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Abstract  

In the deep infrared (IR) and ultraviolet (UV) sectors of particle physics, propagators for charged fermions no longer 

follow the prescription of perturbative quantum field theory (QFT). They acquire a fractal structure from radiative 

corrections contributed by gauge bosons. Here we show how fractal propagators in QFT may be analyzed using 

fractional field theory on space-times having minimal deviations from four-dimensionality ( 4D   ,  << 1).  

An intriguing consequence of this approach is the emergence of classical gravity as long-range and ultra-weak 

excitation of the Higgs condensate.  
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1. Introduction and Motivation 

The free-fermion propagator in QFT determines the probability amplitude for a fermion to travel 

between different space-time locations. It is given by [1-2] 
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This formula successfully applies to both the IR regime of quantum electrodynamics (QED) and 

the UV limit of quantum chromodynamics (QCD), where the approximation of nearly free-

fermions holds well. In contrast, at distance scales where the radiative contribution of soft 

photons to electron self-interaction becomes relevant and is accounted for, the propagator 

changes to [3-4] 
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Here, the fractional “anomalous” exponent 





  is related to the low-energy value of the fine 

structure constant  ,   is an arbitrary high-energy scale and (...)  stands for the Gamma 

function. Surveying the history of publications on this topic reveals the limitations of 

conventional QFT in dealing with non-perturbative aspects of particle physics [3-4]. 

Let 
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represent the inverse propagator entering (3). Relation (4) explicitly factors out the contribution 

of the standard inverse propagator ( 0 )p m i

    and the interpolating function 

( ) ( )if
m m

  expressed in terms of two widely separated mass scales m <<  and fractional 

exponent  .   
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This analysis is, however, not limited to the QED of charged fermions. Similar reasoning 

indicates that both scalar and gauge bosons of the Standard Model (SM) cannot be realistically 

approximated as excitations of free fields. In particular [1-2], 

a) Higgs and Yang-Mills theories are nonlinear dynamic models which exhibit self-interaction, 

with the possible exception of the deep UV sector where they become ultra-weakly coupled or 

“trivial”. 

b) In general, the contribution of fermionic loops (and hypothetical new degrees of freedom 

arising beyond SM) cannot be fully balanced without invoking precise cancellation of competing 

diagrams (“fine tuning”). 

c) Although the SM is perturbatively renormalizable and free from anomalies, anomalous 

propagators and their corresponding behavior can still occur whenever conditions fall outside 

perturbation theory.  

It is reasonable, on these grounds, to posit that inverse propagators acting at the boundaries of 

QFT are well approximated by their conventional form times a generic interpolating function, as 

in [5-6] 
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Here, 
0p  represents an arbitrary reference IR or UV momentum scale. In particular, the IR 

regime of massive scalar field theory is characterized by [5-6] 

 
0 IRp p < p <  (6) 

subject to the constraint 
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(7) can be shown to be equivalent to the following set of conditions  
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The object of this article is to further understand the structure and dynamic implications of the 

inverse propagator (5) using fractional field theory (FFT). We choose to work in space-times 

with arbitrarily small deviations from four-dimensionality ( 4D   ,  << 1) since they 

minimally violate from the conventional framework of QFT and the SM [7-8]. These spaces are 

referred below to as “minimal fractal manifolds” (MFM). To avoid overloading the text with 

excessive information, we direct the reader to [8-10, 13-14] for an introductory review on the 

motivation and results of FFT.  An intriguing outcome of our analysis is the emergence of 

classical gravity as long-range and ultra-weak excitation of the Higgs condensate.  
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The paper is organized as follows: section 2 introduces the concept of fractal propagator starting 

from the fractional Klein-Gordon equation; the connection between fractal propagators and FFT 

is presented in section 3. Building on these premises, section 4 derives the link between fractal 

propagators and classical gravity, where the latter emerges as long-range and ultra-weak 

excitation of the Higgs condensate.  

  2. The fractal propagator concept 

Consider the stationary fractional Klein-Gordon equation in one space dimension [11] 

 2( ) ( )xD m x      (10) 

where 
xD   is the differential operator of non-integer index  , ( )x  is a time-independent point 

source of strength g   

 ( ) ( )x g x    (11) 

The choice 2   recovers the standard Klein-Gordon equation. The Green function can be 

evaluated taking the Laplace transform of (10), which leads to 

 2 2 1( , , ) ( )G m p p m     (12) 

If 2    with   << 1, we obtain 

 2 2 2 1( , , 2 ) ( )G m p p m       (13) 

The solution of (10) may be explicitly expanded in Mittag-Leffler (ML) functions [11] 
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(14) represents a generalization of the Yukawa short-range solution in exactly four-dimensional 

spacetime ( 0  ) 

 
exp( )

( )
4

Y

g mx
x

x





   (15) 

where the presence of ML functions signals the onset of long-range spatial correlations in the 

behavior of the scalar field ( )x  [11-12]. 

3. Fractal propagators in FFT 

Let us now take a detour and return to the conventional formulation of particle propagators in 

QFT [1-2]. The propagator for free massive spinless fields expressed in dimensionless form 

reads  
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We introduce the inverse propagator in momentum space as 
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Using the line of arguments presented in Appendix and section 2, the inverse propagator acting 

on the minimal fractal manifold (MFM) is given by 
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(19) may be alternatively presented as 
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We proceed with the assumption that the far IR scale is set by the cosmological constant, that is, 
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Following [8, 13-14], dimensional regularization applied in the context of FFT requires the far 

IR scale (
1

4
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We are now set to explore the IR region of field theory ranging from the electroweak scale 

0 EWp M  << UV  to the far IR scale of cosmic distances EWM > p  >>
1

4
cc . It makes sense to 
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revisit the arguments previously made, apply the formalism to the Higgs sector of the Standard 

Model (
Hm m ) and cast (20) as 
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Relation (22a) is well approximated by 
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A glance at (21a-b), (22a-b), and (5) reveals that the interpolating function  
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It is instructive to note here that, consistent with the principles of effective field theory, in the 

deep IR limit (27), the effective Higgs mass ( ( )HM  ) of (22) diverges and naturally decouples 

from physics occurring at very large distances. 

Combined use of (25) and (27) yields 
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We shall use (22) and (26-28) in the next section. 

4. Classical gravity as long-range excitation of the Higgs condensate   

An interesting proposal of [5-6] is that classical gravity may be modeled as long-range and ultra-

weak excitation of the Higgs condensate. The approach developed here points in the same 

direction: minimal fractal manifolds (MFM) favor the onset of long-range coupling and the 

emergence of interpolating functions of the type (4b) and (25) in the expression of propagators. 

Following [5-6], the connection between Newton’s constant ( )NG and Fermi’s constant ( )FG is 

given by 
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Substituting (21a-b) and (28) in (29) leads to 

 NG  ~ 
3310 FG

 (30) 

in good agreement with currently known observational values of the two constants.   
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