Conjectured Polynomial Time Compositeness Tests for Numbers of the Form $k \cdot 2^n \pm 1$

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

August 11, 2014

Abstract: Conjectured polynomial time compositeness tests for numbers of the form $k \cdot 2^n - 1$ and $k \cdot 2^n + 1$ are introduced.

Keywords: Compositeness test , Polynomial time , Prime numbers . **AMS Classification:** 11A51 .

1 Introduction

Let p be an odd prime . Define the sequence $\{S_n\}_{n>0}$ by

$$\begin{split} S_0 &= 6 \;, \\ S_{k+1} &= S_k^2 - 2 \;, \, k \geq 0 \end{split}$$

The compositeness test for $(2^p + 1)/3$ states :

Theorem 1.1. If N_p is prime then $S_{p-1} \equiv -34 \pmod{N_p}$

See Theorem 2 in [1].

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where *m* and *x* are positive integers .

Conjecture 2.1. Let $N = k \cdot 2^n - 1$ such that n > 2 and k > 0.

Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, thus If N is prime then $S_{n-1} \equiv 6 \pmod{N}$

Conjecture 2.2. Let $N = k \cdot 2^n + 1$ such that n > 2 and k > 0.

Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, thus If N is prime then $S_{n-1} \equiv 2 \pmod{N}$

References

[1] Pedro Berrizbeitia , Florian Luca , Ray Melham , "On a Compositeness Test for (2p+1)/3", *Journal of Integer Sequences*, Vol. 13 (2010), Article 10.1.7 .