Proof of Beal's Conjecture

Allan Cacdac

Abstract

Using a functional equation and different proofs for its existence, we are able to prove and show that A, B and C will always have a common prime factor.

Introduction :

The Beal Conjecture

Let A, B, C, x, y, and z be positive integers with $x, y, z>2$. If $A^{x}+B^{y}=C^{z}$, then A, B, and C have a common factor. ${ }^{1}$

Let A, B, C, x, y, and z be positive integers with $x, y, z>2$. Then the equation

$$
\mathrm{A}^{\mathrm{x}}+\mathrm{B}^{\mathrm{y}}=\mathrm{C}^{\mathrm{z}}
$$

follows

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{x}}=p^{n} u=p u \\
& \mathrm{~B}^{\mathrm{y}}=p^{n} v=p v \\
& \mathrm{C}^{\mathrm{Z}}=p^{n}(u+v)=p(u+v)
\end{aligned}
$$

Wherein p represents the factor (p^{n} or just p to clearly represent the prime factor) and u and v are positive integers.

Direct Proof

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{x}}+\mathrm{B}^{\mathrm{y}}=\mathrm{C}^{\mathrm{z}} \\
& p u+p v=p(u+v)
\end{aligned}
$$

Simplifying Left Hand Side

$$
\mathrm{C}^{\mathrm{Z}}=\mathrm{C}^{\mathrm{Z}}
$$

$$
p u+p v=p(u+v)
$$

$$
p(u+v)=p(u+v)
$$

Simplifying Right Hand Side

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{x}}+\mathrm{B}^{\mathrm{y}}=\mathrm{A}^{\mathrm{x}}+\mathrm{B}^{\mathrm{y}} \\
& p u+p v=p(u+v) \\
& p u+p v=p u+p v
\end{aligned}
$$

Thus the equality holds.

Proof by Induction

Let $\mathrm{p}=\mathrm{u}=\mathrm{v}=2$;

$$
p u+p v=p(u+v)
$$

$$
2.2+2.2=2(2+2)
$$

$$
\begin{aligned}
& 4+4=4+4 \\
& 8=8
\end{aligned}
$$

Thus equality holds.

$$
\begin{aligned}
& \text { Let } \mathrm{p}=\mathrm{p}_{1}+1, \mathrm{u}=\mathrm{u}_{1}+1 \text { and } \mathrm{v}=\mathrm{v}_{1}+1 \\
& \left(p_{l}+l\right)\left(u_{l}+1\right)+\left(p_{l}+1\right)\left(v_{l}+l\right)=\left(p_{l}+1\right)\left(\left(u_{l}+l\right)+\left(v_{l}+l\right)\right) \\
& \left(p_{l} u_{l}+u_{l}+p_{l}+l\right)+\left(p_{l} v_{l}+v_{l}+p_{l}+l\right)=\left(p_{l}+1\right)\left(\left(u_{l}+1\right)+\left(v_{l}+1\right)\right) \\
& \left(p_{l} u_{l}+u_{l}+p_{l}+l\right)+\left(p_{l} v_{l}+v_{l}+p_{l}+1\right)=\left(p_{l} u_{l}+p_{l}\right)+\left(p_{l} v_{l}+p_{l}\right)+\left(u_{l}+1\right)+\left(v_{l}+1\right) \\
& p_{l} u_{l}+p_{l} v_{l}+u_{l}+v_{l}+2 p_{l}+2=p_{l} u_{l}+p_{l} v_{l}+u_{l}+v_{l}+2 p_{l}+2
\end{aligned}
$$

Thus equality holds.
To visualize our induction with exponents, we raise our prime number p to n power. Let p $=\mathrm{u}=\mathrm{v}=2 ; \mathrm{n}=3$

$$
\begin{aligned}
& p^{n} u+p^{n} v=p^{n}(u+v) \\
& \left(2^{3} * 2\right)+\left(2^{3} * 2\right)=2^{3}(2+2) \\
& 2^{4}+2^{4}=2^{4}+2^{4} \\
& 2^{5}=2^{5}
\end{aligned}
$$

Thus equality holds.

Proof by Contradiction and Example

Assume that our equation is wrong and that the equation will not hold further with different bases and exponents.

$$
\begin{aligned}
& 7^{3}+7^{4}=14^{3} \\
& 14^{3}=7^{3} * 2^{3}=7^{3} * 8=7^{3}(1+7)=7^{3} * 1+7^{3} * 7 \\
& 14^{3}=7^{3}+7^{4} \\
& 7^{3}+7^{4}=7^{3}+7^{4} \\
& 4^{3}=14^{3}
\end{aligned}
$$

Then our assumption is false and still the equality holds.

Conclusion:

We have clearly shown using the equation in different proofs that the equation holds its equality with a common prime factor. Since A, B and C are positive integers, and have a common prime factor, as stated previously, therefore we can conclude that the conjecture is true.

References :

[^0]
[^0]: ${ }^{1}$ R. Daniel Muldin, A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem, Notices of the AMS Volume 44 Number 11, 1436.

