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The present investigation is concerned with the problem of finding a quantum description 
applicable to all phenomena including black holes. Thus, this paper introduces the universal 
uncertainty principle which is an extension of Heisenberg uncertainty principle. This 
extension includes the quantum nature of space-time due to the Planck length while the 
effects of the zero point momentum/zero point energy are omitted. This formulation predicts 
the thermodynamics properties -temperature and the entropy- of black holes. The main 
prediction emerging from this theory is a general equation for the temperature of the black 
hole. This equation shows a surprising result - the temperature of the black hole depends not
only on the mass of the black hole but also on its radius.  This theory is applicable to black 
holes of all sizes; however, the impact of the radius is significant for microscopic black holes
only. Finally, this theory predicts that the Berkenstain-Hawking temperature formula is a 
special case of the more general formulation presented here.

________________________
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Boltzmann constant, Schwarzchild radius, wave function, wave-packet. 

1. Introduction

The idea that the black hole entropy depends on the area of the event horizon of the black 
hole was proposed by J. D. Berkenstein in 1972. In 1974 Stephen Hawking discovered an 
evaporation mechanism [1] by which a black hole can radiate energy into space through the 
emission of photons originated near the event horizon [2] by the vacuum quantum 
fluctuations. This along with the Berkenstein-Hawking’s formula of the black hole entropy 
was a great milestone in understanding how these mysterious objects behave. The quantum 
fluctuations of the vacuum produce pairs of virtual particles and anti-particles around the 
black hole (in fact these pairs are created everywhere in empty space). If one of these pairs 
turns out to be two photons (a virtual anti-photon is identical to a virtual photon) and if the 
pair is close enough to the event horizon of the black hole, one of the virtual photons can be 
absorbed by the hole and the other one can escape to infinity and become real. This 
evaporation process is known as Hawking radiation. The detection of this radiation is 
extremely difficult due to the relatively slow rate of emission. This explains why this 
radiation has not been observed yet. The next section explains the foundation of this theory –
The universal uncertainty principle.

The Quantum Theory of Black Holes. Copyright 2014 © Rodolfo A. Frino. All rights reserved. 1



2. The Universal Uncertainty Principle  

The principle I developed to derive the thermodynamic properties of the black hole 
(temperature and entropy) is an extension of the Heisenberg uncertainty principle [3]
This theory includes two different effects: a) quantum mechanical effects due to the quantum 
fluctuations of empty space (the energy of empty space is also known as the zero point 
energy), and b) gravitational effects due to the strong gravitational field surrounding the 
black hole. To differentiate this principle from other generalized principles I shall call it the 
Universal Uncertainty Principle (UUP). The expression that defines this principle is

ZpL
hh

xp 







 44

2

  (1)

(The generalization presented here is justified in Appendix 1.)

Where

p Uncertainty in the momentum of a particle due to its wave nature (wave-packet 
representing the particle). This uncertainty does not include the uncertainty ZP in the 
momentum  due to the quantum fluctuations of space-time.

x Uncertainty in the position of the particle due to the wave-packet representing the 
particle. This uncertainty does not include the uncertainty ZL in the position due to the 
quantum fluctuations of space-time.

ZL  Uncertainty in the position of the particle due to the quantum fluctuations of space-
time. This uncertainty does not include the uncertainty x due to the wave-packet 
representing the particle. The minimum value of this uncertainty cannot be measured 
experimentally with the present technology. Further, it seems logical to assume that this 
uncertainty is identical to the Planck length PL . However, these two lengths could be 
different but the difference should not be significant.

ZP Uncertainty in the momentum of a particle due to to the quantum fluctuations of space-
time (uncertainty due to the zero point momentum). This uncertainty does not include the 
uncertainty p in the momentum due to the wave nature of the wave-packet representing the 
particle. We shall neglect the effects of ZP in this formulation. On way of extending this 
principle to include the zero point momentum (or zero point energy if the temporal form of 
the uncertainty principle is used) is to use the Schwinger formulation.

3. Black Hole Temperature

Let’s consider a black hole of radius R and mass M. Let’s assume that a pair of virtual 
photons is created near the event horizon due to the quantum fluctuations of empty space. 
Let’s also assume that one of the photons of this pair is absorbed by the black hole while the 
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other one escapes to space and thus becomes real (see Fig 1). The Schwarzchild radius of this
black hole is

(2)

Fig 1: Four pairs of virtual photons are created near a black hole’s event horizon due to the quantum 

fluctuations of vacuum. The points of creation of these pairs are labeled as 1P , 2P , 3P  and 4P . One of the 

photons ( 1v ) of the pair ( 21, vv  ) is absorbed by the black hole while the other one ( 2v ) escapes to space 

and becomes real ( 22  v ). This evaporation mechanism was discovered by Hawking and is known as 

Hawking radiation. 

Equation (1) leads to

R

GM
c

22  (3)

In order to simplify the equations I shall use R instead of SR .

Let’s multiply both sides of equation (2) by the equivalent mass vm of the virtual photon that 
becomes real (from now on I shall call it “the escaping photon”)

R

GMm
cm v

v

22  (4)

But according to Einstein

2cmE vv  (5)
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hfEv  (6)

Where vE  is the total relativistic energy of the escaping photon. 
From equations (4) , (5) and (6) we have

fh
R

GMmv 
2

(7)

Solving this equation for vm we obtain

f
GM

hR
mv 








2
(8)

The condition that the black holes imposes on the photon to absorb it is that the dominant 
wavelength of the photon must be roughly the size of the black hole. This is because if the 
dominant wavelength of the photon is too short the photon will be absorbed by the quantum 
fluctuation of the vacuum surrounding the photon before it gets the chance to go through the 
event horizon of the black hole, and if, on the other hand, the wavelength of the photon is too
long, the photon will miss out the black hole entirely. Thus the uncertainty in the position of 
the absorbed photon, due to its wave nature, is  

Rx 2 (9)

In order to simplify the equations we shall substitute x with a , thus

xa  (10)

Because the photon's dominant wavelength must be exactly the size of the circumference that
results from slicing the black hole along any great circle, the momentum will be related to the
photon's dominant wavelength through the universal uncertainty principle and not through 
the De Broglie relationship (you can develop an identical theory from the Heisenberg 
uncertainty principle 4hxp  to see that the De Broglie relationship Rhpv 2 will 
not produce the correct expression of the black hole temperature. The correct relationship is

Rhpv
28  which is derived from the Heisenberg uncertainty principle. In this formulation

we use a more general expression - equation 12 - instead). Therefore we shall substitute p
with vp , thus

vpp  (11)

Substituting into equation (1) then gives 

Zvv Lp
hh

ap
 44

2







 (12)
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If we square both sides we have

Zvv Lp
hh

ap
 44

2
22 






 (13)

Rearranging the terms and substituting the inequality with an equality sign lead us to a 
second degree equation

0
44

2
22 









h

p
hL

pa v
Z

v (14)

The coefficients of this equation are

2aA  (15)

4
ZhL

B  (16)

2

4









h

C (17)

And the solution to this equation is

2

2
2

2

2

4
4

44

a

h
a

hLhL

p

ZZ

v

















 (18)

We shall neglect the negative square root because negative temperatures have no physical 
meaning 




























 44
4

42
1

2
2

2

2
ZZ

v

hLh
a

hL
a

p (19)

 
 































 44
24

422

1
2

2
2

2
ZZ

v

hLh
R

hL

R
p (20)














 4168

1 22
2

22

22
ZZ

v

hL
Rh

Lh

R
p (21)
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
























 4
16

168

1
2

222

22
ZZ

v

hL

R

LRh

R
p (22)
















 4
16

48

1
2

2

22
ZZ

v

hL

R

LhR

R
p  (23)













R

L

R

L

R

h
p ZZ

v 



16

32 2

2

2  (24)

According to Einstein the energy of a photon is

hfcpv  (25)

Hence

vp
h

c
f  (26)

Substituting f in equation (8) with the value obtained from equation (26) gives

vvv p
GM

Rc
p

h

c

GM

hR
m 






















22
(27)

Multiplying both sides by 2c

vv p
GM

Rc
cm 










2

3
2

(28)

Considering that the energy vE of the escaping photon is proportional to the temperature T of 
the black hole we can write

TkE Bv  (29)

Hence

B

v

k

E
T  (30)

Substituting vE in equation (30) with the right hand side of equation (28) gives
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v
B

p
GMk

Rc
T 










2

3

(31)

Substituting vp  in equation (31) with the right hand side of equation (24) we have






















R

L

R

L

R

h

GMk

Rc
T ZZ

B 



16

322 2

2

2

3

 (32)




























R

L

R

L

GMk

hc
T ZZ

B 



16

164

1
2

2

2

3

 (33)

We recognize the second factor of equation (33) as the Berkenstein-Hawking temperature

BHT , thus we write

GMk

hc
T

B
BH 2

3

16
 (34)

Now we shall assume that the Planck length PL is the minimum length with physical 
meaning. Thus we shall make two changes to equation (33)  a) we shall substitute the zero 
point energy’s length ZL with the Planck length PL , and b) we shall substitute the second 

factor with BHT . With these two changes equation (33) transforms into













R

L

R

LT
T PPBH





16

4 2

2

 (35)

This is the equation of the black hole temperature in terms of the Berkenstein-Hawking 
temperature.

Finding 1
The black hole temperature depends on both the mass M and the radius R of the black 
hole.

The values of the BHTT ratio are tabulated on Table 1 for different values of PLR ratios. 
The relative error is shown on the last column as a percentage
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Radius to 
Planck 
length ratio

PL

R

Temperature to 
BH temperature 
ratio

BHT

T

Relative error 
(percentage) 

e(%)








 


BH

BH

T

TT
100

1 0.923 584 7.64
2 0.961 003 3.90
3 0.973 826 2.62
4 0.980 304 1.97
5 0.984 211 1.58
6 0.986 825 1.32
7 0.988 696 1.13
8 0.990 102 0.99
9 0.991 197 0.88

10 0.992 074 0.79
20 0.996 029 0.40
30 0.997 351 0.27
40 0.998 013 0.20
50 0.998 410 0.16
60 0.998 675 0.13
70 0.998 864 0.11
80 0.999 006 0.10
90 0.999 116 0.09

100 0.999 205 0.08
1 000 0.999 920 0.008

10 000 0.999 992 0.000 8
100 000 0.999 999 0.000 1

1 000 000 0.999 999 92 0.000 008

TABLE 1: This table shows that the actual temperature T predicted by equation (35) is smaller than the 
corresponding temperatures  BHT  predicted by the Berkenstein-Hawking equation. 

From the above table we see that the temperature T predicted by equation (35) is smaller than
the corresponding temperatures predicted by the Berkenstein-Hawking’s equation (34). We 
also see that the maximum relative error is about 8 % and occurs for black holes of the size 
of the Planck length ( PLR  ). For black holes whose radii R are greater than PL7  the relative

error is less than 1 %. For black holes of radii R greater or equal than PL90  the relative error 
is less than 0.1 %. Thus we conclude that the impact of the black hole radius on the 
temperature is significant in the case of microscopic black holes only. I shall quote the 
following paragraph from Aurélien Barrau and Julien Grain published by the CERN Currier 
[4]

“Microscopic black holes are thus a paradigm for convergence. At the intersection of 
astrophysics and particle physics, cosmology and field theory, quantum mechanics and 
general relativity, they open up new fields of investigation and could constitute an invaluable
pathway towards the joint study of gravitation and high-energy physics. Their possible 
absence already provides much information about the early universe; their detection would 
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constitute a major advance. The potential existence of extra dimensions opens up new 
avenues for the production of black holes in colliders, which would become, de facto, even 
more fascinating tools for penetrating the mysteries of the fundamental structure of nature.”

Now let’s return to equation (35) taking the limit of T when PL tends to zero, which gives




16
4

lim
0

BH

L

T
T

P




(36)

BH
L

TT
P


0

lim (37)

Then we find that

Finding 2
The Berkenstein-Hawking temperature is a special case of the general formula of the 
black hole temperature when the Planck length is zero

If we take the limit when the radius tends to infinity we obtain

BH
BH

R
T

T
T 





16

4
lim (38)

We find that

Finding 3
The Berkenstein-Hawking temperature is a special case of the general formula of the 
black hole temperature when the radius of the black hole is infinite.

4. Black Hole Entropy

Let’s analyze equation (35). We notice that the ratio 2

2

R

LP


is dimensionless, thus we define the

parameter ρ as

 2

2

R

LP


  (39)

Now we substitute 2

2

R

LP


with ρ in equation (35) which gives

 


 16
4

BHT
T  (40)
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Now let’s consider the definition of the Planck length PL

32 c

hG
LP 

 (41)

Hence

33
2

2 c

G

c

hG
LP




 (42)

Now we substitute 2
PL  in equation (40) with the value obtained in equation (42). This gives 

23

1

Rc

G





 (43)

Multiplying by 4/4 yields

 23 4

14

Rc

G


 
 (44)

We recognize the denominator 24 R of the second factor as the area of a sphere of radius R. 
This sphere is the event horizon of the black hole.

24 RAH  (45)

Where
HA area of the event horizon (Area of the sphere of radius R)

Then we write the parameter   in terms of the area of the event horizon

HAc

G
3

4
 (46)

Now we consider the following two limits


















 2

2

lim
1

lim
P

RR L

R
 (47)























 2

2

lim
1

lim
P

LRLR L

R
PP

(48)

Because the possible values of  /1  are between  (minimum) and  (maximum), we can 
define this thermodynamic property as a quantity proportional to the entropy S of the black 
hole (it cannot be the black hole temperature because we have already found the 
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relationship). Since the entropy has units of KJ 0/ while /1  is dimensionless, the 

proportionality constant must be the inverse of the Boltzmann’s constant Bk . Then we can 
write

Bk

S



1

(49)

Where

S = entropy of the black hole

Bk = Boltzmann’s constant

Hence


Bk

S  (50)

H
B A
G

ck
S 










4

3

(51)

We recognize this formula as the Berkenstein-Hawking black hole entropy BHS , then we 
write

G

Ack
S HB

BH
4

3

 (52)

This result confirms that the second order uncertainty principle we have adopted in this 
theory provides the correct description of nature. 

Finding 4
The Berkenstein-Hawking entropy formula of the Black hole is a direct consequence of 
the universal uncertainty principle used in this theory.

Finally we express the equation of the black hole temperature (either equation 35 or equation 
40) as a function of the entropy BHS










BH

B

BH

BBH

S

k

S

kT
T 


16

4
(53)
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5. Conclusions

In summary, the present theory predicts that the black hole temperature depends on the mass 
M and the radius R of the black hole. The impact of the black hole radius on the temperature 
is significant in the case of microscopic black holes only. The theory also shows that the 
Berkenstein-Hawking temperature is a special case of the more general formulation shown 
here. Furthermore, this theory agrees with the Berkenstein-Hawking’s formula of the black 
hole entropy. More importantly, the black hole entropy emerges naturally from the present 
formulation without making any additional assumptions. This is an indication of the 
predicting potential and correctness of the present theory. 

Appendix 1

The universal uncertainty principle we want has to satisfy the following conditions

1) The principle will be quadratic in xp
2) When 0ZL  the principle will reduce to 4hxp 
3) When 0x  the principle will reduce to 4hpLZ 

Let’s consider these three conditions separately

1)  The uncertainty principle has to be quadratic because of the following reasons
    a) the theory should predict the black hole entropy without any additional assumptions,
        and 
    b) the theory should predict the size of the electron (this is not included in this paper but I
       shall publish the results shortly). 

Therefore, shall adopt a second order uncertainty principle (a first order principle cannot 
produce the correct results). Thus, the principle will have the following form 

  termanother
h

xp 







2
2

4
Hence

termanother
h

xp 







2

4

2)   When the effects of quantum fluctuations of space-time are neglected. 
(mathematically means 0ZL ), the principle will be identical to the Heisenberg 
uncertainty principle. Thus under these conditions the principle will reduce to

4

h
xp 

The reason of this is that a wave-packet representing the wave function ψ(x,y,z,t) of the 
particle is formed by the addition of a number of different wavelengths that produce 
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interference (the superposition principle in quantum mechanics gives rise to interference). 
The more wavelengths we add the more localized the wave function will be and therefore the
probability of finding the particle in a cubic box of volume dV = dxdydz will be higher.
This is so because the square of the wave function |ψ(x,y,z,t) |² is the probability density of a 
measurement of the finding the particle in the cubic volume dV. Thus the probability

)(2,1,2,1,2,1 tP zzyyxx  of finding the particle in a cubic volume defined as 
]2,1[]2,1[]2,1[ zzzandyyyandxxx  )

where 21;21;21 zzyyxx 
at time t will be

dxdydztzyxtP z
z

y
y

x
xzzyyxx  2

2,1,2,1,2,1 ,|)( 2

1

2

1

2

1


This integral shows that the more localized the wave function the higher the probability of 
finding the particle in a given volume. However, this mechanism will make the momentum 
of the particle more uncertain. The reason is that, according to De Broglie, each individual 
wavelength has a momentum associated with it which is given by


h

p 

Because the wave function of the particle is composed of a large number of different 
wavelengths of different amplitudes (only the De Broglie relationships are shown here):

n
n

h
p

h
p

h
p

h
p

h
p


 ;...;;;;

4
4

3
3

2
2

1
1

the momentum of the particle becomes more uncertain (which is the momentum of the 
particle nporpppp ,...,,, 4321 ?)

From this analysis we see that the Heisenberg uncertainty principle relates to the wave nature
of the wave-packet and not to the quantum fluctuation of the vacuum.

3)   When the effects of the uncertainties due to the wave nature of the wave-packet 
representing the escaping photon are neglected (mathematically means 0x ),  the 
principle will reduce to

4

h
pLZ 
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Solution

The following inequality satisfies all three conditions simultaneously

This is the universal 
uncertainty principle. 

Verification

(a) 0ZL

0
4

2










h

xp

4

h
xp   (which satisfies condition 2)

(b) 0x

ZpL
hh









 44
0

2

ZpL
hh









 44
0

2

ZpL
h


4

0

4

h
pLZ  (which satisfies condition 3)
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