Twin primes

Ouannas Moussa
2 Rue BG 04345 Algeria
Phone: 00213774946941
mouannas@hotmail.com

Abstract

: Basing on my study, "Distribution of primes"viXra:1407.0167 [pdf] submitted on 2014-07-21 I've shown that we can determine the distribution of prime numbers while remaining within the set of natural numbers; However, I present in this paper the numbers which are susceptible to be twins

I-Introduction:

Before speaking of twin primes; I would like to take back the distribution of primes that can be clear and meaningful only when we spread natural numbers over a period of 19 or 11 in order to get the numbers that constitutes the distribution of prime numbers which are in the form:
$P=2 \times 3 \times 5 n+2 k+3 / n$ an $k \in N$ and $k=\{2,4,5,7,8,10,13,14\}$
Thus , the numbers $2 k+3$ which are $7,11,13,17,19,23,29,31$
So the eight numbers are:

$30 n+7$ in position 4	\rightarrow	P_{4}	
$30 n+11$ in position 5	\rightarrow	P_{5}	
$30 n+11$ in position 6	\rightarrow	P_{6}	
$30 n+17$ in position 7	\rightarrow	P_{7}	
$30 n+19$ in position 8	\rightarrow	P_{8}	
$30 n+23$ in position 9	\rightarrow	P_{9}	
$30 n+29$ in position 10		\rightarrow	P_{10}
$30 n+31$ in position 11		\rightarrow	P_{11}

Eight (08) numbers are associated to n ; only these numbers are susceptibles to be primes or to be the product of this same kind of numbers.

These same results were obtained by Harry k.Kahn: arXiv: 0801.4049 v1 on studying the Riemann function; but have failed to understand the primes; or through the distribution that I illustrated; I am able to find the primality of a number or form a prime number as large as possible in few minutes

In addition; for centuries we spoke only about density of primes by studying the limit of the Euler function; but in my study I mentioned the rank of primes bringing a verifiable formula:
$R_{n}=8 n+P_{k-n p}$
${ }^{*} R_{n}$ is the rank
${ }^{*} P_{k}$ is the position of the prime number with $\{4,5,6,7,8,9,10,11\}$

* $n p$ is the number of the non-prime numbers belong to the distribution before this prime number.

II- Twin primes:

So; through the distribution of primes which starts since 7; and where 2;3;5 do not belong to it but take part in the formula; the numbers which are susceptible to be twin after the primality testing are the following:
(30 n 11 and $30 n+13$)
($30 \mathrm{n}+17$ and $30 \mathrm{n}+19$)
(30 n +29 and $30 n+31$)
Example:
$n=0$ the three couples are twin $(11,13) ;(17,19) ;(29,31)$
$\mathrm{n}=1$ Two Couples are twin $(41,43) ;(59,61)$ but $(47,49)$ are not twin because 49 even it belongs to the distribution but it is not prime.

The distribution of primes is depending of the table in FIG1; this same table is the table of primality testing; and also it would be the mean to clarify when twin primes emerge

FIG 1:

n	P_{k}														
1	8	2	7	2	11	3	10	4	6	5	5	6	9	7	4
2	7	3	11	4	9	6	4	6	10	8	6	10	8	11	5
2	11	4	9	5	8	7	5	8	4	9	10	12	7	13	6
3	10	6	4	7	5	9	8	10	9	12	11	16	6	17	7
4	6	6	10	8	4	10	9	11	11	14	7	18	5	19	8
5	5	8	6	9	10	12	11	14	7	17	8	22	4	23	9
6	9	10	8	12	7	16	6	18	5	22	4	27	11	29	10
7	4	11	5	13	6	17	7	19	8	23	9	29	10	31	11

Conclusion:

Before looking if the number of twin primes is finite or infinite; should review the distribution of primes that will lead us to make basic observations that allow us to make clear that alternative which I will reveal in my next article

References

1. Quran: Chapter 74 "AI Moddathir"verse "30; 31"
2. Legendre " Essai sur la théorie des nombres", Paris : Duprat, 1798
3. Hadamard, 1896, «sur la distribution des zéros de la fonction (s) et ses conséquences arithmétiques. Bull.Soc.Math.France, XXIV, 199-220
4. viXra:1407.0167: Distribution of prime numbers; submitted on 2014-07-21
5. Arxiv: 0801.4049v1: «About the logic of the prime number distribution»; submitted on 28 Jan 2008
6. Arxiv: 0801.0095 v 1 : « Modeling the creative process of the mind by prime numbers and a simple proof of the Riemann Hypothesis »
