate systems K and K ′ relatively moving in x direction the laws of mechanics are the
same, or, more formally speaking, they are invariant under GALILEI transform which can be denoted as a matrix-vector
equation (

t′

x′

)
=

(
1 0
−v 1

)(
t
x

)
, (95)

where x is the only spatial dimension regarded here and t and x are combined to a vector which in full SR framework is
called a four-vector.
However, JAMES CLERK MAXWELL’s basic equations of electrodynamics are not GALILEI invariant and neither are the
electromagnetic wave equations derived from them. This lead to the hypothesis of a luminiferous aether which transmits
light at a speed now known as c. This aether was thought to be at absolute rest. Within a moving frame - like earth’s - the
speed of light would hence vary with direction which should be measurable e.g. by interferometry. Suitable experiments,
however, did not yield any deviation from RP. To explain this, HENDRIK ANTOON LORENTZ modified (95) step by step,
finally obtaining the LORENTZ transform(

t′

x′

)
= γ

(
1 − v

c2

−v 1

)(
t
x

)
γ :=

1√
1− ( vc )2

, (96)

where γ is called the LORENTZ factor. Replacing t→ ct makes (96) more symmetric, yielding(
ct′

x′

)
= γ

(
1 −vc
−vc 1

)(
ct
x

)
, symbolically writing

⇒
x
′

= Λ(~v)
⇒
x. (97)

The electromagnetic wave equation and hence c is invariant under LORENTZ transform [13] and so are the MAXWELL
equations. Especially, they satisfy RP because unlike WOLDEMAR VOIGT’s 1887 transforms which also leave c invariant,
LORENTZ transforms form a group from which follows that the inverse of a LORENTZ transform is also a LORENTZ
transform corresponding to the opposite velocity - symbolically speaking, Λ−1(~v) = Λ(−~v). In 1905, ALBERT EINSTEIN
based his theory of Special Relativity (SR)[6] on them and also predicted the rest energy E0 = mc2 which reversely
provides an energy E with the mass mE = Ec−2.19 The universal constant c is actually an artefact of the measuring
system inasmuch as spatial and temporal distances are measured in different units.20

C.2 Covariant form and four-vectors
In the framework of the so-called covariant formulation of SR which was later to facilitate the coordinate-independent
formulation of General Relativity (GR), ct or t is a coordinate denoted by x0 or x0 which is the same for index 0.
Altogether, xµ = T (t, x, y, z) is called a contravariant four-vector whereas xµ = T (t,−x,−y,−z) is the corresponding
covariant four-vector. Both are converted into each other with help of the metric tensor

ηµσ = ηµσ = diag{1,−1,−1,−1} (98)

via xµ = ηµρxρ and xµ = ηµρx
ρ, respectively. For two four-vectors xµ, x′µ, a LORENTZ invariant (weak) scalar product

xµx′µ = ηµρxµx
′
ρ is defined. It is called weak or also improper because it lacks positive definiteness which is constitutive

for proper scalar products. It induces an improper or weak norm ‖xµ‖ =
√
xµxµ first mentioned by and named after

EINSTEIN’s teacher HERMANN MINKOWSKI.[14, 15]

C.3 Relativistic energy momentum relation and four-momentum
The pendant of xµ in momentum space is the four-momentum pµ = T (E,−px,−py,−pz) while the pendant of xµ is
pµ = T (E, px, py, pz); the concept of the four-momentum is justified by the energy-momentum-relationship

E2 − ~p 2 = pµpµ = m2, (99)

i.e. mass or rest energy is (or at least os proportional to) the absolute value of the four-momentum.

19FRIEDRICH HASENÖHRL had already computed a mass for cavity radiation in 1904, so the equivalence of energy and mass was new only in its
general form.

20Note that if horizontal distances were measured in meters whereas vertical where measured in feet, this would lead to a “universal constant”
κ = 0, 3048 ft/m.
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C.4 Quantization of SR
Since a point in time t = const. is not well-defined in SR, normalization (79) of a wave function for t = const. is replaced
by a continuity equation which is to emanate from the basic equation like the following.

The KLEIN GORDON equation Even before SCHRÖDINGER set up the non-relativistic equation named after him, he
replaced the physical quantities in (99)) by operators to set up the following differential equation (also see (11)):

p̂µp̂µφ = −∇µ∇µφ = −�φ :=
(
−∂2t +∇2

)
φ = m2φ (100)

It is 2nd order in all derivations and hence there are real solutions, even time-dependent ones. These are solutions with
a negative E and were thus regarded as physically impossible for a long time and rejected by SCHRÖDINGER. However,
it was examined further by OSKAR KLEIN and WALTER GORDON after whom it is now named (abbr.: KGE). Scrutiny
reveals that even the solutions with a negative E represent a positive energy. They are the antiparticle solutions. (100)
leads to the continuity equation

∇µ (φ∗∇µφ− φ∇µφ∗) = ∇µ̃µ = ∂t%̃+∇ · ~̃ = 0 (101)

which says that the four-current is a zero-divergence field. Its time component ̃0 ≡ %̃, however, is not positive definite
and hence cannot be interpreted as a probability density. Of course, it neither induces preservation of particle number.
Therefore %̃ is best interpreted as a charge density or at least as a “charge probability density”. Real solutions stand for
electrically neutral KLEIN GORDON fields for which the terms in (101) vanish individually. Neutral particles completely
described by KGE can hence both generated and annihilated without any violation of the equation. They are their own
antiparticles like the photon. However, the latter is a quantum of a tensor field, namely of the electromagnetic one and can
thus only incompletely described by KGE.

The DIRAC equation In 1928, PAUL DIRAC came up with the idea of formulating a 1st order differential equation as an
ansatz with initially unknown coefficients for later analysis of their required features. [4, 5] In covariant form and natural
units, it is denoted by

γρp̂ρφ = mφ. (102)

He postulated that any function φwhich satisfies (102) must satisfy (100) as well. This leads to the following commutation
or rather anti-commutation relations (14). From (102), the continuity equation

∇µ(φ̄γµφ) = ∇µ(φ†γ0γµφ) = ∇µj̃µ = ∂t (φ†φ)︸ ︷︷ ︸
%̃

+∇ (φ†~αφ)︸ ︷︷ ︸
~̃

= 0 (103)

can be derived. The expression φ†φ =: %̃, the temporal component of the four-current, is positive definite and can hence
be interpreted as a probability density which enables (103) to express preservation of particle number. This makes the
DIRAC equation apt to describe matter.
Using the biquaternionic (also see 3.1.3) imaginary units σr usually written as complex 2 × 2 matrices, the DIRAC
coefficients may be written more concretely as

γ0 =

(
1 0
0 −1

)
, γr =

(
0 σr
−σr 0

)
. (104)

Furthermore, some other coefficients γ0 = β, αr = γ0γr can be used to bring the equation into a SCHRÖDINGER form
i.e. to solve it for the temporal derivative which facilitates the computation of the non-relativistic approach. For a particle
in an electromagnetic field and using (σ1, σ3, σ3) =: ~σ and the kinetic momentum ~̂p− q ~A =: ~̂π, the equation hence takes
the form

i∂

∂t

(
φ+
φ−

)
= (βm+ 1̂qA0 + ~α · 1̂~̂π)

(
φ+
φ−

)
=

(
m+ qA0 ~σ · ~̂π
~σ · ~̂π −m+ qA0

)(
φ+
φ−

)
. (105)

In the limit of vanishing velocities and fields, this becomes

i∂

∂t

(
φ+
φ−

)
=

(
m 0
0 −m

)(
φ+
φ−

)
. (106)

The case E = +m implies φJ = 0, the case E = −m implies φ+ = 0; hence φ+ represents matter and φ− antimatter
[1, 18, 26]. In cases of high energies both occur, thus impeding a one-particle-description like in SCHRÖDINGER case.
For each case of E = ±m, the PAULI equation can be derived which in ‘+’ case can be written as

i
∂

∂t
ξ

(
(~̂p− q ~A)2 − q~σ · (∇× ~A)

2m
+ qA0

)
ξ, ξ = φCe

−imt (107)



21

The σr are the components of the spin operator. If they are taken as matrices, the spin states are denoted by C2 vectors. If
the operator components are written as biquaternions instead, the states must be biquaternions as well:

σr(1± σr) = σr ± 1 = ±(1± σr) (108)

This means that (1 ± σr), as a state, is an ‘eigen-biquaternion’ of σr corresponding to the eigenvalue ±1. This implies
that the state biquaternion is a zero divisor, its plane, outer or inner conjugate as a ‘zero divisor partner’.

Obstacles of the interpretation Representing both operators and states by elements of the same algebra, i.e. the
biquaternions blurs the difference between them. A further difficulty is the necessity to define scalar products and norms
for zero divisors for which the multiplication with its conjugate is not useful. Furthermore, spin eigenstates of an operator
for a certain direction should be able expanded in eigenstates of an operator for another. Using matrix-vector-notation,
this is obtained without force whereas biquaternions resist because the σr are linearly independent. These problems may
have impeded that biquaternion formulation could have successfully competed with matrix-vector-formulation.

D Prefactors in differential operators in a HILBERT space over the ideal
In the following, partial derivatives of functions of type (3) and (53) are provided with different pre-factors from J are
listed (underlined results also apply for φJ 6= kφC):

+j∂xφC = +j · ipei(px−Et) = −kpei(px−Et) = −kpφC = −kpφJ = −pφJ (109)

+j∂xφJ = +j · jpkej(px−Et) = j2pej(px−Et) = −kpej(px−Et) = −kpφJ = −pφJ (110)

−k∂xφC = −k · ipei(px−Et) = −jpei(px−Et) = −jpφC = −jkpφC = −jpφJ (111)

−k∂xφJ = −k · jpkej(px−Et) = −jpej(px−Et) = −jpφC = −jkpφC = −jpφJ = −ipφJ (112)

+k∂xφC = +k · ipei(px−Et) = jpei(px−Et) = jpφC = jkpφC = jpφJ (113)

+k∂xφJ = +k · jpkej(px−Et) = jpej(px−Et) = jpφC = jkpφC = jpφJ = ipφJ . (114)

The +j-valued operators yield a negative sign which were correct in case of the temporal derivative. The k-valued
operators yield purely imaginary eigenvalues and therefore are anti-Hermitian regardless of their sign. If QT in J is to
work equivalently to QT in C, eigenvalues should be pseudo-real, i.e. k-valued.


	Introduction
	Matrix mechanics and wave mechanics
	The Schrödinger equation and its solutions
	Special relativistic wave mechanics

	Hypercomplex algebas and their applications to QT
	Familiar examples
	Algebras with one imaginary unit
	Quaternions
	Biquaternions
	Bicomplex numbers

	Hypercomplex generalizations of operations used in wave mechanics
	Algebraic conditions for wave functions and Schrödinger-like equations
	Algebraic propositions for Fourier transform

	Non-real complex-isomorphic subalgebras of the bicomplex numbers
	Application of the bicomplex number to QT
	Ideal-valued wave functions
	Operators and the Schrödinger equation
	Change of representation and Fourier transform
	Double conjugate, modulus and expectation value


	Summary and prospects
	APPENDIX
	Superordinate properties of hypercomplex algebras
	general properties
	Properties of the algebras examined in this paper

	Formalism of QT
	Summary of the most important basic concepts
	Examples of notation in QT
	Two basis state system
	Position wave function


	Special Relativity and its quantization
	Relativity principle and Special Relativity
	Covariant form and four-vectors
	Relativistic energy momentum relation and four-momentum
	Quantization of SR

	Prefactors in differential operators in a Hilbert space over the ideal

