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Abstract

We explain herein the fatal error in formulation of strong interaction (quantum
chromodynamics). We postulate that quarks are tachyons and do not obey Yang-Mills
theory. By applying this correction to the dynamics of quarks, we can confine quarks
in hadrons. We seek to show why quarks do not obey the Pauli exclusion principle
and why we cannot observe free quarks. In addition, we obtained the correct sizes of
hadrons and derive appropriate formulations of strong interaction. Instead of several
discrete QCD methods, we derive a united formulation that enables us to solve the
strong interaction for all energy values.

1 Introduction
In contrast to the observed spin-statistic behavior of quarks, it is a well-established fact that
two electrons with identical quantum numbers cannot exist in a hydrogen atom, because each
electron is subluminal and its phase velocity is superluminal. When there are two electrons
with identical quantum numbers in a hydrogen atom or with identical energy levels in a
cubic box, the second electron exists at every location (space-time coordinates) with exactly
identical wave function characteristics to those of the first electron. In other words, the two
electrons simultaneously exist at an exact point at the same time. This phenomenon is a
consequence of the probabilistic characteristics of wave functions and quantum mechanics.
Specifically, the wave equation does not provide us with more information about the exact
location of each electron. The energy and absolute value of the momentum of each electron
are exactly determined, but the electrons do not have specific locations. At a given time,
they are ubiquitous at every location where the wave function does not vanish. However, as
we know we can have three identical quarks with identical spin states and quantum numbers
in baryons. To explain this phenomenon, we propose a strange theorem:

Theorem. Quarks are superluminal particles.

First, let’s explain the foundations of quantum mechanics somewhat further. Any specific
change in the state of a wave function in its associated Hilbert space will propagate in space-
time coordinates with the phase velocity of the wave function in spacetime. Specifically,
entangled particles communicate with each other at their entangled phase velocity. We
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postulate that quarks are superluminal. As a result, because each quark is superluminal,
its phase velocity must be subluminal; thus, If we change the wave function of the second
quark, this change will propagate at less than c to the other space-time locations in the bag.
In other words, the first quark is unaware of the spin and characteristics of the second quark,
because their phase velocities are subluminal. The phase velocity is not measured in a space-
like region and quarks with identical spins can occupy the same energy level in hadrons.
Specifically, two quarks with identical energies and momenta are located at different points
in the bag. Quantum mechanics postulates that, at a specific time, a subluminal particle
with a specific energy-momentum does not have a specific location. In other words, it is
ubiquitous in the bag. However, because the phase velocity of a superluminal particle is
subluminal, a superluminal particle is no longer ubiquitous. These particles are somehow
uncollapsed localized wave functions. Thus, two superluminal particles (quarks) that are
confined in a hadron no longer exist at the exact space-time points and obey Fermi-Dirac
statistics, so it is not necessary for them to obey the Pauli exclusion principle (they are not
ubiquitous). The exclusion principle applies to two identical particles with identical wave
function characteristics [1](ubiquitous at some region of the space-time coordinate).

Theoretically, the wave function of a tachyon such as a hypothetical superluminal neu-
trino cannot collapse, because the phase velocity of collapse is subluminal and obeys causal-
ity. Before the wave function collapses, the particle does not have a specific location. We can
create its location by performing an experiment and measuring its location. However, after
we determine the location of a particle, the particle should not be detected in other loca-
tions, even in notably far space-like locations that have no causal relation with the location
of the collapsed particle. When ψspaceof a subluminal particle collapses, it communicates at
its phase velocity (at infinite velocity in the reference frame of the collapsed wave function)
to other locations in spacetime that the wave function should not collapse at other locations
of the universe. Thus, a particle cannot be detected in two space-like locations, although
the two locations do not have a causal relation with each other. However, if the particle is
superluminal, its phase velocity is subluminal, and it cannot perform this communication
in space-like regions of spacetime. The phase velocity must be superluminal to allow for
the collapse of the wave function[2]. Because quarks are superluminal, we never observe
free quarks. Note that, although we can identify quarks in hadrons using deep inelastic
scattering, before scattering, the wave functions of quarks are confined in hadrons, and it is
not necessary for the wave functions to communicate with the entire universe to be able to
collapse. The above argument is applicable to free quarks.

Unfortunately the physical concepts and descriptions that we offer above do not create
a firm justification for two facts about tachyonic quarks. First, why is it that quarks do not
obey the exclusion principle and why have we not yet observed a single free quark? These
results must be expressed in the language of mathematics. However, there is seemingly
still not a satisfactory quantum field theory for interacting tachyons and we do not know
the statistical laws of tachyons similar to Bose-Einstein or Fermi-Dirac, which apply to
traditional particles.

2 Tachyonic field theory
The beginnings of tachyonic quantum field theory were introduced in the Feinberg paper in
1967 [3]. Feinberg introduced the term tachyon for particles that move faster than the speed
of light. Before special relativity there were some attempts to describe the specifications of
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such particles [4, 5, 6, 7]. Cherenkov radiation was one of the predictions of these authors.
After the introduction of special relativity, there was no interest in pursuing these attempts
and describing particles that were forbidden to exist until 1962, when the first papers to
create a relativistic tachyonic equation and the elimination of its philosophical contradictions
with special relativity were published [8]. In that era, in addition to theoretical efforts[9,
10, 11, 12], there were also some attempts to detect tachyons by experiment [13, 14, 15].
In 1985, for the first time, Alan Chodos et al. suggested that an electron neutrino was a
tachyon [16]. Later, several experiments to prove that a neutrino mass was imaginary were
performed. Yet, the important point about all of the positive results in favor of superluminal
neutrinos was that all the conclusions were in the domain of experimental error. Thus, their
validity could not be verified. In addition, this fact contradicted well-established neutrino
oscillation which considered the real mass for neutrinos. After the Chodos paper appeared,
a large number of theoretical papers on the subject began to appear, oriented in such a
way that they designed an appropriate tachyon field theory which described superluminal
neutrinos. These developments accelerated up until 2012 when CERN reported a neutrino
anomaly [17]. Immediately a large number of manuscripts in favor and against that idea
were published. Yet, it later become evident that the origin of the anomaly was due to an
error in experiment[18, 19] .

The main problems for constructing an interacting tachyonic field theory are canonical
quantization, microcausality, and the spin-statistics theorem. As we know, in order for a
microcausality condition to hold for bilinear observables, the field must either commute
or anti-commute for a space-like interval. If the Dirac equation is quantized according
to commutation relations, the Hamiltonian does not have ground states. If the Klein-
Gordon equation is quantized according to anti-commutation relations the microcausality
will not be valid for space-like or time-like intervals. To create a tachyonic Klein-Gordon
equation or Dirac equation we must quantize the field equation. For preserving scalar field
Lorentz invariance, Feinberg assumed a Fermi-Dirac statistic (anti-commutation relation)
for the quantization of tachyonic spinless particles! (Ironically quarks which are spin one-
half particles do not obey the exclusion principle, but we created the loophole of color to
accommodate this fact.) However, this method created a problem whereby the field vacum
state and particle number were not Lorentz invariant[3, 20]. After the first Feinberg paper,
it was clear that the fields with imaginary mass led to instability similar to a unstable
equilibrium point in classical mechanics and would lead to tachyonic condensation [21].

3 Wave equation of a hydrogen atom with a superluminal
electron

There is a significant difference between an ordinary hydrogen atom and a model with a
superluminal electron. In the subluminal model, we have negative potential energy. When
we increase the energy of the electron in the subluminal model, the momentum of the
electron decreases; thus, the wavelength of the electron increases, and the electron increases
its distance from the proton. In the subluminal model, although the energy cannot be less
than the mass of the particle, the minimum momentum can be zero.

E2 = c2P 2 +m2c4 (1)

Thus, the wavelength has no maximum, i.e., according to the Wilson-Sommerfeld rule [22,
23] it can approach infinity, which results in the escape of an electron from the hydrogen
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atom . The minimum principal quantum number for the minimum radius of the hydrogen
atom is n = 1.

However, in the superluminal model, although the minimum amount of relativistic energy
is zero, the momentum has a non-zero minimum: It cannot be less than the mass of the
electron, namely, msc [8, 9].

c2P 2 = E2 +m2
sc

4 (2)

E =
msc

2√
β2
s − 1

βs > 1 (3)

P =
msv√
β2
s − 1

βs > 1 (4)

We see that the electron has a maximum wavelength λ = ~/cms. Thus, by the Wilson-
Sommerfeld rule, the electron cannot have an infinite wavelength and thus cannot escape
the hydrogen atom. This fact sets a limit on the maximum radius of the bag. Thus, the
electron in the superluminal model is confined. For the superluminal model, the principal
quantum number of the maximum radius of the bag is n = 1.

(m2
◦c

4 + E2)1/2

hc
2πr = 1 (5)

When the electron energy increases, its momentum increases too, but its wavelength
decreases; thus, it becomes increasingly confined. The electron falls deeper into the hydrogen
atom or bag, which is in contrast to our observation in the subluminal model.

It is at this point that , we seek to derive and solve the wave function of a confined
superluminal electron in the hydrogen bag. First, we study the radial Dirac equation. The
Dirac equation for a subluminal particle with real mass leads to the following [24]

~c
dg(r)

dr
+ (1 + κ)~c

g(r)

r
− [E +m◦c

2 +
Zα

r
]f(r) = 0 (6)

~c
df(r)

dr
+ (1− κ)~cf(r)r + [E −m◦c2 +

Zα

r
]g(r) = 0 (7)

The normalized solutions are proportional to

f(r) ≈ − 1

Γ(2γ + 1)
(2λr)γ−1e−λr ×{

(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2λr) + n′F (1− n′, 2γ + 1; 2λr)

}
(8)

g(r) ≈ 1

Γ(2γ + 1)
(2λr)γ−1e−λr ×{

(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2λr)− n′F (1− n′, 2γ + 1; 2λr)

}
(9)

For normalizable wave functions, γ should be positive. κ is the Dirac quantum number, and

λ =
(m2
◦c

4 − E2)1/2

~c
(10)
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q = 2λr (11)

γ = +
√
κ2 − (Zα)2 = +

√
(j +

1

2
)2 − (Zα)2 (12)

To terminate the hypergeometric series, we should discard the negative values of n′:

n = n′ + |κ| = n′ + j +
1

2
n = 1, 2, 3 (13)

The solution for the hydrogen atom is a hypergeometric function, which is an associated
Laguerre polynomial and is characteristic of a wave function in the Coulomb potential.

Lmn (x) =
(n+m)!

n!m!
F (−n,m+ 1, x) (14)

where Lmn (x) is the associated Laguerre function.
To create a superluminal Dirac equation for quarks, we can use imaginary mass or

substitute the following matrix βs = iβ (imaginary mass Dirac equation) to calculate f(r)
and g(r).

Hψ = c(α.p)ψ + iβmc2ψ (15)

However, when we want to construct the Dirac current, we will encounter a problem.
The other method is to consider the following non-Hermitian matrices, where βs = βγ5

[25, 16] (tachyonic Dirac equation)

Hψ = c(α.p)ψ + βsmsc
2ψ = c(α.p)ψ + βγ5msc

2ψ (16)

α =

(
0 σ
σ 0

)
βs =

(
0 I
−I 0

)
(17)

This method satisfies all of the required properties of the superluminal Dirac equation.
However, for the sake of simplicity, we mimic the former procedure for the superluminal
model with imaginary mass and obtain

~c
dg(r)

dr
+ (1 + κ)~c

g(r)

r
− [E + im◦c

2 +
Zα

r
]f(r) = 0 (18)

~c
df(r)

dr
+ (1− κ)~cf(r)r + [E − im◦c2 +

Zα

r
]g(r) = 0 (19)

We define λ as

λ =
(m2
◦c

4 + E2)1/2

~c
(20)

We solve the above equation and exactly mimic the method provided in the reference
for the solution of the Coulomb potential [24]. Finally, we obtain

g(r) ≈ (2λr)γ−1e−iλr ×{
(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2iλr)− n′F (1− n′, 2γ + 1; 2iλr)

}
(21)
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Figure 1: Real part of the function f(x) = Re[e−ixF (1, 3, 2ix)]. The function is exactly
similar to a spherical Bessel function of the first type..

f(r) ≈ −(2λr)γ−1e−iλr ×{
(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2iλr) + n′F (1− n′, 2γ + 1; 2iλr)

}
(22)

In the above equations, F (−n′, 2γ+ 1; 2iλr) is normalized for only the negative values of n′
if

−n′ < 2γ + 1 (23)

For example, for j = 1
2 ( which gives γ = 1), and n′ = −1 we have a well-behaved wave

function (figure 1). For −n′ = 2γ+1, the behavior of the wave function F (−n′, 2γ+1; 2iλr)
is similar to cos(r). For negative n′, the above hypergeometric equations are similar to the
spherical Bessel function of the first type. From (21) and (22), the relation between the
hypergeometric series and the Bessel functions is

Jν(x) =
e−ix

ν!
(
x

2
)νF (ν +

1

2
, 2ν + 1, 2ix) (24)

The spherical Bessel function of the first type is defined as

jν(x) =

√
π

2x
Jν+1/2(x) (25)

We observed that the solution for the subluminal hydrogen atom is a Laguerre poly-
nomial. However, we see that f(r) and g(r) for a superluminal electron in the Coulomb
potential are similar to the spherical Bessel function of the first type. The spherical Bessel
functions appear in only two similar cases. The first case is a particle trapped in an infinite
three-dimensional radial well potential. The solutions to this problem are spherical Bessel
functions of the first type. Similarly, the solutions to the MIT bag model, which postulated
the existence of an unknown pressure and the vanishing of the Dirac current outside the
bag, are also spherical Bessel functions of the first type [26, 27].

although we assumed a negative α
r potential, the real shape of the strong interaction is

unknown and the other potential will lead to confinement. However, even if (maybe) the
force among the particles was repulsive in the above equation or its strength with respect
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to distance did not follow a 1
r2 law, the factor that determines whether the system is stable

and whether the superluminal positron can escape the proton is the energy of the system
and not the attractive or repulsive forces among the particles.

it seems from studying the shape of the inter-quark potential that, we can consider the
following conjecture:

Conjecture. The strong force is simply the superluminal effect of the electromagnetic force
among superluminal particles.

4 Quantum Electrodynamics of Superluminal Particles
In this section, we use a heuristic approach for the calculation of cross sections in strong
interactions. Although there is not yet a satisfactory theory for interacting tachyonic field
theory, we seek to gain insight and a qualitative, not quantitative, sense of the calculation
for the cross section of strong interactions and tachyonic particles.

In the superluminal Klein-Gordon equation, the mass term is imaginary, but all other
parameters, including the Klein-Gordon current [jµ = (ρ, j)], are similar to the subluminal
ones. To compute the cross sections in the subluminal Dirac and Klein-Gordon equations,
we use the flux relation:

F = |vA − vB |.2EA.2EB = 4(|pA|EB + |pB |EA = 4((PA.PB)2 −m2
Am

2
B)) (26)

It can be shown that, if we use the superluminal energy-momentum relation (2) instead of
(1), the above flux relation remains valid. Thus, we can conclude that the cross section
formulas for superluminal and subluminal particles have similar expressions.

In the center-of-mass frame, the AB → CD process for spinless particles, has a differen-
tial cross section of

dσ

dΩ
|cm =

1

64π2(EA + EB)(EC + ED)

pf
pi
|M|2 (EA + EB = EC + ED) (27)

where for the amplitude,

M = (ie(pA + pC)µ)(
gµν
q2

)(ie(pB + pD)ν) (28)

In the superluminal quark model, if quarks exist at the boundary of the bag, then their
speeds will approach infinity, their energies will approach zero, and their momenta will reach
the minimum value msc (non-relativistic region). In contrast, at the center of the bag, their
speeds will approach the speed of light, and their energies and momenta will approach
infinity (relativistic region).

In the subluminal model, the energy of the system in the denominator of (27) can
never be less than the mass of the interacting particles; thus, the cross section for the
minimum initial energy of the interacting particles cannot increase dramatically, but in the
superluminal model, if quarks exist at the boundary of the bag (non-relativistic limit and
infinite velocity, which in QCD is called a large distance), their cross sections can diverge
because the energy in the denominator of the above equation (27) can approach zero. Thus,
the cross section diverges at the boundary, and a quark cannot escape from the bag.

From equation (27), for the very-high-energy subluminal spinless electron muon interac-
tion, we have
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dσ

dΩ
|cm =

α2

4(EA + EB)(EC + ED)
(
3 + cosθ

1− cosθ
)2 e− + µ− → e− + µ− (29)

where θ is the scattering angle. To obtain this formula, we neglect the mass and equate
the energy and momentum in (28). For the superluminal model, the technique is similar
and produces a similar result. Thus, equation (29) is applicable to superluminal spinless
particles at very high energies too. With this limit, all interactions between the quarks
in hadrons, including QCD and QED interactions, are calculated using one superluminal
equation (29), which is also related to the subluminal QED formula. Thus, we falsely
conclude that, for short distances, the QCD running coupling constant, which is a function
of the energy-momentum of the virtual gluons exchanged between quarks (pA − pC)2 ,
disappears. Moreover, the QCD interactions between subluminal particles are negligible,
and as a result, we have only the subluminal QED result and not QCD (asymptotic freedom).
However, there is no change in the running coupling constant, which can be concluded based
on our conjecture.

At this stage, we study the general form of the cross sections of tachyonic spin one-half
particles. The tachyonic Dirac equation can be written as

Hsψ = c(α.p)ψ + βsmsc
2ψ = c(α.p)ψ + βγ5msc

2ψ (30)

or, in its abbreviated form, as

(iγµ∂µ − γ5m)ψ(x) = 0 (31)

The tachyonic Lagrangian and dirac current are

£s = iψγ5γµ(∂µψ)−mψψ (32)

Jµ = c(ψγµγ5ψ) (33)

and the tachyonic Hamiltonian is,
H = Hs +HI (34)

Its interaction Hamiltonian will be

HI = JµAµ (35)

Because (33) is different from the subluminal current, the cross section will be different.
Actually we cannot continue because there does not yet exist a successful tachyonic field
theory. Nevertheless, the tachyonic propagator is written as [28]

S(p) =
1

/p− γ5(m+ iε)
=

/p− γ5m

p2 +m2 + iε
(36)

Therefore, for quark pair production in (e+e−) collisions, we have

e+(p) + e−(p′)→ q+(k) + q−(k′) (37)

Its amplitude will be

M = ieqe[u(k′)γαγ5v(k)](q)
1

(p+ p′)2
[v(p)γαu(p′)](e) (38)
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We have∑
spin

[u(p′)γµv(p)][u(p′)γνv(p)]∗ = 4(p′µpν + p′νpµ − (p′.p+m2
e)g

µν) (39)

The following gamma relations are useful:

(γ5)2 = 1 γ5† = γ5 γ5γµ = −γµγ5 (40)

By using the above gamma relation we obtain:∑
spin

[u(k′)γµγ5u(k)][u(k′)γνγ5u(k)]∗ = 4(k′µkν + k′νkµ − (k′.k −m2
q)gµν) (41)

Therefore, the amplitude will be

M2
=

8e2e2
q

(k − k′)4
[(k′.p′)(k.p) + (k′.p)(k.p′) +m2

ep.p
′ −m2

qk
′.k − 2m2

em
2
q] (42)

This result can be compared with subluminal electron muon scattering:

M2
=

8e4

(k − k′)4
[(k′.p′)(k.p) + (k′.p)(k.p′) +m2

ep.p
′ +m2

µk
′.k + 2m2

em
2
µ] (43)

If the quark mass is on the order of electron mass at the extreme relativistic limit, we
ignore the masses of electrons and quarks, and the cross section will be similar to the electron
muon scattering cross section.

dσ

dΩ
|cm =

α2e2
q

4(EA + EB)(EC + ED)e2

pf
pi

(1 + cos2 θ) (44)

Here, the superluminal model predicts that the total cross section is one third of the value
that we obtained from the traditional QCD calculations of electron to quark annihilation,
which considers the color factor. The problem can be solved by what we obtain in the next
section, i.e., the fact that quarks are more massive than what traditional QCD predicts.
If quark mass (up-down) is much greater than electron mass, then in the annihilation of
an electron positron to quark-antiquark pair superluminal scattering, we always have pf =√
m2
q + E2 >

√
−m2

e + E2 = pi which increases the differential cross section in (44).
From our previous findings on spin one-half particles, equations (42) and (43), we can

deduce one interesting fact when calculating the cross section that is always valid: only the
second power of the mass appears in the cross section. Thus, if we use the superluminal
Lagrangian for strong interaction calculations to find the net results, we can simply change
the sign of the superluminal particle mass m2

q → −m2
q that appears in the cross section and

use traditional QED calculations and omit the γ5 terms for the mass in the Dirac tachyonic
equations (30) to (32). In other words, because there is no imaginary term in the cross
section, we can easily use QED calculations to obtain strong interaction results.

If quarks (up and down) are extremely massive, we cannot easily apply equation (44) as
an approximation. the extended result is

dσ

dΩ
|cm =

α2e2
q

4(EA + EB)(EC + ED)e2

pf
pi

(1−
m2
q

E2
+ (1 +

m2
q

E2
) cos2 θ) (45)
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The rates of variation of the above differential cross sections with respect to the scattering
angle θ, i.e, 1 + λcos2θ are different and must affect experimental results of two jet events.
At low energy Ecm 6 4.8 Gev there is higher sphericity and less jet like behavior but it seems
that λ is very small [29, 30]. At Ecm = 7.4 Gev

c2 the observed jet axis indicated λ = 0.45 and
λ = 0.50 but SLAC-LBL Collaboration used Monte Carlo simulation to get higher values
λ = 0.78, λ = 0.97 [31, 32]. even small difference of λ from 1 creates great mass. for λ = 0.78
at Ecm = 7.4 Gev we obtain | < mq > | = 1.3 Gev. Justifying two jet events on the base
of perturbative standard QCD for massive quarks contradicts asymptotic freedom, however
only measurement of λ at different energies can reveal its true nature. PLUTO Collaboration
obtained λ = 0.76 and λ = 1.63 at Ecm = 7.7 and upsilon resonance Ecm = 9.4 respectively
[33]. The rapid change of λ at upsilon resonance indicates that λ is related to (bottom)
quark mass in differential cross section resonance. However at Ecm = 13 and Ecm = 17
Gev again the value of λ = 1.7 was suggested by TASSO Collaboration [34]. Finally λ 6= 1
is observed in drell yan angular distribution too but QCD usually offers more justifications
for this anomaly in drell yan process [35].

5 Wilson loop and confinement
The Wilson loop was designed to prove confinement in Yang-Mills theory [36]. Yet, it is
still an open question whether the Wilson loop in Yang-Mills theory at a finite distance
offers an infinite result. Here we derive the interquark potential and contrast it with the
standard QCD model and proof that both Wilson integration and interquark potential and
cross section diverge beyond the hadron border. We begin with the Wilson integration

< e−ieq
∮
Aµdx

µ

>= exp[−e2
q

∮
dxµ

∮
dyν

gµν
8π2ε◦[(x− y)2 − iε]

] (46)

The exponent can be written as

−2e2
q

∫
C2

dxµ
∫
C4

dyν
gµν

8π2ε◦[(x− y)2 − iε]

−2e2
q

∫
C1

dxµ
∫
C3

dyν
gµν

8π2ε◦[(x− y)2 − iε]

= −2e2
q

∫ T

0

dx0

∫ 0

T

dy0 g00

8π2ε◦[(x0 − y0)2 − r2 − iε]

−2e2
q

∫ R

0

dx1

∫ 0

R

dy1 g11

8π2ε◦[(x0 − y0)2 − r2 − iε]

≈ −
e2
qT

4π2ε◦

∫ −∞
+∞

dy0 g00

[(x0 − y0)2 − r2 − iε]

−
e2
qR

c4π2ε◦

∫ −∞
+∞

dy1 g11

[(x0 − y0)2 − r2 − iε]

= i
e2
q

4πε◦R
T − i

e2
q

4πε◦Tc2
R = −iVsT (47)

where
r = (x1 − y1) g00 = 1 g01 = g10 = 0 g11 = 1 (48)
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Figure 2: The graph of function f(x) = x
1−x2 . The above graph describes the interquark

potential, where in approximately 1 fm (proton border), the string tension approaches in-
finity.

and

Tβsc = R (49)

In addition, from Wilson-Sommerfeld quantization; we have

Rmscβs√
β2
s − 1

= ~ (50)

so we obtain

VS =
e2
q

4πε◦R

(Rmc~ )2

1− (Rmc~ )2
(51)

The above potential indicates a strong force potential among quarks. At the boundary of
the bag or hadron, both the Wilson loop integral and interquark potential diverge because
in a very small time period, the quark manages to circumvent the bag and create a com-
pletely closed loop in the integration which results in confinement. Thus, quarks must be
superluminal, as it is the necessary condition for confinement. The absence of a subluminal
model and potential creates a true confinement and a divergence of flux and cross section
beyond the hadron surface. From equations (29) or (44) and (5), we can plot the total cross
section as a function of the interquark distance

σ =
π

3

e4

16π2

R2

~2c2 −m2c4R2
(52)

which indicates that at the center, both potential and cross section vanish contrary to
the Cornell potential, which predicts a coulombic potential at a small distance.

Vcornell = −
e2
q

4πε◦R
+ bR+ f(R) (53)

There are several differences between what we obtained here and what standard QCD
predicts. As we know, the QCD coupling constant will predict approximately a Cornell
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potential that for a small distance behaves as a coulombic potential, but our graph (Figure
2) is different and the interquark potential will never be zero unless in the center of the bag.
In addition, in QCD the flux between quarks remains constant, and at a large distance is
not related to the interquark distance; but in our model in around the range of the quark
Compton wavelength λ̄q, both the string tension and cross section diverge completely and
create confinement. If the conjecture that electromagnetic and strong interaction are the
same force is true; in the superluminal model, the string tension is a function of the quarks’
mass and electric charge and their distance from the center of the hadron; thus, it is different
for each hadron. For a lighter quark mass, the string tension would be reduced. Yet, color
factor predicts a universal string tension among all types of quarks. Because in our model,
the string tension diverges completely at 1 fm, this model predicts confinement. However,
in standard QCD at no distance, quarks will be confined completely and the Wilson loop
fails to predict the problem of confinement although the problem of quark confinement at
finite distance in Yang-Mills theory and resulting mass gap is still an open question [37].

For the hydrogen atom we have a fine structure constant

α =
e2

4πε◦~c
(54)

The electron reduced Compton wavelength is λ̄e and the electron distance from the nucleus
is

rn = n2r◦ = n2 λ̄e
α

= n2 λe
2πα

(55)

where r◦ is the Bohr radius. The electron energy is

En =
mec

2α2

2n2
(56)

We want to create a similar equation for quarks. The quark Compton wavelength is
λq. We know that in nucleons (for up and down quarks) the strong interaction strength is
approximately ( 1

α ) times greater than the electromagnetic strength so if in equation (51) we
choose

VS(R = R◦)

VE
=

1

α
(57)

where

VE =
e2
q

4πε◦R
(58)

then we obtain

R◦ =
1√

1 + α
λ̄q =

1√
1 + α

~
mqc

(59)

and R◦ is a true hadron boundary. if in (51) the quark moves beyond R◦ we have a
confinement

VS(R = λ̄q =
~
mqc

) =∞ (60)

in addition,

VS(R = R◦) =
√
α+ 1mqc

2(
e2
q

e2
) (61)
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Because a strong force is actually an electromagnetic force between tachyons, we cannot
define the VE between superluminal particles, but we can say

VE(R = R◦) = α
√
α+ 1mqc

2(
e2
q

e2
) (62)

and from (5) we have

E(R = R◦) =
√
αmqc

2 ≈ 0.085mqc
2 (63)

Thus, the quark momentum is

p(R = R◦) =
√

1 + αmqc (64)

and its velocity is

v(R = R◦) = c

√
1 +

1

α
(65)

Equation (59) indicates that the radius of the bag is approximately the Compton wave-
length of the quark. In addition, (63) indicates that the energy of quarks is very small in
comparison with their mass. As well, quarks are very heavy particles. There is a strange
point in the above derivation. It seems that in equation (61) the VS which is the to-
tal energy derived from the strong interaction is proportional to the quark momentum |p|
(equation(64)) and is much greater than the total energy of the quark (63)

VS(R = R◦) = |p(R = R◦)|c
e2
q

e2
>> E(R = R◦) (66)

It is not clear whether we must consider the mass of the hadron as proportional to its
strong interaction potential VS or the quark total energy E. Yet, if we choose VS as the
indicator of hadron mass and hadron energy, then we can conclude that the proton energy
which creates its gravitational mass is more proportional to the quark momentum (so maybe
in (27); EA+EB = |pC |+|pD| > EC+ED which is strange) than the quark energy . Perhaps
this fact is the reason for the failure of all the proposed papers on tachyonic field theory.
In addition, if we suppose that the mass of the hadrons depends on VS , we can see that
in a stable hadron like any stable system, the quarks have a very small relativistic energy
(63) and the quarks’ mass (up and down) is much greater than what we obtained from
a non-abelian formulation of quantum chromodynamics. Actually, equation (61) indicates
that quark mass is on the order of hadron mass (see (52) too). Moreover cherenkov radiation
increases VS in (51) and seems to be forbidden.

6 Discussion and conclusion
As we know, lattice field theory is the ideal tool for performing precise calculations on a low
energy scale in quantum chromodynamics. On the other hand, performing exact calculations
with a minimum lattice distance requires supercomputing power, while in the above, we
obtained the interquark potential in a simple manner. In fact, for larger couplings, smaller
spacing and more powerful computers are needed which means computers never manage to
solve QCD at singular values. A theory should be perfect. In other words, intuitively, if
a theory is formulated correctly using appropriate and correct assumptions and formulas,
that theory should never need the calculational power of such strong machines. If a theory
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requires such high-caliber equipment, beyond the scope of paper and pencil, this only means
that the formulation of the theory is incorrect and inappropriate. Our formula should
provide maximum information but minimum error regarding our system. In other words, if
we consider a tachyonic model of strong interactions instead of the traditional non-abelian
theory, we obtain the ability to calculate and depict all quark-quark interactions such as
interquark potentials with maximum precision. This is similar to the case in quantum
electrodynamics where all types of cross sections can be calculated in principle without the
help of a computer; thus, we can perform similar calculations for strong interactions.

The following discussion is not related to the subject of this research paper on quantum
chromodynamics, yet bears mentioning. Some scientists such as Einstein considered quan-
tum mechanics to be an incomplete and raw picture of physics because it did not provide
the exact and maximum information that its predecessor, classical mechanics, could provide
[38, 39]. In another example, we would point out the large discrepancy in gravitational
theory-between what our theory, i.e., general relativity predicts, and what our data indi-
cates, e.g., in rotation galaxy curves and the cosmological constant problem-which seeks to
fix the error by introducing hypothetical yet unobserved phenomena such as dark mass and
dark energy.

If what we presented in this paper is valid, an important point regrading strong interac-
tion is the fact that there is no gluon-gluon interaction term and no non-abelian behavior.
Thus, strong interaction is a linear theory in principle and the superluminal motion of quarks
creates strange specifications of strong force. Therefore, among the three interactions, only
gravitation seemingly has a non-abelian behavior and graviton-graviton interaction. Actu-
ally, in any theory, a non-abelian characteristic creates a singularity in the theory for which
we cannot perform calculations at the singular point. The singularity in QCD is the low
energy region of interaction. If we consider the superluminal model, we are able to predict
all phenomena at the singular point. A similar point in Einstein’s field equations is that
they are nonlinear partial differential equations too. Non-linear partial differential equations
have non-exact solutions. Furthermore, the theory has singularity in the Schwarzschild ra-
dius and we hope the theory of quantum gravity provides a solution at this scale. Thus, we
expect that a theory of quantum gravity must probably offer both exact solutions to the
field equations and enable us to either eliminate singularity completely or have the ability
to obtain results at any precision in singular points. Here, another question arises. If any
inappropriate formulation of the system creates a singularity, is the singularity created by
the Schwarzschild radius the result of an inappropriate formulation of gravitational theory?
If we consider quantum mechanics as an inappropriate formulation of reality, is the uncer-
tainty principle its singularity? Must all singular points be, in principle, calculable at any
given precision? In addition, is there a singularity in physics or are all of the singularities
the results of our inappropriate formulations?

Theory Incalculable singularity
QCD SU(3) Low energy limit
General Relativity Schwarzschild radius
Quantum mechanics Uncertainty principle

At this point, we consider other facts regarding the immature and raw formulation of
tachyonic dynamics. Unlike the process in the Higgs mechanism that creates real mass from
the positive unstable potential term in the Lagrangian, tachyonic condensation is not ob-
served in hadrons and hadrons are stable composites. Unlike reasonable predictions [40, 41],
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no Cherenkov radiation is observed in hadrons either. Quarks do not obey the Pauli ex-
clusion principle, which is a fact that is not predicted in the tachyonic field theory of spin
one-half particles. Generally speaking, superluminal particles do not obey the traditional
laws of quantum mechanics. We do not know why the electromagnetic field among superlu-
minal particles is always attractive and why the net charge of hadrons must be an integer.
Tacyonic field theory must explain why we do not have a single tachyon. Quantum field
theory for superluminal particles needs significant review. It seems that applying Feynman-
Stueckelberg interpretation or Feinberg reinterpretation principle contradict experimental
results λ < 1 of two jet event. An appropriate tachyonic field theory must explain the
observed phenomena in hadrons not neutrinos.

In spite of the troublesome nature of tachyonic field theory, the superluminal model offers
a united model for strong interaction, but the SU(3) model does not have this advantage. In
other words in standard QCD, we have different models to justify a specific result and usu-
ally each model offers appropriate predictions for a specific spectrum of experimental results;
and in the range of energies where we can simultaneously use other models, we usually face
contradictory results which means that the foundations of our models are inappropriate. For
example, we know that the QCD summation rule is based on perturbation theory. In addi-
tion, we know that the bag model is created on the assumptions of both the subluminality
of Dirac current and the confinement of this current. Yet, on the other hand, the predicted
results and parameters, such as the pressure of hadrons from these two theories, are contra-
dictory to each other. In addition, due to the fact that rigid boundary condition can leads to
spurious quark motions, the MIT bag model is not Lorentz invariant[42]. We offer different
models at different energies and seek to close the gap between them, and we are faced with
contradiction. The reason is that no subluminal model can create true confinement and
an appropriate model of strong interaction. Thus, we logically face several errors in the
results derived from these two different methods designed to solve the system. There are
other contradictions in the SU(3) subluminal model. One of the greatest questions about
the SU(3) model is that if this model is the true model of confinement, why has no glue-ball
yet been observed? However, we have achieved energies in the range of a hypothetical glue
ball [43, 44]. Thus, although the SU(3) model offers some approximations of true strong
interactions and mimics the superluminal model, there is no strong experimental evidence
to confirm the color concept.

As another sign in favor of the superluminal model for quarks, we can consider the great
difference between the mass of vector mesons and of pseudoscalar mesons. For instance
π+(ud̄) = 140, ρ+(ud̄) = 775 , K+(us̄) = 493 , K∗+(us̄) = 892 Mev

c2 . In the subluminal
model, spin interaction (fine structure splitting) can be considered a perturbation (order of
α2) to the principal Hamiltonian (because electron speed is of order v

c = α) . Yet the fact
that the mass of vector mesons is much greater than that of the pseudoscalar mesons with the
same quark contents can be justified only by the superluminal motion of quarks and its effect
on the quarks’ spin-spin interaction. In fact spin-spin coupling energy is of order of strong
interaction and greater than electromagnetic potential. Logically, the Thomas precession
and subluminal motion of electric charges cannot account for such a great Hamiltonian and
the energy difference due to the different quark’s spin alignment in vector and pseudoscalar
mesons. Note that for great quark masses which can be concluded from angular distribution
of two jet event, Chromomagnetic Mass Splitting fails to predict meson mass gap.

On the other hand for next generation of quarks, the ratio of mass gap to meson mass
among pseudoscalar and vector meson is very smaller (for instance B0

s (sb̄) = 5366, B∗0s (sb̄) =
5415, ∆E

E = 0.01). This means that the speed of next generation of quarks in the bag is
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considerably different from first generation. Does jump in the angular distribution at upsion
resonance indicates that buttom quark has a tiny mass in contrast to upsilon mass?

Besides intuition, the key, finally, for determining if really strong interaction is based
on the superluminal model or a non-abelian model must be determined from experiment.
The fact that first generation quark mass is imaginary and is much greater than what the
SU(3) model predicts (and maybe the mass of the hadron depending on the momentum
of the quarks and not their energy) must be detectable in all types of scatterings, decays
and cross section formulations (provided we develop a successful interacting tachyonic field
theory). The SU(3) model predicts that up and down quark masses are in the range of
electron mass while the superluminal model predicts that the mass of up and down quarks
is on the order of hadron mass. If further experiments on cross sections prove that SU(3) is
inappropriate model for strong interaction, it would seem that we must review other concepts
such as the strong CP problem, axions, and other concepts that grand unified theories
predict such as proton mass decay. up to this time, no direct evidence for axion and proton
mass decay has been observed and possible detections rely on interpreting astronomical
observations[45, 46, 47].

If someday there are experimental proofs that quarks are tachyons; I would proffer this
quote by George Bernard Shaw "Science never solves a problem without creating ten more".
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