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Abstract

We show that a class C∞(R) function can be written as an n−summation
of terms involving its derivative. For many functions, under certain
conditions, this summation can become a particular series expansion.

Theorem

Let be f(x) a class C∞(R) function with D domain. Given a ∈ D the function
satisfies the following identity for all n ∈ N+

f(x) = f(a)−
n∑

k=1

(−1)k

k!

(
xk
dkf(x)

dxk
− ak d

kf(x)

dxk

∣∣∣
x=a

)
+ Rn(x) , (1)

with

Rn(x) =
(−1)n

n!

∫ x

a

xn
dn+1f(x)

dxn+1
dx .

In particular, if
lim

n→+∞
Rn(x) = 0

and a = 0 then

f(x) = f(0)−
∞∑
k=1

(−x)k

k!

dkf(x)

dxk
. (2)
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Proof

We define the P̂ operator that, applied to a continuous function, it gives its
primitive with zero constant. We define also the operator D̂ as

D̂ =
d

dx
.

Now consider the identity

J :=

∫ x

a

df(x)

dx
dx = f(x)− f(a) , (3)

we can integrate it for parties, considering the product

1 · df(x)

dx
,

obtaining

J =
[
P̂ (1)D̂f(x)

]x
a
−
∫ x

a

P̂ (1)D̂2f(x) dx .

Iterating for many times we can write

J = −
n∑

k=1

(−1)k
[
P̂ k(1)D̂kf(x)

]x
a

+ (−1)n
∫ x

a

P̂ n(1)D̂n+1f(x) dx .

Being

P̂ k(1) =
xk

k!
,

the above expression, using (3), becomes

f(x) = f(a)−
n∑

k=1

(−1)k
[
xk

k!
D̂kf(x)

]x
a

+ (−1)n
∫ x

a

xn

n!
D̂n+1f(x) dx

and this is an identity ∀n ∈ N+, equation (1). Taking the limit for n→ +∞
we have

f(x) = f(a)−
∞∑
k=1

(−1)k
[
xk

k!
D̂kf(x)

]x
a

+ lim
n→+∞

Rn(x) ,

where

Rn(x) :=
(−1)n

n!

∫ x

a

xnD̂n+1f(x) dx .
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In many cases we have
lim

n→+∞
Rn(x) = 0 (4)

and, under this condition, we can write the series expansion

f(x) = f(a)−
∞∑
k=1

(−1)k

k!

(
xk
dkf(x)

dxk
− ak d

kf(x)

dxk

∣∣∣
x=a

)
.

Putting a = 0, naturally if it is possible seen the domain D, we obtain the
series

f(x) = f(0)−
∞∑
k=1

(−x)k

k!

dkf(x)

dxk
,

that is equation (2). In general for the condition (4) we can write

lim
n→+∞

|Rn(x)| ≤ lim
n→+∞

1

n!

∣∣∣∣∫ x

a

∣∣∣xnD̂n+1f(x)
∣∣∣ dx∣∣∣∣ . (5)

Suppose that x ∈ [−b, b], with b ∈ R+, so if

lim
n→+∞

1√
n

(
b · e
n

)n ∣∣∣∣dn+1f(x)

dxn+1

∣∣∣∣ = 0

uniformly, we have
lim

n→+∞
Rn(x) = 0 .

In fact from (5) we can write, using Stirling formula [1] and the uniform limit
condition above,

lim
n→+∞

|Rn(x)| ≤
∣∣∣∣ lim
n→+∞

∫ x

a

en

nn
√

2πn

∣∣∣xnD̂n+1f(x)
∣∣∣ dx∣∣∣∣

≤
∣∣∣∣∫ x

a

lim
n→+∞

(
bnen

nn
√

2πn

∣∣∣D̂n+1f(x)
∣∣∣) dx

∣∣∣∣
= 0 .

This could be a usefull method to verify (4) for many functions, in particular
we see that all functions that have limited derivative of all orders, like sin(x),
satisfy this condition, so for them it is possible to write (2).

Example

For example we can derive the well known series expansion

ex =
∞∑
k=0

xk

k!
= 1 +

∞∑
k=1

xk

k!
. (6)
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Let be
f(x) = ex ,

and a = 0, for all x ∈ [−b, b], with b ∈ R+ we can verify that

lim
n→+∞

Rn(x) = lim
n→+∞

(−1)n

n!

∫ x

0

xnex dx = 0 ,

in fact

|Rn(x)| ≤ |x|
n!

max
x∈[−b,b]

|xnex| ≤ bn+1eb

n!

and, taking the limit for n→∞,

0 ≤ lim
n→+∞

|Rn(x)| ≤ lim
n→+∞

bn+1eb

n!
= 0 ,

independently by x. So we apply the equation (2), hence

ex = 1− ex
∞∑
k=1

(−x)k

k!
.

from wich
∞∑
k=1

(−x)k

k!
=

1− ex

ex
= e−x − 1 ,

that is (6) with the change x→ −x.
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