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Abstract 

We show that the Standard Model (SM) represents a self-contained multifractal set on spacetime having arbitrarily 

small deviations from four-dimensionality ( 4 , 1D     ). All coupling charges residing on this background 

(gauge, Higgs and Yukawa) satisfy a closure relationship that a) tightly constrains the flavor and mass content of the 

SM and b) naturally solves the “hierarchy problem”, without resorting to new concepts reaching beyond the physics 

of the SM. 
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1. Introduction and Motivation 

The Standard Model for particle physics (SM) has been successfully tested at all accelerator 

facilities and is the best tool available for understanding the phenomena on the subatomic scale 

[1-3]. The prevailing view is that the SM represents only the low-energy limit of a more 

fundamental theory and that it can be consistently extrapolated to scales many orders of 

magnitude beyond the energy levels probed by the Large Hadron Collider. Despite its impressive 

performance, the SM leaves out a fairly large number of unsolved puzzles [2, 4]. We mention 

here three of these open questions that are relevant for the context of our work: 

a) Is the Higgs boson solely responsible for the electroweak symmetry breaking and the origin 

of mass? The current view supports this assertion, although understanding of the Higgs sector 
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remains widely open at this time [4]. There are two primary mass-generation mechanisms in 

the SM: the Higgs mechanism of electroweak symmetry breaking, accounting for the 

spectrum of massive gauge bosons and fermions, and dimensional transmutation, partially 

responsible for the mass of baryonic matter. While technical aspects of both mechanisms are 

well under control, neither one is able to uncover the origin of the electroweak scale or of the 

Higgs boson mass. 

b) Are fundamental parameters of the SM finely tuned? The mass of the Higgs boson is 

sensitive to the physics at high energy scales. If there is no physics beyond the SM, the 

elementary Higgs mass parameter must be adjusted to an accuracy order of 1 part in 10
32

 in 

order to explain the large gap between the TeV scale and the Planck scale [2].  

c) What is the origin of quark, lepton and neutrino mass hierarchies and mixing angles? These 

“flavor” parameters account for most of the basic parameters of the SM, and their pattern 

remains elusive. New particles at or above the TeV scale with flavor-dependent coupling 

charges are postulated in many scenarios, and observation of such particles would provide 

critical insights to these puzzles [2].   

In contrast with the majority of mainstream proposals on “Beyond the SM Physics” (BSM) [5], 

the approach developed here exploits the idea that space-time dimensionality becomes scale-

dependent near or above the low TeV scale. This conjecture has recently received considerable 

attention in theoretical physics and goes under several designations, from “continuous 

dimension” to “dimensional reduction”, to “non-integer metric” and “fractional field theory” [6-

9]. The motivation for model building based on this conjecture can be also found in [6-9, 13-14]. 

Drawing from the idea of scale-dependent dimensionality, we show that the SM represents a self-

contained multifractal set defined on ordinary spacetime having arbitrarily small deviations from 
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four-dimensions ( 1)  . In what follows, we refer to such spacetime as “minimal fractal 

manifold” (MFM). We find that all coupling charges residing on the MFM satisfy a closure 

relationship that a) fixes the flavor and mass content of the SM and b) naturally solves the 

hierarchy problem, without resorting to new concepts or degrees of freedom reaching beyond the 

physics of the SM. 

The paper is organized in the following way: relevant definitions and assumptions are introduced 

in section 2; the modification of a generic action functional living on the MFM is detailed in 

section 3. The next section explores the consequences of placing classical electrodynamics of 

charged fermions on MFM. Expanding on these ideas, section 5 reveals how the mass and flavor 

content of the SM may be derived from the properties of the MFM. The ensuing multifractal 

structure of the SM and the proposed resolution of the hierarchy problem form the topic of 

sections 6 and 7. Two Appendix sections are included to make the paper self-contained. 

We caution from the outset that ideas outlined here are entirely provisional. They require further 

consolidation and independent validation or rebuttal. 

2. Definitions and assumptions 

A1) Our work deals exclusively with the behavior of field theory on MFM, defined as a 

continuous spacetime of dimension 4D   , where 1  . This cross-over regime between 

0   and 0   is the only sensible setting where the dynamics on interacting fields is likely to 

asymptotically approach all consistency requirements imposed by Quantum Field Theory (QFT) 

and the SM [10-11]. Large deviations from four dimensions ( ~ (1)O ) may signal the 

breakdown of these requirements. Particular attention needs to be paid, for example, to the 
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potential violation of Lorentz invariance in Quantum Gravity theories advocating the emergence 

of spacetime of lower dimensionality at high energy scales [12-14].  

From the standpoint of interacting field theory, a non-vanishing and arbitrarily small deviation 

from four dimensions is equivalent to allowing the Renormalization Group (RG) equations to 

slide outside the isolated fixed points solutions (FP) [15]. Recalling that FP are synonymous with 

equilibria in the dynamical systems theory, it follows that, in general, the evolution of quantum 

fields is no longer required to settle down to equilibrium states. The end result is that the 

condition 1   enables the isolated FP of the RG equations to morph into attractors with a 

more complex structure [15-16].    

A2) 
0u  is the reference charge distribution on MFM for a fixed 1   (fixed number of 

dimensions), 

A3) u  is the effective charge distribution on MFM when 1   is allowed to vary (i.e., the 

number of dimensions is allowed to evolve with the energy scale), 

A4) 0 0 0,, , fg y  are the coupling charges for the scalar, gauge and Yukawa sectors of the 

Standard Model, measured at the electroweak scale defined by
EWM in ordinary four dimensional 

spacetime ( 0  ).   

A5) Any theory exploring physics beyond the Standard Model (BSM) must fully recover the 

principles and the framework of perturbative QFT at energy scales approaching 
EWM . In 

particular, it needs to preserve unitarity, renormalizability and local gauge invariance and be 

compatible with precision electroweak data [10, 17].   
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3. The minimal fractal manifold (MFM) 

Field theory on fractional four-dimensional spacetime is described by the action 

 4( ) (v( ) )S d x L x d x L
 

 

    (1) 

where the measure ( )d x denotes the ordinary four-dimensional volume element multiplied by a 

weight function v( )x [13-14]. If the weight function is factorizable in coordinates and positive 

semidefinite, v( )x assumes the form   
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in which    

 0 1   (3) 

are four independent parameters. An isotropic spacetime of dimension 4D    is characterized 

by 

 1
4






   


 (4) 

which turns (2) into   

 v( )x  ≈ 
4

( )x 
 (5) 
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Dimensional analysis requires all coordinates entering (2) and (5) to be scalar quantities. They 

can be generically specified relative to a characteristic length and time scale, as in 

 0

0

x
x

L




   (6) 

in which 
0,   are positive-definite energy scales. Relation (5) becomes 
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Choosing 
0   we can expand (7) as [18]: 

 lnaa e   ≈ 1 ln a  (9) 

which yields 

 
0

v( ) 1 4 ln( ) 1 4 ln( )x x


 


     (10) 

4. Emergence of effective field charges on the MFM 

A remarkable property of fractal spacetime is the emergence of “effective” coupling charges 

induced by polarization in non-integer dimensions [13, 19]. To fix ideas, consider the case of 
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classical electrodynamics coupled to spinor fields in a MFM with evolving dimensionality [13]. 

From (10) we obtain   

 
2

2

0v( )e x e  ≈ 
2

0

0

1 4 ln( )
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where, following definitions A2) and A3), 

0 0,e u e u    

In light of assumption A5), (11) has to match the expression of the running charge in 

perturbative Quantum Electrodynamics (QED). At one loop, this expression reads [20]  
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Comparing (11) with (12) leads to:    

 
2

0 ( )e O   (13) 

This finding reveals that the dimensional parameter   represents the physical source of the field 

charge in ordinary four-dimensional spacetime. As previously alluded to, this “dynamic 

generation” of effective field charges can be traced back to the intrinsic polarization induced by 

fractal spacetime. The process is strikingly similar to the emergence of non-trivial fixed points in 

the Landau-Ginzburg-Wilson model of critical behavior in 4D    dimensions [15, 18]. The 

discussion may be extrapolated from electrodynamics to classical gauge theory and, as we show 

next, it sets the stage for a novel interpretation of mass and flavor hierarchies present in the SM. 
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5. The mass and flavor hierarchies of the Standard Model 

Analysis of the RG equations in slightly less than four-dimensions reveals that, near the 

electroweak scale, the masses of fermions ( fm ), weak bosons ( M ) and electroweak gauge 

charges (
og ) scale as [15, 21] 

 
fm  ~    (14) 

 
2

0g  ~    (15) 

 
2 2 2

0g M const M  ~ 1    (16) 

It can be also shown that the system of RG equations lead in general to a transition to chaos via 

period-doubling bifurcations as 0   [15, 21]. The sequence of critical values , 1,2,...n n   

driving this transition to chaos satisfies the geometric progression   

 0n n      ~ 
n

nk 


 (17) 

Here, 1n   is the index counting the number of cycles created through the period-doubling 

cascade,   is the rate of convergence and 
nk  is a coefficient that becomes asymptotically 

independent of n  as n. Period-doubling cycles are characterized by 2in  , for i  >> 1. 

Substituting (17) in (14) and (15) yields the following ladder-like progression of critical 

couplings 

 
,f im  ~ 2

0,ig  ~ 
2 i




  (18) 
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Scaling (18) recovers the full mass and flavor content of the SM, including neutrinos, together 

with the coupling strengths of gauge interactions. Specifically,  

 The trivial FP of the RG equations consists of the massless photon (  ) and the massless 

UV gluon ( g ). 

 The non-trivial FP of the RG equations is degenerate and consists of massive quarks ( q ), 

massive charged leptons and their neutrinos ( ,l  ) and massive weak bosons ( ,W Z ). 

 Gauge interactions develop near the non-trivial FP and include electrodynamics, the weak 

interaction and the strong interaction. 

6. Multifractal structure of the Standard Model  

A key parameter of the RG analysis is the dimensionless ratio ( )
UV




, in which   is the sliding 

scale and UV >>   the high-energy cutoff of the underlying theory. With reference to a field 

theory embedded in four dimensions ( 4)D  , the connection between the parameter 4 D    

and UV  is given by [15, 21-22]     

   ~ 
2

2

1

log ( )UV




 (19) 

The large numerical disparity between   and UV  enables one to approximate   as in 

   ~  2( )
UV




 (20) 

Let 
im  denote the full spectrum of particle masses present in the SM. Relation (20) can be 

written as  
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in which 
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and  
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0

i
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   (23) 

With reference to (b.3) of Appendix B, we find that (23) obeys a closure relationship typically 

associated with multifractal sets, namely [22]: 

 
2 2( ) 1i

i
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m
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M
     (24) 

in which the sum in the left-hand side extends over all SM fermions (leptons and quarks). 

Relation (24) may be alternatively cast in terms of SM field charges. We obtain  
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From either (24) or (25) one derives  

 EWM  ~ V  = 246.2 GeV  (26) 

in close agreement with the vacuum expectation value of the SM Higgs boson (V ). In closing, 

we mention that the existence of (25) was first brought up in [24], with no attempt of formulating 

a theoretical interpretation.    

7. Discussion: solving the flavor and hierarchy problems on the MFM 

Relations (18), (24) and (25) tightly constrain the particle content of the SM. They naturally fix 

its number of independent field flavors near the electroweak scale. Also, since all scaling ratios 

in (24) must have a magnitude of less than one unit, (24) and (25) necessarily imply that the 

mass of the Higgs boson cannot grow beyond
EWM , at least near the electroweak scale. This 

conclusion brings closure to the hierarchy problem, whose formulation is briefly outlined in 

Appendix A.  

Appendix A: the Hierarchy Problem 

Electroweak (EW) symmetry in the SM is broken by a scalar field having the following doublet 

structure [23]: 
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Here, G
and 

0G  represent the charged and neutral Goldstone bosons arisen from spontaneous 

symmetry breaking, H is the SM Higgs boson, V ≈ 246EWM GeV is the Higgs vacuum 

expectation value. Symmetry breaking is caused by the Higgs potential, whose form satisfies the 

requirements of renormalizability and gauge-invariance: 

 
2 2

0( , ) ( )HV            (a.2) 

with 
0 (1)O   and 

2

H ≈ 
2( )EWO M . A vanishing quartic coupling (

0 0  ) represents the critical 

value that separates the ordinary EW phase from an unphysical phase where the Higgs field 

assumes unbounded values. Likewise, the coefficient 
2

H  plays the role of an order parameter 

whose sign describes the transition between a symmetric phase and a broken phase. Minimizing 

the Higgs potential yields an expectation value given by:  

 
2

2

0

V ( )H


   (a.3) 

where the physical mass of the Higgs is:  

 
2 2 2

02 V 2H HM      (a.4) 

The renormalized mass squared of the Higgs scalar contains two contributions: 

 2 2 2

0,H H     (a.5) 
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in which 2

0,H  represents the ultraviolet (bare) value. This mass parameter picks up quantum 

corrections 2  that depend quadratically on the ultraviolet cutoff UV  of the theory. Consider 

for example the contribution of radiative corrections to 
2

H  from top quarks. The complete one-

loop calculation of this contribution reads: 

 
2

2 2 2

2
[ 2 6 ln( ) ...]

16

c t UV
UV t

t

N
M

M







       (a.6) 

in which 
t and 

tM  are the Yukawa coupling and mass of the top quark.  If the bare Higgs mass 

is set near the cutoff 2 2 2

0, ( ) ( )H PlO O M    , then 2 ≈ 
3510 GeV

2
. This large correction must 

precisely cancel against 2

0,H  to protect the EW scale. This is the root cause of the hierarchy 

problem, which boils down to the implausible requirement that 2

0,H  and 2 should offset each 

other to about 32 decimal places.    

Appendix B:  A primer of fractals and multifractals 

We highlight here few basic concepts and terminology pertaining to fractals and multi-fractals. 

Fractals are geometrical objects with non-integer dimensions that display self-similarity on all 

scales of observation [18]. The concept of dimension plays a key role in the geometry of fractal 

sets. It is customary to characterize fractals by an ensemble of three dimensions, namely: 

1) The Euclidean dimension “ 1,2,3...D  ” represents the dimension of the space where the 

object resides and is always an integer. 
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2) The topological dimension “ Td ≤ D” describes the dimensionality of continuous primitive 

objects such as points, curves, surfaces or volumes ( 0,1,2,3Td   in ordinary four-dimensional 

spacetime). 

3) The definition of the fractal (or Hausdorff) dimension is as follows: Cover the fractal object 

by d  dimensional balls of radius “  ” and let “ ( )N  ” be the minimum number of balls needed 

for this operation. The fractal dimension “
HD ” satisfies the inequality Td ≤ 

HD  ≤ D  and is 

given by  

 
0

lim ( ) HDN 


    (b.1) 

leading to 

 
10

log ( )
lim[ ]

log
H

N
D







 (b.2) 

Many of the self-similar structures in fractal geometry are built recursively, a typical example 

being the Cantor set. To construct a Cantor set in one dimension ( 1D  ), take a line segment 

called the generator, split it into thirds and remove the middle third. Iterate this process 

arbitrarily many times. One is left with a countable set of isolated points having a non-integer 

fractal dimension 
HD , with 0Td   ≤ 

HD  ≤ 1D  . A simple Cantor set generated from 

segments of equal length is defined by a single scaling factor 1
3

r  < 1 . By contrast, more 

general fractals (such as multifractals) can be created using generator segments of different 

scaling factors ir  < 1 , 1,2,...,i N  satisfying the closure relation  
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  (b.3) 

Many strange attractors of nonlinear dynamical systems represent multifractals and are typically 

characterized by a continuous spectrum of Hausdorff dimensions [18].   
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