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Abstract

The aim of the paper is to develop a gauge theory, which shall be on the one hand as
similar as possible to the original ansatz of Einstein's theory of general relativity, and on the
other hand in agreement with other gauge theories as, for instance, those of the electroweak
or of the strong interaction. The result is a nonabelian gauge theory with the general linear
group GL(4,R) as its gauge group.

1. What is the problem?

There are three fundamental forces in nature. Each of them has its own theory by which it is
described. These three theories are:

(a) the nonabelian gauge theory of strong interaction
(b) the nonabelian gauge theory of electro weak interaction
(c) the ‘allgemeine Relativitatstheorie’

If the third theory is compared with the two other ones, there are considerable differences between
them. The theory of general relativity is stemming from the year 1916 and hence an elder lady
of almost one hundred years, while the other two theories are of recent date. On the one hand
the theory of general relativity is not quantized and is treating space as a dynamical background,
while on the other hand the two mentioned gauge theories are quantized, but are acting before
a rigid background. These differences are a severe problem for the task to develop a quantum
theory of gravitation, a program that shall not be discussed here (cf. f.i. [5] [6] [7]).

The aim of the present paper is to construct a gauge theory of gravitation, which is satisfying two
conditions: On the one hand it shall be similar to the theory of general relativity as far as possible,
and on the other hand fulfil the standards of modern gauge theories, also as far as possible.

In the next section it is investigated, to what extent the theory of general relativity already has
the shape of a gauge theory. As a result it can be shown that part of the theory of general
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relativity can be considered as a nonabelian gauge theory with the general linear group GL(4,R)
as its gauge group. The rest of the paper is oriented towards modern gauge theories. The ansatz
of section 4 is still more general and perhaps useful for astrophysical investigations, while the
ansatz in section 5 is in correspondence with the gauge theories mentioned at the beginning and
rather suited for studying gravitation in subatomic regions.

2. What part of the ’allgemeine Relativitidtstheorie' has already the form of a gauge
theory?

The element of general relativity most similar to a gauge theory is the formula

RS, =0,0¢, — 9,1, +1¢1I7, —T¢T7 (1)
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Especially the last two terms are reminding of a commutator, like the last two terms in the formula
b
FL, = 0,A, — 0,A, + gfancALA, (2)

being valid in nonabelian gauge theories.

In order to investigate, whether this resemblance is only superficial or more profound, one should
write equation (1) as

Rg/u/ = aﬂrgu - al/rf;,u + Kcér);w (3)

with the quadratic part
K¢ =T¢TT” —T2TT (4)
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being separated. By interchanging the two factors of the last term it will be achieved that the
indices i and v are standing in the same seriation in both terms, and only the remaining indices
0, 0 and 7 may perhaps occur at different places.

Ko  =T¢TI7 —T7 I (5)
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If now one is trying to write this expression as

Ke,, = kodere 7 (6)
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with certain constants k, then one has to choose these such that

ke =41 kT =1  E%?=0 else (7)
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The next calculation will reveal that the constants & are the same numbers as the structure
constants h for the Liealgebra gl(4,R) of the general linear group GL(4,R).

The Liealgebra ¢gl(4,R) of GL(4,R) can be spanned by the 16 generators

(s2) = (09) row o column o 1<p,0<4 (8)



with the Kronecker symbol §2. Determining the structure constants by calculating the commu-

tators
[(5) (7)) = hse - (s2) (9)

one first of all will find that

(s7) - (sg) = 070505 (s5) - (s7) =05 - 07 - 65
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This implies
hee — 41 R =—1 A2 =0 else (10)
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Plugging this into the formula

Re,, = 0,12, — 0,12, + h2peTe, I (11)
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for the tensor of curvature, one will find that (10) is identical with (7) and hence (11) with (1).
Result of this section:

A part of Einstein's general relativity can be written as a nonabelian gauge theory for the gauge
group GL(4,R).

3. The next part of the construction
There are two obstacles standing against the intention to continue the construction of a gauge
theory:

(a) In equation (1) there is no coupling constant. But such a constant is needed for the quadratic
term in nonabelian gauge theories.

(b) Instead of the two indices g and o there is only one variable a in a gauge theory.

In order to remove the first fault let be

Lo, =945, RS =9F; (12)

o py ouv

Under the condition that the coupling constant g doesn’t vanish, one will have

Fcf,ul/ = a,UAg'V - aVAgy + ghaﬁgra F?y
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after having divided all parts of the equation through ¢. By the further substitution

a . Aa B __ b __ Ac _ 1a TO __
A =A% AD =AY AT = AS FR = F% RS = g,
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the second deficiency will be removed, too. The result is

Pﬁ:@%—@%+wm%£ (13)



As a sake of simplicity and with the intention to write down some explicit results the rest of the
investigation is reduced to one spatial dimension. In this case the Lie algebra gl(2,R) has four

generators
1_ (10 2 (01 s (00 4 0 0
8‘(0 o) *~\oo) "“\10) ° 0 1 (14)

The commutators

(5%, 5°] = hape - 5° (15)
are listed in the table
ERIENEE T
st 0 +52 e 0
52 —s° 0 st — st | 452
53 +53 | st — st 0 —g3
s 0 e +53 0

The structure constants are

hizz = higy = +1 haia = hajp = —1
By = hI2L = 41 oy = B2 — —1
hasy = iy = +1 hazo = h3gp = —1
haiz = 312 = +1 higz = hi¥2 = —1
- Bt = W22 = 41 gy — 2L = 1

hagy = h3i] = +1 hawy = hizi = —1

4. A macroscopic ansatz

In this section the ansatz is guided by classical electrodynamics.
The field equation
MFyL, =7, (16)

which is corresponding to the inhomogeneous Maxwell equation in electrodynamics, can be sim-
plified by taking the counterpart
oA, =0 (17)



of the Lorentz convention as a gauge fixing condition. Then one has

M0, A5, — 0,A;) = 0"0, A5, — 0,0"A}) = A
and
8“(AZA?,) = (8“AZ)A5’, + AZ@“AZ = AZ@“AZ
and hence the counterpart
OAS (2) = 55 (@) — ghane AGO" A} (18)
of the inhomogeneous wave equation.

That is the first part of the interaction between matter and the gravitational field. The other
one is given by the rule that a particle, may it be consistent of matter or may it be a photon, is
moving in the gravitational field along a geodesic line

y? = AL (x)g"y (19)

In this point the ansatz is following Einstein in that it is making use of the concept of geodesic
line and also is treating matter and light on the same footing. The result of the construction
can be considered as a nonabelian extension of classical electrodynamics, and simultaneously as
a refinement of the Newtonian law of gravity. It might be suited for the description of gravity in
macroscopic and especially in cosmic dimensions.

5. A microscopic ansatz

In this section the ansatz has great resemblance with the other nonabelian theories. It might be
suited for the description of gravity in microscopic dimensions.

It is starting with the homogeneous Dirac equation

(190 — m) = 0 (20)
The covariant derivative is
D, =0, —igAj (21)
Equation () then changes into
("D, —m) = 0 (22)
The tensor of the field strength is
FS, = 0,45 — 0,A% + gha ASL AL, (23)
Variation of the Lagrangian density
I 1 a a, v
L =YD, —m) — ZF‘“’F o# (24)



with respect to the three fields inherent in it will give a system
() —mip(z) = gy"(x) Ay (x)

— i, ()" — map(x) g (x)y" AS (x)
DA (2) = (@) P(x) — ghaeAGO" A,

of three coupled equtions. It might be suited for the description of gravity in microscopic dimen-
sions. Additionally, as in electrodynamics, the Lorentz convention

PA =0 (25)

is taken as a gauge fixing condition.
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