Conjectured Primality Criteria for Specific Classes of $k \cdot b^{n}-1$

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 18, 2014

Abstract

Conjectured polynomial time primality tests for specific classes of numbers of the form $k \cdot b^{n}-1$ are introduced .

Keywords: Primality test , Polynomial time, Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In 1969 Hans Riesel provided polynomial time primality test for numbers of the form $3 \cdot 2^{n}-1$ with $n>2$, see Theorem 5 in [1]. In this note I present polynomial time primality tests for specific classes of numbers of the form $k \cdot b^{n}-1$ that may be considered as generalization of the Riesel primality test for $3 \cdot 2^{n}-1$.

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=k \cdot b^{n}-1$ such that $n>2$ and

$$
\begin{gathered}
\left\{\begin{array}{l}
k \equiv 3(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 0,3(\bmod 4) \\
k \equiv 3(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 0,2(\bmod 4) \\
k \equiv 3(\bmod 30) \text { with } b \equiv 6(\bmod 10) \text { and } n \equiv 0,1,2,3(\bmod 4) \\
k \equiv 3(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 0,1(\bmod 4)
\end{array}\right. \\
\quad \text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b k / 2}\left(P_{b / 2}(5778)\right) \text {, then } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

Conjecture 2.2. Let $N=k \cdot b^{n}-1$ such that $n>2$ and

$$
\begin{gathered}
\left\{\begin{array}{l}
k \equiv 9(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 0,1(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 0,2(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 6(\bmod 10) \text { and } n \equiv 0,1,2,3(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 0,3(\bmod 4)
\end{array}\right. \\
\quad \text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b k / 2}\left(P_{b / 2}(5778)\right) \text {, then } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

References

[1] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $k \cdot 2^{n}-1$ ", Mathematics of Computation (AmericanMathematical Society), 23 (108): 869-875 .

