The proof of Goldbach's Conjecture

Author: Ramón Ruiz Barcelona, Spain Email: ramonruiz1742@gmail.com August 2014

Abstract.

Goldbach's Conjecture statement: "Every even integer greater than 2 can be expressed as the sum of two primes".

Initially, to prove this conjecture, we can form two arithmetic sequences (**A** and **B**) different for each even number, with all the natural numbers that can be primes, that can added, in pairs, result in the corresponding even number.

By analyzing the pairing process, in general, between all non-prime numbers of sequence \mathbf{A} , with terms of sequence \mathbf{B} , or vice versa, to obtain the even number, we note that some pairs of primes are always formed. This allow us to develop a non-probabilistic formula, to calculate the approximate number of pairs of primes that meet the conjecture for an even number \mathbf{x} .

The result of this formula is always equal or greater than 1, and it tends to infinite when x tends to infinite, which allow us to confirm that Goldbach's Conjecture is true.

The prime numbers theorem by Carl Friedrich Gauss, the prime numbers theorem in arithmetic progressions and some axioms have been used to complete this investigation.

1. Prime numbers and composite numbers.

A prime number (or prime) is a natural number greater than 1 that has only two divisors, 1 and the number itself.

Examples of primes are: 2, 3, 5, 7, 11, 13, 17. The Greek mathematician Euclid proved that there are infinitely many primes, but they become more scarce as we move on the number line.

Except 2 and 3, all primes are of form (6n + 1) or (6n - 1) being n a natural number.

We can differentiate primes 2, 3 and 5 from the rest. The 2 is the first prime and the only one that is even, the 3 is the only one of form (6n-3) and 5 is the only one finished in 5. All other primes are odd and its final digit will be 1, 3, 7 or 9.

In contrast to primes, a *composite number* (or *composite*) is a natural number that has more than two divisors.

Examples of composites are: 4 (divisors 1, 2, 4), 6 (1, 2, 3, 6), 15 (1, 3, 5, 15), 24 (1, 2, 3, 4, 6, 8, 12, 24).

Except 1, every natural number is prime or composite. By convention, number 1 is considered neither prime nor composite because it has only one divisor. Since it cannot meet the conjecture, and for this demonstration, we will include the number 1 in the composite set. This question has no relevance in the development or in the final formula of this proof.

We can classify the set of primes (except 2, 3 and 5) in 8 groups depending of the situation of each of them with respect to multiples of 30, $(30 = 2 \cdot 3 \cdot 5)$. Being: $n = 0, 1, 2, 3, 4, ..., \infty$.

```
30n + 1 30n + 7 30n + 11 30n + 13 30n + 17 30n + 19 30n + 23 30n + 29
```

These expressions represent all arithmetic progressions of module 30, (30n + b), such that gcd(30, b) = 1 being: 30 > b > 0.

These 8 groups contain all primes (except 2, 3 and 5). They also include the number 1 and all composites that are multiples of primes greater than 5. As 30 and b are coprime, they cannot contain multiples of 2 or 3 or 5.

Logically, when n increases, decreases the primes proportion and increases the composites proportion that there are in each group.

Dirichlet's theorem statement [1]: "An arithmetic progression (an + b) such that gcd(a, b) = 1 contains infinitely many prime numbers". Applying this theorem for the 8 groups of primes, we can say that each of them contains infinitely many primes.

You can also apply the prime numbers theorem in arithmetic progressions. It states [2]: "For every module a, the prime numbers tend to be distributed evenly among the different progressions (an + b) such that gcd(a, b) = 1".

To verify the precision of this theorem, I used a programmable logic controller (PLC), like those that control automatic machines, having obtained the following data:

There are 50.847.531 primes lesser than 109, (2, 3 and 5 not included), distributed as follows:

Group	(30n + 1)	6.355.189 primes	12,49852033 %	50.847.531 / 6.355.189 = 8,0009471
Group	(30n + 7)	6.356.475 primes	12,50104946 %	50.847.531 / 6.356.475 = 7,999328401
Group	(30n + 11)	6.356.197 primes	12,50050273 %	50.847.531 / 6.356.197 = 7,999678267
Group	(30n + 13)	6.356.062 primes	12,50023723 %	50.847.531 / 6.356.062 = 7,999848176
Group	(30n + 17)	6.355.839 primes	12,49979866 %	50.847.531 / 6.355.839 = 8,000128858
Group	(30n + 19)	6.354.987 primes	12,49812307 %	50.847.531 / 6.354.987 = 8,001201419
Group	(30n + 23)	6.356.436 primes	12,50097276 %	50.847.531 / 6.356.436 = 7,999377481
Group	(30n + 29)	6.356.346 primes	12,50079576 %	50.847.531 / 6.356.346 = 7,999490745

We can see that the maximum deviation for 10⁹, (between 6.354.987 and 6.355.941 average), is lesser than 0,01502 %. I gather that, in compliance with this theorem, the maximum deviation tends to 0 % when larger numbers are analyzed.

2. Special cases of the conjecture.

As we have seen, numbers 2, 3 and 5 are different from all other primes and they are not included in the 8 groups described. We will study, as special cases, the even numbers 4, 6, 8, 10, 12 and 16 whose solutions, to meet the conjecture, contain the primes 2, 3 or 5. We will write all possible pairs of terms for each of these even numbers, highlighting the primes in **bold**.

We note that the even numbers 4, 6, 8, 10, 12 and 16 can be expressed as the sum of two primes. For all the other even numbers, it must be proved or verified that they meet the conjecture with one or more prime pairs containing neither 3 nor 5.

3. Classification of even numbers.

Just as we did with primes, we can divide the set of even numbers (2, 4, 6, 8, 10,...) in 15 groups depending of the situation of each of them with respect to multiples of 30. Being: $n = 0, 1, 2, 3, 4,..., \infty$.

30n + 2	30n + 12	30n + 22
30n + 4	30n + 14	30n + 24
30n + 6	30n + 16	30n + 26
30n + 8	30n + 18	30n + 28
30n + 10	30n + 20	30n + 30

4. Combining groups of even numbers with groups of prime numbers.

Now, we will combine groups of even numbers with groups of primes to express the 36 possible combinations of Goldbach's conjecture. We can see that each group of even numbers has its own combinations that are different from the rest.

$$30n_1 + 2 = (30n_2 + 1) + (30n_3 + 1) = (30n_4 + 13) + (30n_5 + 19)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 + 1$

We observe that for even numbers (30n + 2) there are 2 different combinations using 3 groups of primes.

For number 2, it can only apply the combination 2 = 1 + 1. This even number is excluded in Goldbach's conjecture statement.

$$30n_1 + 4 = (30n_2 + 11) + (30n_3 + 23) = (30n_4 + 17) + (30n_5 + 17)$$

Being: $n_1 = n_2 + n_3 + 1 = n_4 + n_5 + 1$

There are 2 different combinations using 3 groups of primes.

These combinations cannot be applied for number 4 so that, as I have indicated, it is considered a special case, (4 = 2 + 2).

$$30n_1 + 6 = (30n_2 + 7) + (30n_3 + 29) = (30n_4 + 13) + (30n_5 + 23) = (30n_6 + 17) + (30n_7 + 19)$$

Being: $n_1 = n_2 + n_3 + 1 = n_4 + n_5 + 1 = n_6 + n_7 + 1$

There are 3 different combinations using 6 groups of primes.

These combinations cannot be applied for number 6, this is why it is considered a special case, (6 = 3 + 3).

$$30n_1 + 8 = (30n_2 + 1) + (30n_3 + 7) = (30n_4 + 19) + (30n_5 + 19)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 + 1$

There are 2 different combinations using 3 groups of primes.

For number 8, only the combination 8 = 1 + 7 which does not meet the conjecture, this is why it is considered a special case, (8 = 3 + 5).

$$30n_1 + 10 = (30n_2 + 11) + (30n_3 + 29) = (30n_4 + 17) + (30n_5 + 23)$$

Being: $n_1 = n_2 + n_3 + 1 = n_4 + n_5 + 1$

There are 2 different combinations using 4 groups of primes.

These combinations cannot be applied for number 10, this is why it is considered a special case, (10 = 3 + 7 = 5 + 5).

$$30n_1 + 12 = (30n_2 + 1) + (30n_3 + 11) = (30n_4 + 13) + (30n_5 + 29) = (30n_6 + 19) + (30n_7 + 23)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 + 1 = n_6 + n_7 + 1$

There are 3 different combinations using 6 groups of primes.

For number 12, only the combination 12 = 1 + 11 which does not meet the conjecture, this is why it is considered a special case, (12 = 5 + 7).

 $30n_1 + 14 = (30n_2 + 1) + (30n_3 + 13) = (30n_4 + 7) + (30n_5 + 7)$

Being: $n_1 = n_2 + n_3 = n_4 + n_5$

There are 2 different combinations using 3 groups of primes.

$$30n_1 + 16 = (30n_2 + 17) + (30n_3 + 29) = (30n_4 + 23) + (30n_5 + 23)$$

Being: $n_1 = n_2 + n_3 + 1 = n_4 + n_5 + 1$

There are 2 different combinations using 3 groups of primes.

These combinations cannot be applied for number 16, this is why it is considered a special case, (16 = 3 + 13 = 5 + 11).

$$30n_1 + 18 = (30n_2 + 1) + (30n_3 + 17) = (30n_4 + 7) + (30n_5 + 11) = (30n_6 + 19) + (30n_7 + 29)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 = n_6 + n_7 + 1$

There are 3 different combinations using 6 groups of primes.

For number 18, only the combinations 18 = 1 + 17 = 7 + 11. (Also: 18 = 5 + 13).

$$30n_1 + 20 = (30n_2 + 1) + (30n_3 + 19) = (30n_4 + 7) + (30n_5 + 13)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5$

There are 2 different combinations using 4 groups of primes.

$$30n_1 + 22 = (30n_2 + 11) + (30n_3 + 11) = (30n_4 + 23) + (30n_5 + 29)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 + 1$

There are 2 different combinations using 3 groups of primes.

For number 22, only the combination 22 = 11 + 11. (Also: 22 = 3 + 19 = 5 + 17).

$$30n_1 + 24 = (30n_2 + 1) + (30n_3 + 23) = (30n_4 + 7) + (30n_5 + 17) = (30n_6 + 11) + (30n_7 + 13)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 = n_6 + n_7$

There are 3 different combinations using 6 groups of primes.

$$30n_1 + 26 = (30n_2 + 7) + (30n_3 + 19) = (30n_4 + 13) + (30n_5 + 13)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5$

There are 2 different combinations using 3 groups of primes.

$$30n_1 + 28 = (30n_2 + 11) + (30n_3 + 17) = (30n_4 + 29) + (30n_5 + 29)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 + 1$

There are 2 different combinations using 3 groups of primes.

For number 28, only the combination 28 = 11 + 17. (Also: 28 = 5 + 23).

$$30n_1 + 30 = (30n_2 + 1) + (30n_3 + 29) = (30n_4 + 7) + (30n_5 + 23) = (30n_6 + 11) + (30n_7 + 19) = (30n_8 + 13) + (30n_9 + 17)$$

Being: $n_1 = n_2 + n_3 = n_4 + n_5 = n_6 + n_7 = n_8 + n_9$

There are 4 different combinations using the 8 prime numbers groups available.

We observe that, for even numbers that are not multiples of 6 or 10, there are 2 different combinations using 3 groups of primes.

The multiples of 6, (30n + 6), (30n + 12), (30n + 18) and (30n + 24) have 3 different combinations using 6 groups of primes.

The multiples of 10, (30n + 10) and (30n + 20) have 2 different combinations using 4 groups of primes.

The multiples of 30, (30n + 30), have 4 different combinations using the 8 prime numbers groups available.

It is reasonable to believe, that the number of prime pairs (also called Goldbach's partitions) that meet the conjecture depend on the number of groups of primes used by the even number (3, 4, 6 or 8). Examples with actual values:

Surprisingly, we can see that, due to the number of groups of primes used, consecutive even numbers have a noticeable difference in the partitions number. Example: 3.600 has 125 partitions and 3.602 has only 48.

5. Example.

The concepts described can be applied to number 784 serving as example for any of the 36 exposed combinations and for any even number x, even being a large number. We use the list of primes lesser than 1.000.

$$784 = 30 \cdot 26 + 4 = (30n_2 + 11) + (30n_3 + 23) = (30n_4 + 17) + (30n_5 + 17)$$
 Being: $26 = n_2 + n_3 + 1 = n_4 + n_5 + 1$

For the first combination, $784 = (30n_2 + 11) + (30n_3 + 23)$, we will write the sequence **A** of all numbers $(30n_2 + 11)$ from 0 to 784. Also, we will write the sequence **B** of all numbers $(30n_3 + 23)$ from 784 to 0. I highlight the primes in **bold**.

The second combination, $784 = (30n_4 + 17) + (30n_5 + 17)$, uses the same group of primes in the two sequences. We will write the sequence **A** of all numbers $(30n_4 + 17)$ from 0 to 392, $(\frac{1}{2})$ of 784). Also, we will write the sequence **B** of all numbers $(30n_5 + 17)$ from 784 to 392.

Sorted in this way, each term in a sequence **A** can be added with its partner in the corresponding sequence **B** to obtain 784. In the above 4 sequences, the 18 prime pairs that meet the conjecture for number 784 are underlined.

The study of sequences $\bf A$ and $\bf B$, individually and collectively, is the basis of this demonstration.

I will analyze the complete sequences (**A** from 0 to \boldsymbol{x} and **B** from \boldsymbol{x} to 0). The halves sequences will be considered for the final formula.

To calculate the number of terms in each sequence **A** or **B** we must remember that these are arithmetic progressions of module 30.

Number of terms in each sequence **A** or **B** for an even number x. Obviously, it is equal to the number of pairs that are formed. (26 terms in each sequence and 26 pairs of terms that are formed to x = 784).

To analyze, in general, the above formula, would be:

```
Number of terms = number of pairs = formula result if x is multiple of 30 Number of terms = number of pairs = integer part of result if n_1 = n_2 + n_3 + 1 Number of terms = number of pairs = (integer part of result) + 1 if n_1 = n_2 + n_3
```

6. Applying the conjecture to small even numbers.

As we have seen, the composites present in the 8 groups of primes are multiples of primes greater than 5 (primes 7, 11, 13, 17, 19,...). The first composites that appear on them are:

$$49 = 7^2$$
 $77 = 7 \cdot 11$ $91 = 7 \cdot 13$ $119 = 7 \cdot 17$ $121 = 11^2$ $133 = 7 \cdot 19$ $143 = 11 \cdot 13$ $161 = 7 \cdot 23$ $169 = 13^2$

And so on, forming products of two or more factors with primes greater than 5.

From the above, we conclude that on even numbers lesser than 49, all terms of corresponding sequences **A-B** are primes (except 1) and all pairs meet the conjecture (except those containing 1).

We will write all pairs between terms of sequences **A** and **B** of even numbers lesser than 49 (except special cases).

```
14 = 1 + 13 = 7 + 7
                                                          34 = 11 + 23 = 17 + 17
18 = 1 + 17 = 7 + 11
                                                          36 = 7 + 29 = 13 + 23 = 17 + 19
20 = 1 + 19 = 7 + 13
                                                          38 = 1 + 37 = 31 + 7 = 19 + 19
22 = 11 + 11
                                                          40 = 11 + 29 = 17 + 23
24 = 1 + 23 = 7 + 17 = 11 + 13
                                                          42 = 1 + 41 = 31 + 11 = 13 + 29 = 19 + 23
26 = 7 + 19 = 13 + 13
                                                          44 = 1 + 43 = 31 + 13 = 7 + 37
28 = 11 + 17
                                                          46 = 17 + 29 = 23 + 23
30 = 1 + 29 = 7 + 23 = 11 + 19 = 13 + 17
                                                          48 = 1 + 47 = 31 + 17 = 7 + 41 = 37 + 11 = 19 + 29
32 = 1 + 31 = 13 + 19
```

Furthermore, we note that in the complete sequences **A-B** for number 784, used as an example, the primes predominate (17 primes with 9 composites in sequence **B**).

This occurs on small even numbers (up to $x \approx 4.500$).

Therefore, for even numbers lesser than 4.500, is ensured the compliance with Goldbach's conjecture with the sequences $\bf A$ and $\bf B$ because, even in the event that all composites are paired with primes, there will always be, left over in the two sequences, some primes that will form pairs between them. Applying this reasoning to number 784 we would have:

17 - 8 = 18 - 9 = 9 prime pairs at least (in the previous chapter we can see that are 12 actual pairs).

7. Applying logical reasoning to the conjecture.

The sequences **A** and **B** are composed of terms that may be primes or composites that form pairs between them. To differentiate, I define as **free composite** the one which is not paired with another composite and having, as partner, a prime of the other sequence. Thus, the pairs between terms of sequences **A-B** will be formed by:

```
(Composite of sequence A) + (Composite of sequence B) (CC pairs)
(Free composite of sequence A or B) + (Prime of sequence B or A) (CP-PC pairs)
(Prime of sequence A) + (Prime of sequence B) (PP pairs)
```

We will substitute the primes by a **P** and the composites by a C in the sequences **A-B** of number 784, that we use as example.

The number of pairs of primes (PPP) that will be formed will depend on the free composites number of one sequence that are paired with primes of the another sequence. In general, it can define the following axiom:

 $P_{PP} = (Number of primes of A) - (number of free composites of B) = (Number of primes of B) - (number of free composites of A)$

For number 784: $P_{PP} = 17 - 5 = 18 - 6 = 12$ prime pairs in the sequences **A-B**.

I consider that this axiom is perfectly valid although being very simple and "obvious". It will be used later in the proof of the conjecture.

Given this axiom, enough pairs of composites must be formed between the two sequences **A-B** because the number of free composites of sequence **A** cannot be greater than the number of primes of sequence **B**.

Conversely, the number of free composites of sequence **B** cannot be greater than the number of primes of sequence **A**.

This is particularly important for sequences **A-B** of very large even numbers in which the primes proportion is much lesser than the composites proportion.

Later, this question is analyzed in more detail when algebra is applied to the sequences A-B.

Let us consider, briefly, how are formed the different kinds of pairs between terms of sequences A-B.

A composite of sequence $\bf A$ will be paired with a composite of sequence $\bf B$ if both, as pair, meet some conditions that will depend on the characteristics of the even number $\bf x$ (if is a power of 2 or a multiple of a power of 3 or 5 or a multiple of one or more primes greater than 5, etc.). The composites of each sequence that fail to have a composite of the other, to meet the required conditions, will be paired with a prime (with this prime the conditions will be met). Finally, the remaining primes of the two sequences will form the pairs that will meet the conjecture.

This question will be analyzed in more detail in the next chapter.

With what we have described, we can devise a logical reasoning to support the conclusion that Goldbach's conjecture is true. Later, a general formula will be developed to calculate the approximate number of partitions.

As I indicated, compliance of the conjecture is secured for small even numbers (lesser than 4.500), since in corresponding sequences **A** and **B**, the primes predominate. Therefore, in these sequences we will find **PP** pairs and, if there are composites, CC and CP-PC pairs. If we verify increasingly larger numbers, we note that already predominate the composites and decreases the primes proportion.

Let us suppose that there is a sufficiently large even number that does not meet the conjecture. In this supposition, with all sequences **A-B** of this number (we remember, 2, 3 or 4 combinations of groups of primes depending on the even number) they could only be formed CC and CP-PC pairs, understanding that all free composites of each combination **A-B** would be paired with all primes of the same combination with extraordinary mathematical precision.

What happens, then, for even numbers greater than the one that, supposedly, does not meet the conjecture?

It can be assumed that the conjecture will not be achieved from the first even number that did not achieve it, but it is not possible because there will always be primes greater than it and that added to other primes will give us even numbers greater that will meet the conjecture.

Another question is that, as x increases, increases the composites proportion and decreases the primes proportion, so we could assume that, for very large numbers, some composites will not have a partner because there are not enough primes, which, obviously, is not possible because each term of sequence A has its corresponding partner in sequence B and vice versa.

Not being possible both cases above, I conclude, although not serve as demonstration, that we will not find an even number that do not meet the conjecture. Therefore, I gather that Goldbach's conjecture is true.

Later, I will reinforce this deduction through the formula to calculate the approximate number of partitions for an even number x.

8. Studying how the pairs between terms of sequences A-B are formed.

We will analyze how the composite-composite pairs with the sequences **A** and **B** are formed. If the proportion of CC pairs is higher, there are less composites (free) that need a prime as a partner and, therefore, there will be more primes to form pairs.

The secret of Goldbach's conjecture is the number of composite-composite pairs formed with the sequences **A** and **B**.

For this analysis, I consider m as the natural number that is not multiple of 2 or 3 or 5 and j as natural number (including 0).

Let us suppose that we applied Goldbach's conjecture to an even number that is a multiple of 7, (x = 7q), being q an even number).

In this supposition, any multiple of 7 $(7m_1)$ of sequence **A** will be paired with a multiple of 7 $(7m_2)$ of sequence **B** so that the sum of the two numbers will be a multiple of 7 (7q) as we have assumed for x.

Expanding this axiom, it can be confirmed that all multiples of 7 $(7m_1)$ (including prime 7, if it would be present) of sequence **A** will be paired with all multiples of 7 $(7m_2)$ (including prime 7, if it would be present) of sequence **B**.

```
x = 7q = 7m_1 + 7m_2 = 7(m_1 + m_2) being: q = m_1 + m_2
```

We will apply this axiom to number $784 = 7 \cdot 112$. It serves as an example for any even number that is multiple of 7, even being a large number. We will write the corresponding sequences **A-B**. In them, the multiples of 7 are underlined.

```
A 11 - 41 - 71 -101-131-161-191-221-251-281-311-341-371-401-431-461-491-521-551-581-611-641-671-701-731-761 773-743-713-683-653-623-593-563-533-503-473-443-413-383-353-323-293-263-233-203-173-143-113 - 83 - 53 - 23
```

```
Verifying: 784 = 7 \cdot 112 = 7m_1 + 7m_2 = 161 + 623 = 371 + 413 = 581 + 203 being: 112 = 23 + 89 = 53 + 59 = 83 + 29
```

We observe that the pairs of multiples of 7 can be "cross out" of the sequences **A-B** without affecting the prime pairs. The same would happen if the even number would be multiple of any other prime greater than 5 and lesser than \sqrt{x} . Mathematically, they are enough primes lesser than \sqrt{x} to define all composites of sequences **A-B**.

If the even number would be multiple of several primes greater than 5, more pairs of composites would be formed being lesser the number of free composites which would give more possibilities to the primes to form pairs between them. For example, the number $2.002 = 2 \cdot 7 \cdot 11 \cdot 13$ has 44 partitions while the number $2.048 = 2^{11}$, that is greater, only 25. In the hypothetical event that an even number x were multiple of all primes lesser than \sqrt{x} , (of course, it is not possible), there would be no free composites and, therefore, all primes of sequences **A-B** would be paired between them (except lesser than \sqrt{x}).

The worst case is when the even number x is not multiple of primes greater than 5. Example: $512 = 2^9 \sqrt{512} = 22,62$ For these even numbers, and following the order of primes $(7, 11, 13, 17, 19, ..., previous to <math>\sqrt{x})$, we can write:

$\mathbf{x} = 7r + a$	being:	r = natural number	a = natural number < 7	$512 = 7 \cdot 73 + 1$	a = 1
$\mathbf{x} = 11s + b$	being:	s = natural number	b = natural number < 11	$512 = 11 \cdot 46 + 6$	b = 6
$\mathbf{x} = 13t + c$	being:	t = natural number	c = natural number < 13	$512 = 13 \cdot 39 + 5$	c = 5
$\boldsymbol{x} = 17u + d$	being:	u = natural number	d = natural number < 17	$512 = 17 \cdot 30 + 2$	d = 2
$\mathbf{x} = 19\mathbf{v} + \mathbf{e}$	being:	v = natural number	e = natural number < 19	$512 = 19 \cdot 26 + 18$	e = 18

And so on to the prime previous to \sqrt{x} .

In this case, any multiple of 7 $(7m_{11})$ of sequence **A** will be paired with a term $(7j_{21} + a)$ of sequence **B** so that the sum of the two numbers has the form (7r + a) as assumed for x.

Conversely, any term $(7j_{11} + a)$ of sequence **A** will be paired with a multiple of 7 $(7m_{21})$ of sequence **B** so that, similarly, the sum of the two numbers has the form (7r + a).

Expanding this axiom, it can be confirmed that all multiples of 7 ($7m_{11}$) (including the prime 7, if it would be present) of sequence **A** will be paired with all terms ($7j_{21} + a$) of sequence **B**.

Conversely, all terms $(7j_{11} + a)$ of sequence **A** will be paired with all multiples of $7(7m_{21})$ (including the prime 7, if it would be present) of sequence **B**.

Applying this axiom for all primes, from 7 to the previous to \sqrt{x} , it can be confirmed that all groups of multiples $7m_{11}$, $11m_{12}$, $13m_{13}$, $17m_{14}$,... (including the primes lesser than \sqrt{x} that are present) of sequence **A** will be paired, group to group, with all groups of terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... of sequence **B**.

Conversely, all groups of terms $(7j_{11} + a)$, $(11j_{12} + b)$, $(13j_{13} + c)$, $(17j_{14} + d)$,... of sequence **A** will be paired, group to group, with all groups of multiples $7m_{21}$, $11m_{22}$, $13m_{23}$, $17m_{24}$,... (including the primes lesser than \sqrt{x} that are present) of sequence **B**.

```
x = 7r + a = 7m_{11} + (7j_{21} + a) = 7(m_{11} + j_{21}) + a
                                                                                         being: r = m_{11} + j_{21}
x = 11s + b = 11m_{12} + (11j_{22} + b) = 11(m_{12} + j_{22}) + b
                                                                                         being: s = m_{12} + j_{22}
x = 13t + c = 13m_{13} + (13j_{23} + c) = 13(m_{13} + j_{23}) + c
                                                                                         being: t = m_{13} + j_{23}
\mathbf{x} = 17u + d = 17m_{14} + (17j_{24} + d) = 17(m_{14} + j_{24}) + d
                                                                                         being: u = m_{14} + j_{24}
x = 7r + a = (7j_{11} + a) + 7m_{21} = 7(j_{11} + m_{21}) + a
                                                                                         being: r = j_{11} + m_{21}
\mathbf{x} = 11s + b = (11j_{12} + b) + 11m_{22} = 11(j_{12} + m_{22}) + b
                                                                                         being: s = j_{12} + m_{22}
x = 13t + c = (13j_{13} + c) + 13m_{23} = 13(j_{13} + m_{23}) + c
                                                                                         being: t = j_{13} + m_{23}
\mathbf{x} = 17u + d = (17j_{14} + d) + 17m_{24} = 17(j_{14} + m_{24}) + d
                                                                                         being: u = j_{14} + m_{24}
```

And so on to the prime previous to \sqrt{x} .

We will apply the above described, to even number 512 = 7.73 + 1 = 11.46 + 6 = 13.39 + 5 = 17.30 + 2 = 19.26 + 18. It serves as an example for any even number x, even being a large number. We will write the corresponding sequences **A-B**.

```
13 - 43 - 73- 103-<u>133-</u>163-193-223-253-283-313-<u>343</u>-373-403-433-463-493
                                                                                                  in A, multiples 7m_{11} are underlined
В
       499-469-439-409-379-349-319-289-259-229-199-169-139-109 - 79 - 49 - 19
                                                                                                  in B, terms (7j_{21} + 1) are underlined
                                                                                                  being: 73 = 19 + 54 = 49 + 24
Verifying:
                512 = 7 \cdot 73 + 1 = 7m_{11} + (7j_{21} + 1) = 133 + 379 = 343 + 169
       13 - 43 - 73- 103-133-163-193-223-<u>253-</u>283-313-343-373-403-433-<u>463</u>-493
                                                                                                  in A, terms (7j_{11} + 1) are underlined
       499-469-439-409-379-349-319-289-259-229-199-169-139-109 - 79 - 49 - 19
В
                                                                                                  in B, multiples 7m_{21} are underlined
                512 = 7 \cdot 73 + 1 = (7j_{11} + 1) + 7m_{21} = 43 + 469 = 253 + 259 = 463 + 49
                                                                                                  being: 73 = 6 + 67 = 36 + 37 = 66 + 7
Verifying:
Applying the same procedure for the primes 11, 13, 17 and 19, it results:
```

```
512 = 11 \cdot 46 + 6 = 11m_{12} + (11j_{22} + 6) = 253 + 259
                                                                                                        being: 46 = 23 + 23
For the prime 11:
                         512 = 11.46 + 6 = (11j_{12} + 6) + 11m_{22} = 193 + 319
                                                                                                        being: 46 = 17 + 29
For the prime 13:
                         512 = 13 \cdot 39 + 5 = 13m_{13} + (13j_{23} + 5) = 13 \cdot 499 = 403 + 109
                                                                                                        being: 39 = 1 + 38 = 31 + 8
                         512 = 13 \cdot 39 + 5 = (13j_{13} + 5) + 13m_{23} = 343 + 169
                                                                                                        being: 39 = 26 + 13
For the prime 17:
                         512 = 17 \cdot 30 + 2 = 17m_{14} + (17j_{24} + 2) = 493 + 19
                                                                                                        being: 30 = 29 + 1
                                                                                                        being: 30 = 13 + 17
                         512 = 17 \cdot 30 + 2 = (17j_{14} + 2) + 17m_{24} = 223 + 289
For the prime 19:
                         512 = 19 \cdot 26 + 18 = 19m_{15} + (19j_{25} + 18) = 133 + 379
                                                                                                        being: 26 = 7 + 19
                         512 = 19 \cdot 26 + 18 = (19j_{15} + 18) + 19m_{25} = 493 + 19
                                                                                                        being: 26 = 25 + 1
```

The 7 pairs of terms of sequences **A-B** that do not appear in the above expressions are those that meet the conjecture. In these pairs, the two terms are greater than $\sqrt{512}$ and lesser than 512.

We add the pair of primes (13 + 499) in which the first term is a multiple of 13 $(13m_{13})$ lesser than $\sqrt{512}$.

$$512 = 73 + 439 = 103 + 409 = 163 + 349 = 283 + 229 = 313 + 199 = 373 + 139 = 433 + 79$$
 (Also: $512 = 13 + 499$)

It can be seen that all multiples 7m, 11m, 13m, 17m, 19m,... of a sequence **A** or **B** are paired with multiples or primes of the other, to form multiple-multiple pairs, multiple-prime pairs and prime-multiple pairs, according to the axiom defined.

Finally, the remaining prime-prime pairs are those that meet the conjecture. In these pairs, the two primes are greater than \sqrt{x} .

The above exposition helps us understand the relation between terms of sequence **A** and terms of sequence **B** of any even number x.

To numerically support the axioms exposed, I used a programmable controller to obtain data of sequences **A-B** corresponding to several even numbers (between 10^6 and 10^9) and that can be consulted from page 21. They are the following data:

- 1. Number of multiples 7m, 11m, 13m, 17m,... in each sequence **A** or **B**, (includes all composites and the primes lesser than \sqrt{x}).
- 2. Number of primes in each sequence **A** or **B**, (only those who are greater than \sqrt{x}).
- 3. Number of multiples that there are in terms (7j + a), (11j + b),... in each sequence, (all composites and the primes lesser than \sqrt{x}).
- 4. Number of primes that there are in terms (7j + a), (11j + b), (13j + c),... in each sequence, (only those who are greater than \sqrt{x}).

9. Proving the conjecture.

For proving the conjecture, as a starting point, I will use the first part of the last axiom from the previous chapter:

All multiples $7m_{11}$, $11m_{12}$, $13m_{13}$, $17m_{14}$,... (including the primes lesser than \sqrt{x} that are present) of sequence **A** will be paired, respectively, with all terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... of sequence **B**.

In this axiom, the concept of *multiple*, applied to the terms of each sequence **A** or **B**, includes all composites and the primes lesser than \sqrt{x} that are present. By this definition, all terms that are lesser than \sqrt{x} of each sequence **A** or **B** are *multiples*.

Simultaneously, and also in this axiom, the concept of *prime*, applied to the terms of each sequence **A** or **B**, refers only to primes greater than \sqrt{x} that are present in the corresponding sequence.

According to these concepts, each term of sequences **A** or **B** will be *multiple* or *prime*. Thus, with the terms of the two sequences can be form multiple-multiple pairs, free multiple-prime pairs, prime-free multiple pairs and prime-prime pairs.

Number of terms in each sequence **A** or **B** for the even number x. (Page 4)

 $\pi(x)$ Symbol^[3], normally used, to express the number of primes lesser or equal to x.

According to the prime numbers theorem^[3]: $\pi(x) \sim \frac{x}{\ln(x)}$ being: $\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\ln(x)}} = 1$ $\ln(x) = \text{natural logarithm of } x$

A better approach for this theorem is given by the offset logarithmic integral function $\mathbf{Li}(x)$: $\pi(x) \approx \mathbf{Li}(x) = \int_2^x \frac{dy}{\ln(y)}$

According to these formulas, for all $x \ge 5$ is true that $\pi(x) > \sqrt{x}$. This inequality becomes larger with increasing x.

 $\pi(ax)$ Symbol to express the number of primes greater than \sqrt{x} in sequence A for the even number x.

 $\pi(bx)$ Symbol to express the number of primes greater than \sqrt{x} in sequence **B** for the even number x.

For large values of x it can be accept that: $\pi(ax) \approx \pi(bx) \approx \frac{\pi(x)}{8}$ being 8 the number of groups of primes (page 1).

For $x = 10^9$, the maximum error of above approximation is 0,0215 % for group (30n + 19).

 $\frac{x}{30} - \pi(ax)$ Number of multiples of sequence **A** for the even number **x**. It includes the number 1 in the group (30n + 1).

 $\frac{x}{30} - \pi(bx)$ Number of multiples of sequence **B** for the even number **x**. It includes the number 1 in the group (30n + 1).

We will define as a fraction k(ax) of sequence **A**, or k(bx) of sequence **B**, the ratio between the number of multiples and the total number of terms in the corresponding sequence. As the primes density decreases as we move on the number line, the k(ax) and k(bx) values gradually increase when increasing x and tend to 1 when x tends to infinite.

$$k(ax) = \frac{\frac{x}{30} - \pi(ax)}{\frac{x}{30}} = 1 - \frac{\pi(ax)}{\frac{x}{30}}$$
 For sequence A: $k(ax) = 1 - \frac{30\pi(ax)}{x}$ For sequence B: $k(bx) = 1 - \frac{30\pi(bx)}{x}$

The central question of this chapter is to develop a general formula to calculate the number of multiples that there are in terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... of sequence **B** and that, complying the origin axiom, will be paired with an equal number of multiples $7m_{11}$, $11m_{12}$, $13m_{13}$, $17m_{14}$,... of sequence **A**. Known this data, we can calculate the number of free multiples of sequence **A** (and that will be paired with primes of sequence **B**). Finally, the remaining primes of sequence **B** will be paired with some primes of sequence **A** to determine the pairs number that meet the conjecture.

We will study the terms (7j + a), (11j + b), (13j + c), (17j + d),... of sequence **B**, in a general way.

The same procedure can be applied to the terms of sequence A if we use the second part of the axiom referred to in the above chapter.

We will analyze how primes are distributed among terms (7j + a), (11j + b), (13j + c), (17j + d),...

For this purpose, we will see the relation between prime 7 and the 8 groups of primes, serving as example for any prime greater than 5.

We will analyze how are the groups of multiples of 7 (7m) and the groups (7j + a) in generally, that's (7j + 1), (7j + 2), (7j + 3), (7j + 4), (7j + 5) and (7j + 6). Noting the fact that it is an axiom, I gather that they will be arithmetic progressions of module 210, $(210 = 7 \cdot 30)$.

In the following expressions, the 8 arithmetic progressions of module 210 correspond, respectively, with the 8 groups of primes of module 30. I highlight in **bold** the number that identifies each of these 8 groups. Being: $n = 0, 1, 2, 3, 4, ..., \infty$.

(210n + 90 + 1), (210n + 7), (210n + 150 + 11), (210n + 120 + 13), (210n + 60 + 17), (210n + 30 + 19), (210n + 180 + 23) and (210n + 90 + 29) are multiples of 7 (7m). These groups do not contain primes, except the prime 7 in the group (210n + 7) for n = 0.

(210n + 1), (210n + 120 + 7), (210n + 60 + 11), (210n + 30 + 13), (210n + 180 + 17), (210n + 150 + 19), (210n + 90 + 23) and (210n + 29) are terms (7j + 1).

(210n + 120 + 1), (210n + 30 + 7), (210n + 180 + 11), (210n + 150 + 13), (210n + 90 + 17), (210n + 60 + 19), (210n + 23) and (210n + 120 + 29) are terms (7j + 2).

(210n + 30 + 1), (210n + 150 + 7), (210n + 90 + 11), (210n + 60 + 13), (210n + 17), (210n + 180 + 19), (210n + 120 + 23) and (210n + 30 + 29) are terms (7j + 3).

(210n + 150 + 1), (210n + 60 + 7), (210n + 11), (210n + 180 + 13), (210n + 120 + 17), (210n + 90 + 19), (210n + 30 + 23) and (210n + 150 + 29) are terms (7j + 4).

(210n + 60 + 1), (210n + 180 + 7), (210n + 120 + 11), (210n + 90 + 13), (210n + 30 + 17), (210n + 19), (210n + 150 + 23) and (210n + 60 + 29) are terms (7j + 5).

(210n + 180 + 1), (210n + 90 + 7), (210n + 30 + 11), (210n + 13), (210n + 150 + 17), (210n + 120 + 19), (210n + 60 + 23) and (210n + 180 + 29) are terms (7j + 6).

We can note that the groups of multiples of 7 (7m) correspond to arithmetic progressions of module 210, (210n + b), such that gcd(210, b) = 7 being b lesser than 210, multiple of 7, and having 8 terms b, one of each group of primes.

Also, we can see that the groups of terms (7j + 1), (7j + 2), (7j + 3), (7j + 4), (7j + 5) and (7j + 6) correspond to arithmetic progressions of module 210, (210n + b), such that gcd(210, b) = 1 being b lesser than 210, not multiple of 7, and having 48 terms b, 6 of each group of primes.

Finally, we can verify that the 56 terms b, (8 + 48), are all those that appear in the 8 groups of primes and that are lesser than 210.

Applying the above axiom for all p (prime greater than 5 and lesser than \sqrt{x}) we can confirm that the groups of multiples of p (pm) correspond to arithmetic progressions of module 30p, (30pn + b), such that gcd(30p, b) = p being b lesser than 30p, multiple of p, and having 8 terms b, one for each group of primes.

Also, we can confirm that the groups of terms (pj + 1), (pj + 2), (pj + 3),..., (pj + p - 2) and (pj + p - 1) correspond to arithmetic progressions of module 30p, (30pn + b), such that gcd(30p, b) = 1 being b lesser than 30p, not multiple of p, and having 8(p - 1) terms b, (p - 1) of each group of primes.

Finally, we can confirm that the 8p terms b, (8 + 8(p - 1)), are all those that appear in the 8 groups of primes and that are lesser than 30p.

On the other hand, an axiom that is met in the sequences **A** or **B** is that, in each set of p consecutive terms, there are one of each of the following groups: pm, (pj + 1), (pj + 2), (pj + 3),..., (pj + p - 2) and (pj + p - 1) (though not necessarily in this order). Example:

1 31 61 91 121 151 181 Terms
$$(30n + 1)$$
 $(7 \cdot 0 + 1)$ $(7 \cdot 4 + 3)$ $(7 \cdot 8 + 5)$ $7 \cdot 13$ $(7 \cdot 17 + 2)$ $(7 \cdot 21 + 4)$ $(7 \cdot 25 + 6)$ Terms $7m$ and $(7j + a)$

Therefore, and according to this axiom, $\frac{1}{p} \frac{x}{30}$ will be the number of multiples of p (pm) (including p, if it would be present) and, also, the number of terms that have each groups (pj + 1), (pj + 2), (pj + 3),..., (pj + p - 2) and (pj + p - 1) in each sequence **A** or **B**.

This same axiom allows us to say that these groups contain all terms of sequences **A** or **B** as follows:

- 1. Group pm: contains all multiples of p.
- 2. Groups (pj+1), (pj+2), (pj+3),..., (pj+p-1): contain all multiples (except those of p) and the primes greater than \sqrt{x} .

As it has been described, the groups (pj + 1), (pj + 2), (pj + 3),..., (pj + p - 2) and (pj + p - 1) are arithmetic progressions of module 30p, (30pn + b), such that gcd(30p, b) = 1.

Applying the prime numbers theorem in arithmetic progressions [2], shown on page 1, to these groups we concluded that they all will have, approximately, the same amount of primes ($\approx \frac{\pi(bx)}{p-1}$ in sequence **B**) and, as they all have the same number of terms, also they will have, approximately, the same number of multiples.

Similarly, we can apply this theorem to terms belonging to two or more groups. For example, the terms that are, at once, in groups (7j + a) and (13j + c) correspond to arithmetic progressions of module 2730, $(2730 = 7 \cdot 13 \cdot 30)$. In this case, all groups of a sequence **A**

or **B** that contain these terms (72 groups that result of combining 6 a and 12 c) they will have, approximately, the same amount of primes and, as they all have the same number of terms, will also have, approximately, the same number of multiples.

As described, I gather that, of the $\frac{1}{7} \frac{x}{30}$ terms (7j + a) that there are in sequence **B**, $\approx \frac{\pi(bx)}{6}$ will be primes. All other terms are multiples (of primes greater than 5, except the prime 7).

In general, I gather that, of the $\frac{1}{p}\frac{x}{30}$ terms (pj+h) that there are in sequence **B**, $\approx \frac{\pi(bx)}{p-1}$ will be primes.

All other terms are multiples (of primes greater than 5, except the prime p).

We will define as a fraction k(7x) of sequence **B** the ratio between the number of multiples that there are in the group of terms (7j + a) and the total number of these.

Applying the above for all p (prime greater than 5 and lesser than \sqrt{x}) we will define as a fraction k(px) of sequence **B** the ratio between the number of multiples that there are in the group of terms (pj + h) and the total number of these.

We can see the similarity between k(bx) and factors k(7x), k(11x), k(13x), k(17x),..., k(px),... so their formulas will be similar. I will use \approx instead of = due to the imprecision in the number of primes that there are in each group. Using the same procedure as for obtaining k(bx):

$$k(px) \approx \frac{\frac{1}{p} \frac{x}{30} - \frac{\pi(bx)}{p-1}}{\frac{1}{p} \frac{x}{30}} = 1 - \frac{\frac{\pi(bx)}{p-1}}{\frac{1}{p} \frac{x}{30}} = 1 - \frac{30p\pi(bx)}{(p-1)x}$$

$$k(px) \approx 1 - \frac{30\pi(bx)}{x} \frac{p}{p-1}$$

For the prime 7:
$$k(7x) \approx 1 - \frac{35\pi(bx)}{x}$$
 For the prime 11: $k(11x) \approx 1 - \frac{33\pi(bx)}{x}$ For the prime 31: $k(31x) \approx 1 - \frac{31\pi(bx)}{x}$

And so on to the prime previous to \sqrt{x} .

If we order these factors from lowest to highest value: k(7x) < k(11x) < k(13x) < k(17x) < ... < k(997x) < ... < k(bx)

In the formula to obtain k(px) we have that: $\lim_{p\to\infty} \frac{p}{p-1} = 1$ so we can write: $\lim_{p\to\infty} k(px) = 1 - \frac{30\pi(bx)}{x} = k(bx)$

We can unify all factors k(7x), k(11x), k(13x),..., k(px),... into one, which we will call k(jx), and that will group all of them together.

Applying the above, we will define as a fraction k(jx) of sequence **B** the ratio between the number of multiples that there are in the set of all terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... and the total number of these.

Logically, the $k(j\mathbf{x})$ value is determined by the $k(p\mathbf{x})$ values corresponding to each primes from 7 to the one previous to $\sqrt{\mathbf{x}}$.

Summarizing the exposed: a fraction k(jx) of terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... of sequence **B** will be multiples and that, complying the origin axiom, will be paired with an equal fraction of multiples $7m_{11}$, $11m_{12}$, $13m_{13}$, $17m_{14}$,... of sequence **A**.

To put it simply and in general:

A fraction k(jx) of multiples of sequence **A** will have, as partner, a multiple of sequence **B**.

Recalling the axiom on page 5, and the formulas on page 8, we can record:

- 1. Number of multiple-multiple pairs = k(jx) (Number of multiples of sequence **A**)
- 2. Number of free multiples in sequence $\mathbf{A} = (1 k(jx))$ (Number of multiples of sequence \mathbf{A})
- 3. $P_{PP}(x) = \text{actual number of pairs of primes greater than } \sqrt{x}$

 $P_{PP}(x) = \text{(Number of primes greater than } \sqrt{x} \text{ of sequence } \mathbf{B}\text{)} - \text{(Number of free multiples of sequence } \mathbf{A}\text{)}$

Expressed algebraically: $\mathbf{P}_{\mathrm{PP}(x)} = \boldsymbol{\pi}_{(bx)} - (1 - k_{(jx)}) \left(\frac{x}{30} - \boldsymbol{\pi}_{(ax)}\right)$

Let us suppose that there may be a sufficiently large even number that does not meet the conjecture. In this case: $P_{PP}(x) = 0$. $P_{PP}(x)$ cannot be negative because the number of primes of sequence **B** cannot be lesser than the number of free multiples of sequence **A**. We can define a factor, which I will call k(0x) and that, replacing k(jx) in the above formula, it results in $P_{PP}(x) = 0$. As a concept, k(0x) would be the minimum value of k(jx) for which the conjecture would not be met.

$$0 = \pi_{(bx)} - (1 - k(\theta x)) \left(\frac{x}{30} - \pi_{(ax)} \right) \qquad \pi_{(bx)} = (1 - k(\theta x)) \left(\frac{x}{30} - \pi_{(ax)} \right)$$

Solving:
$$k(\theta x) = 1 - \frac{30\pi(bx)}{x - 30\pi(ax)}$$

For the conjecture to be true, k(jx) must be greater than $k(\partial x)$ for any x value.

Let us recall that the k(jx) value is determined by values of the factors k(7x), k(11x), k(13x), k(17x), ..., k(px),...

To analyze the relation between the factors k(jx) and $k(\partial x)$, first, let us compare $k(\partial x)$ with the general factor k(px).

$$k(\theta x) = 1 - \frac{30\pi(bx)}{x - 30\pi(ax)} = 1 - \frac{30\pi(bx)}{x} \frac{x}{x - 30\pi(ax)} = 1 - \frac{30\pi(bx)}{x} \frac{1}{1 - \frac{30\pi(ax)}{x}}$$

$$k(px) \approx 1 - \frac{30\pi(bx)}{x} \frac{p}{p-1} = 1 - \frac{30\pi(bx)}{x} \frac{1}{1 - \frac{1}{p}}$$

To compare k(0x) with k(px), simply compare $\frac{30\pi(ax)}{x}$ with $\frac{1}{p}$ which are the terms that differentiate the two formulas.

Let us recall, page 8, the prime numbers theorem: $\pi(x) \sim \frac{x}{\ln(x)}$ being $\pi(x)$ the number of primes lesser or equal to x.

As I have indicated, it can be accepted that: $\pi(ax) \approx \frac{\pi(x)}{8}$ being 8 the number of groups of primes.

Substituting $\pi(x)$ by its corresponding formula: $\pi(ax) \sim \frac{x}{8\ln(x)}$

The approximation of this formula does not affect the final result of the comparison between k(0x) and k(px) that we are analyzing.

Compare
$$\frac{30\pi(ax)}{x}$$
 with $\frac{1}{p}$ Substituting $\pi(ax)$ by its corresponding formula

Compare
$$\frac{30x}{8x\ln(x)}$$
 with $\frac{1}{p}$

Compare
$$\frac{3,75}{\ln(x)}$$
 with $\frac{3,75}{3,75p}$

Compare
$$ln(x)$$
 with $3,75p$ Applying the natural logarithm concept

Compare
$$x$$
 with $e^{3,75p}$ For powers of 10: $\ln 10 = 2,302585 = 3,75 / 2,302585 = 1,6286 \approx 1,63$

Compare x with $10^{1,63p}$

Comparison result: k(0x) will be lesser than k(px) if $x < 10^{1,63p}$ k(0x) will be greater than k(px) if $x > 10^{1,63p}$

In the following expressions, the exponents values are approximate. This does not affect the comparison result.

1. For the prime 7:
$$k(0x) < k(7x)$$
 if $x < 10^{11,4}$ $k(0x) > k(7x)$ if $x > 10^{11,4}$ $\approx 4.10^4$ primes lesser than $10^{5,7}$

2. For the prime 11:
$$k(0x) < k(11x)$$
 if $x < 10^{18}$ $k(0x) > k(11x)$ if $x > 10^{18}$ $\approx 5,08 \cdot 10^7$ primes lesser than 10^9

3. For the prime 31:
$$k(0x) < k(31x)$$
 if $x < 10^{50}$ $k(0x) > k(31x)$ if $x > 10^{50}$ $\approx 1,76 \cdot 10^{23}$ primes lesser than 10^{25}

4. For the prime 997:
$$k(0x) < k(997x)$$
 if $x < 10^{1620}$ $k(0x) > k(997x)$ if $x > 10^{1620}$ $\approx 5,36 \cdot 10^{806}$ primes lesser than 10^{810}

By analyzing these data we can see that, for numbers lesser than $10^{11,4}$, k(0x) is lesser than all factors k(px) and, therefore, also will be lesser than k(jx) which allows us to ensure that the Goldbach conjecture will be met, at least until $10^{11,4}$.

For the x values greater than $10^{11.4}$, we can see that k(0x) overcomes gradually the factors k(px) (k(7x), k(11x), k(13x), k(17x),..., k(997x),...). Looking in detail, we can note that if the p value, for which the comparison is applied, increases in geometric progression, the x value from which k(0x) exceeds to k(px) increases ___ exponentially. Because of this, also increases ___ exponentially (or slightly higher) the number of primes lesser than \sqrt{x} and whose factors k(px) will determine the k(jx) value.

Logically, if increases the number of primes lesser than \sqrt{x} , decreases the "relative weight" of each factor k(px) in relation to the k(jx) value. Thus, although from $10^{11.4} k(7x)$ is lesser than k(0x), the percentage of terms (7j + a) which are not in upper groups will decrease and the factor k(7x) will lose gradually influence on the k(jx) value.

The same can be applied to the factors k(11x), k(13x), k(17x),... that will lose gradually influence on the k(jx) value with increasing x.

On the other hand, taking as an example the prime 997, we can note that, when $k(\theta x)$ exceeds k(997x), there are already $\approx 5,36 \cdot 10^{806}$ primes whose factors k(px) (which will be greater than $k(\theta x)$) added to factors k(7x) to k(997x) (165 factors that will be lesser than $k(\theta x)$) will determine the k(jx) value. Note the large difference between 165 and $\approx 5,36 \cdot 10^{806}$.

These data allow us to intuit that k(jx) will be greater than k(0x) for any x value.

After these positive data, we continue developing the formula to calculate the approximate value of k(jx).

Let us compare k(bx) with k(jx). Let us recall the definitions relating to these two factors.

k(bx) = ratio between the number of multiples and the total number of terms of sequence **B**.

Sequence B $\frac{x}{30}$ terms $\pi(bx)$ primes $\frac{x}{30} - \pi(bx)$ multiples $k(bx) = 1 - \frac{30\pi(bx)}{x}$

<u>Terms of sequence B</u> 1/7 are multiples of 7, 1/11 are multiples of 11, 1/13 are multiples of 13, 1/17 are multiples of 17,...

And so on to the prime previous to \sqrt{x} .

 $k(j\mathbf{x})$ = ratio between the number of multiples that there are in the set of all terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... of sequence **B** and the total number of these. Its value is determined by the values of the factors $k(7\mathbf{x})$, $k(11\mathbf{x})$, $k(13\mathbf{x})$, $k(17\mathbf{x})$,...

As described when we applied the prime numbers theorem in arithmetic progressions, the actual number of primes that there are in each groups $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... will be, approximately, equal to the average value indicated.

In the case of an even number that would be multiple of any prime greater than 5 (for example 13), there would not be primes in the group $(13j_{23} + c)$ because c = 0, and its corresponding factor k(13x) would equal 1, which, in the end, would slightly increase the k(jx) value.

 $\frac{\text{Group } (7j+a)}{7\,30} \qquad \frac{1}{7}\frac{x}{30} \quad \text{terms} \qquad \approx \frac{\pi(bx)}{6} \quad \text{primes} \qquad \approx \left(\frac{1}{7}\frac{x}{30} - \frac{\pi(bx)}{6}\right) \quad \text{multiples} \qquad k(7x) \approx 1 - \frac{30\pi(bx)}{x}\frac{7}{6}$

<u>Terms (7j + a)</u> <u>No multiples of 7.</u> 1/11 are multiples of 11, 1/13 are multiples of 13, 1/17 are multiples of 17,...

 $\frac{\text{Group } (11j+b)}{11} \qquad \frac{1}{11} \frac{x}{30} \quad \text{terms} \qquad \approx \frac{\pi(bx)}{10} \quad \text{primes} \qquad \approx \left(\frac{1}{11} \frac{x}{30} - \frac{\pi(bx)}{10}\right) \quad \text{multiples} \qquad k(IIx) \approx 1 - \frac{30\pi(bx)}{x} \frac{11}{10}$

Terms (11j + b) 1/7 are multiples of 7, no multiples of 11, 1/13 are multiples of 13, 1/17 are multiples of 17,...

 $\frac{\text{Group } (13j+c)}{1330} \qquad \frac{1}{13} \frac{x}{30} \quad \text{terms} \qquad \approx \frac{\pi(bx)}{12} \quad \text{primes} \qquad \approx \left(\frac{1}{13} \frac{x}{30} - \frac{\pi(bx)}{12}\right) \quad \text{multiples} \qquad k(13x) \approx 1 - \frac{30\pi(bx)}{x} \frac{13}{12}$

Terms (13j + c) 1/7 are multiples of 7, 1/11 are multiples of 11, no multiples of 13, 1/17 are multiples of 17,...

 $\frac{\text{Group } (17j+d)}{17\,30} \qquad \frac{1}{17}\frac{x}{30} \quad \text{terms} \qquad \qquad \approx \frac{\pi(bx)}{16} \quad \text{primes} \qquad \qquad \approx \left(\frac{1}{17}\frac{x}{30} - \frac{\pi(bx)}{16}\right) \quad \text{multiples} \qquad k(17x) \approx 1 - \frac{30\pi(bx)}{x}\frac{17}{16}$

<u>Terms (17j + d)</u> 1/7 are multiples of 7, 1/11 are multiples of 11, 1/13 are multiples of 13, no multiples of 17,...

And so on to the prime previous to \sqrt{x} .

It can be noted that, in compliance to the prime numbers theorem in arithmetic progressions, the groups $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... behave with some regularity, mathematically defined, for the number of terms, the number of primes and the number of multiples that contain, and that is maintained regardless of x value.

Continuing the study of these terms we can see some data, obtained with a programmable controller, that refers to the group (30n + 29) (chosen as example) and the even numbers 10^6 , 10^7 , 10^8 and 10^9 .

Although for this analysis, any sequence of primes can be chosen, I will do it in ascending order (7, 11, 13, 17, 19, 23,..., 307). They are the following data, and are numbered as follows:

- 1. Total number of terms (7j + a), (11j + b), (13j + c), (17j + d),..., (pj + h),...
- 2. Multiples that there are in the group (7j + a): they are all included.
- 3. Multiples that there are in the group (11j + b): not included those who are also (7j + a).
- 4. Multiples that there are in the group (13j + c): not included those who are also (7j + a) or (11j + b).
- 5. Multiples that there are in the group (17j + d): not included those who are also (7j + a) or (11j + b) or (13j + c).

And so on until the group of prime 307. These data can be consulted from page 21.

The percentages indicated are relative to the total number of terms (7j + a), (11j + b), (13j + c), (17j + d),..., (pj + h),...

	<u>1</u>	0^{6}	<u>1</u>	0^{7}	<u>10</u>	<u>)</u> 8	10^{9}	
Terms $(7j + a)$, $(11j + b)$,	23.	.545	250	.287	2.613	3.173	26.977	'.564
Multiples $(7j + a)$ and %	3.140	13,34 %	33.750	13,48 %	356.077	13,63 %	3.702.786	13,73 %
Multiples $(11j + b)$ and %	1.767	7,5 %	19.045	7,61 %	199.519	7,63 %	2.067.520	7,66 %
Multiples $(13j + c)$ and %	1.374	5,84 %	14.714	5,88 %	154.831	5,92 %	1.600.628	5,93 %
Multiples $(17j + d)$ and %	1.010	4,29 %	10.549	4,21 %	110.081	4,21 %	1.137.457	4,22 %
Total multiples groups 7 to 307	15.008	63,74 %	156.956	62,71 %	1.642.061	62,84 %	17.014.540	63,07 %

These new data continue to confirm that the groups $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... behave in a uniform manner, because the percentage of multiples that supply each is almost constant when \boldsymbol{x} increases.

The regularity of these groups allows us to intuit that the approximate value of k(jx) can be obtained by a general formula.

Considering the data of each group, and to develop the formula of k(jx), we can think about adding, on one hand, the number of terms of all of them, on the other hand, the number of primes and finally the number of multiples and making the final calculations with the total of these sums. This method is not correct, since each term can be in several groups so they would be counted several times what would give us an unreliable result.

To resolve this question in a theoretical manner, but more accurate, each term $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... should be analyzed individually and applying inclusion-exclusion principle, to define which are multiples and those who are primes.

After several attempts, I have found that this analytical method is quite complex, so that in the end, I rejected it.

I hope that any mathematician interested in this topic may resolve this question in a rigorous way.

Given the difficulty of the mathematical analysis, I opted for an indirect method to obtain the formula for k(jx).

Gathering information from the Internet of the latest demonstrations of mathematical conjectures, I have read that it has been accepted the use of computers to perform some of calculations or to verify the conjectures up to a certain number.

Given this information, I considered that I can use a programmable logic controller (PLC) to help me get the formula for k(jx). To this purpose, I have developed the programs that the controller needs to perform this work.

I will begin by analyzing the exposed data from which it can be deduced:

- 1. The concepts of k(jx) and k(bx) are similar so, in principle, their formulas will use the same variables.
- 2. The parameters (number of terms, number of primes and number of multiples) involved in k(jx) follow a certain "pattern".
- 3. The k(jx) and k(bx) values, and also those of $\pi(ax)$ and $\pi(bx)$, gradually increase with increasing x.
- 4. The k(jx) value is lesser than the k(bx) value (this may vary if the even number is a multiple of primes greater than 5).
- 5. The values of k(jx) and k(bx) will tend to equalize, in an asymptotically way, when x tends to infinite.

Here are some values, obtained by the controller, concerning to k(bx), k(jx) and the group (30n + 29), (consult from page 21).

1. To 10 ⁶	k(bx) = 0,706447064	k(jx) = 0,698577192	$k(j\mathbf{x}) / k(b\mathbf{x}) = 0.988859927$
2. To 10^7	k(bx) = 0,751107751	$k(j\mathbf{x}) = 0.74568795$	$k(j\mathbf{x}) / k(b\mathbf{x}) = 0.992784256$
3. To 10^8	k(bx) = 0,784035978	k(jx) = 0,780284734	$k(j\mathbf{x}) / k(b\mathbf{x}) = 0,995215469$
4. To 10 ⁹	k(bx) = 0,809322428	k(jx) = 0,806541984	$k(j\mathbf{x}) / k(b\mathbf{x}) = 0,996564479$
5. To 7·10 ⁶ , (multiple of 7)	k(bx) = 0.744631063	k(jx) = 0.755471932	k(jx) / k(bx) = 1,014558712

By analyzing these data, it can be seen that, as x increases, the k(jx) value tends more rapidly to the k(bx) value that the k(bx) value with respect to 1.

Expressed numerically: To 10^6 : (1-0.706447064) / (0.706447064 - 0.698577192) = 37.3To 10^9 : (1-0.809322428) / (0.809322428 - 0.806541984) = 68.57

Then, based on the formulas for k(bx) and k(0x), I will propose a formula for k(jx) with a constant. To calculate its value, I will use the programmable controller.

Formula of k(bx): $k(bx) = 1 - \frac{30\pi(bx)}{x}$ Formula of k(0x): $k(0x) = 1 - \frac{30\pi(bx)}{x - 30\pi(ax)}$

Proposed formula for k(jx): $k(jx) = 1 - \frac{30\pi(bx)}{x - c(jx)\pi(ax)}$

Being: x = Even number for which the conjecture is applied and that defines the sequences A-B.

 $\pi(ax)$ = Number of primes greater than \sqrt{x} in sequence **A** for x.

 $\pi(bx)$ = Number of primes greater than \sqrt{x} in sequence **B** for x.

k(jx) = Factor in study. The data from the PLC allow calculate its value for various numbers x.

c(jx) = Constant that can be calculated if we know the values of $\pi(ax)$, $\pi(bx)$ and k(jx) for each number x.

Let us recall that k(jx) is lesser than k(bx) so, comparing their corresponding formulas, it follows that c(jx) would have a minimum value of 0. Also let us remember that, as a concept, $k(\partial x)$ would be the minimum value of k(jx) for which the conjecture would not be met. According to this statement, and comparing their corresponding formulas, it follows that c(jx) would have a maximum value of 30.

The program, which works in the programmable controller, is described below, in a simplified way:

- 1. It store the 3.398 primes that are lesser than 31.622. With them, we can analyze the sequences **A-B** until number 10⁹.
- 2. It divides the even number $x \leq 10^9$ by the primes lesser than \sqrt{x} . The remains of these divisions are the values of a, b, c, d, \dots
- 3. It divides each term of each sequence **A** or **B**, by the primes lesser than \sqrt{x} , to define which are multiples and those who are primes.
- 4. In the same process, it determines the terms that are of form (7j + a), (11j + b), (13j + c), (17j + d),... in each sequence **A** or **B**.
- 5. 8 counters are scheduled (4 in each sequence) to count the following data:
 - 6. Number of multiples that there are in each sequence **A** or **B** (it includes all composites and the primes who are lesser than \sqrt{x}).
 - 7. Number of primes that there are in each sequence **A** or **B** (only which are greater than \sqrt{x}).
 - 8. Number of multiples that there are in the terms (7j + a), (11j + b), (13j + c), (17j + d),... of each sequence **A** or **B** (as 6).
 - 9. Number of primes that there are in the terms (7j + a), (11j + b), (13j + c), (17j + d),... of each sequence **A** or **B** (as 7).
- 10. With the final data of these counters, and using a calculator, the values of k(ax), k(bx), k(jx), c(jx),...can be obtained.

Then, I indicate the calculated values of c(jx) related to some even numbers (between 10^6 and 10^9) and their corresponding groups of primes. The details of these calculations can be consulted in the numerical data presented from page 21.

$ \begin{array}{r} $	$\frac{(30n+11)}{2,668}$ 2,566 2,371 2,261	$ \begin{array}{r} + (30n + 29) \\ 2,668 \\ 2,566 \\ 2,371 \\ 2,261 \end{array} $	$ \begin{array}{r} (30n + 17) \\ 2,714 \\ 2,371 \\ 2,423 \\ 2,256 \end{array} $	$ \begin{array}{r} + (30n + 23) \\ \hline 2,711 \\ 2,371 \\ 2,423 \\ 2,256 \end{array} $				
$\frac{8 \cdot 10^6}{8 \cdot 10^7}$	(30 <i>n</i> + 1) + 2,697 2,439	(30 <i>n</i> + 19) 2,696 2,439	$\frac{(30n+7)+}{2,732}$ 2,35	$ \begin{array}{r} (30n + 13) \\ 2,732 \\ 2,35 \end{array} $				
$\frac{9 \cdot 10^6}{9 \cdot 10^7}$ $\frac{3 \cdot 10^8}{3 \cdot 10^8}$	(30 <i>n</i> + 1) + 2,744 2,309 2,308	$ \begin{array}{r} (30n + 29) \\ 2,742 \\ 2,309 \\ 2,308 \end{array} $	$\frac{(30n+7)+}{2,401}$ 2,223 2,35	$ \begin{array}{r} (30n + 23) \\ 2,4 \\ 2,223 \\ 2,35 \end{array} $	$ \begin{array}{r} (30n + 11) \\ 2,615 \\ 2,42 \\ 2,34 \end{array} $	$ \begin{array}{r} + (30n + 19) \\ \hline 2,616 \\ 2,42 \\ 2,34 \end{array} $	$ \begin{array}{r} (30n+13) - \\ 2,603 \\ 2,474 \\ 2,288 \end{array} $	$ \begin{array}{r} + (30n + 17) \\ 2,603 \\ 2,474 \\ 2,288 \end{array} $
$ \underline{4.194.304 = 2^{22}} \\ \underline{67.108.864 = 2^{26}} $	$\frac{(30n+1)}{2,705}$ 2,378		1			$888.608 = 2^{23}$ $217.728 = 2^{27}$	$\frac{(30n+1)+}{2,526}$ 2,354	$\frac{(30n+7)}{2,523}$ 2,354
	2,283		$\frac{(30n + 23)}{2,237}$	2,279	<u>33.:</u> 536.8	$\frac{554.432 = 2^{25}}{870.912 = 2^{29}}$	$\frac{(30n+13)}{2,477}$	$\begin{array}{r} + (30n + 19) \\ \hline 2,477 \\ 2,301 \end{array}$
$\frac{(30n+11)+(30n+29)}{-5,214} - 5,212 \frac{(30n+17)+(30n+23)}{-5,372} - 5,373$								

To obtain the c(jx) values for numbers greater than 10^9 , I have used actual data from Wikipedia concerning to the Twin Primes Conjecture which says: "There are infinitely many primes p such that (p+2) is also prime."

We call Twin Primes the pair of consecutive primes that are separated only by an even number.

Applying to this conjecture, a similar procedure that has been applied to Goldbach's conjecture, it results in the next axiom:

All multiples $7m_{11}$, $11m_{12}$, $13m_{13}$, $17m_{14}$,... (including the primes lesser than \sqrt{x} that are present) of sequence **A** are paired, respectively, with all terms $(7m_{11} + 2)$, $(11m_{12} + 2)$, $(13m_{13} + 2)$, $(17m_{14} + 2)$,... of sequence **B**.

Accordingly, the following average values of c(jx) are referring to the terms $(7m_{11} + 2)$, $(11m_{12} + 2)$, $(13m_{13} + 2)$, $(17m_{14} + 2)$,... of sequence **B**. For more details, consult the numerical data presented from page 32.

10^{10}	≈ 2,095	10^{12}	≈ 2,058	10^{14}	≈ 2,029	10^{16}	≈ 2,005
10^{11}	≈ 2,075	10^{13}	≈ 2,042	10^{15}	≈ 2,016	10^{18}	≈ 1,987

Consulting the numeric calculations presented from page 21 to 32, we can note that the axiom which has been used as a starting point at the beginning of this chapter is met:

- 1. The number of multiples $7m_{11}$, $11m_{12}$,... of sequence **A** is equal to the number of terms $(7j_{21} + a)$, $(11j_{22} + b)$,... of sequence **B**.
- 2. The number of terms $(7j_{11} + a)$, $(11j_{12} + b)$,... of sequence **A** is equal to the number of multiples $7m_{21}$, $11m_{22}$,... of sequence **B**.
- 3. The number of multiples that there are in the terms $(7j_{11} + a)$, $(11j_{12} + b)$,... of sequence **A** is equal to the multiples in the terms $(7j_{21} + a)$, $(11j_{22} + b)$,... of sequence **B**, being the number of multiple-multiple pairs that are formed with the two sequences.

Let's review the above data:

- 1. Lowest number analyzed: 10⁶.
- 2. Highest number analyzed with the programmable controller: 10⁹.
- 3. Highest number analyzed with data from Wikipedia: 10¹⁸.
- 4. Highest c(jx) value: 2,744 for the even number $9 \cdot 10^6$ in the combination (30n + 1) + (30n + 29).
- 5. Lowest c(jx) value with the programmable controller: 2,223 for the number $9 \cdot 10^7$ in the combination (30n + 7) + (30n + 23).
- 6. Lowest c(jx) value with data from Wikipedia: 1,987 for the number 10^{18} (average value) (referring to the twin primes conjecture).
- 7. Maximum number of terms analyzed by programmable controller in a sequence **A** or **B**: 33.333.333 for the number 10⁹.

In the analyzed numbers with PLC, 10^9 is 10^3 times greater than 10^6 . Using data from Wikipedia, 10^{18} is 10^{12} times greater than 10^6 . It can be seen that, although there is a great difference between the values of the analyzed numbers, the c(jx) values vary little (from 2,744 to 2,223 with PLC and up to 1,987 with data from Wikipedia).

Looking in detail, it can be seen that for numbers greater than $16.777.216 = 2^{24}$, the c(jx) value is lesser than 2,5. We also note that the average value of c(jx) tends to decrease slightly when increasing x.

Finally, it can be intuited that, for large values of x, the average value of c(jx) tends to an approximate value to 2,3.

I believe that this data is sufficiently representative to be applied in the proposed formula for k(jx).

Given the above, we can define an approximate average value for c(jx): $c(jx) \approx 2,5$ (for large numbers: $c(jx) \approx 2,3$)

With this average value of c(jx), the final formula of k(jx) can be written: $k(jx) \approx 1 - \frac{30\pi(bx)}{x - 2.5\pi(ax)}$

I consider that this formula is valid to prove the conjecture although it has not been obtained through mathematical analysis.

Also, I consider that it can be applied to large numbers because the regularity in the characteristics of terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$, $(17j_{24} + d)$,... is maintained, and I intuit that with more precision, when increasing x.

Likewise, I believe that this formula and the formula that can be obtained through a rigorous analytical method can be considered equivalent in purpose of validity to prove the conjecture although the respective numerical results may differ slightly.

Let us analyze the deviation that can affect the average value defined for c(jx). Considering only the even numbers that are not multiples of primes greater than 5, c(jx) it would have a minimum value greater than 0 because, in this case, k(jx) is always lesser than k(bx). We can see that the maximum deviation decreasing is from 2,5 to 0 (or close to 0). I understand that, by symmetry, the maximum deviation increasing will be similar so that, in principle, the c(jx) value would always be lesser than 5.

On the other hand, and as I have indicated, c(jx) would have a maximum value of 30. Considering as valid the final formula proposed for k(jx), considering that will be equivalent to analytical formula and comparing 30 with the calculated values of c(jx), (between 2,744 and 2,223), it can be accepted that c(jx) < 30 will always be met.

At this point, let's make a summary of the exposed questions:

- 1. All multiples $7m_{11}$, $11m_{12}$, $13m_{13}$,... of sequence **A** are paired with all terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$,... of sequence **B**.
- 2. The groups $(7j_{21} + a)$,... follow a "pattern" for the number of terms, number of primes and number of multiples that contain.
- 3. We define as k(jx) the fraction of terms $(7j_{21} + a)$, $(11j_{22} + b)$, $(13j_{23} + c)$,... of sequence **B** that are multiples.
- 4. The analysis of paragraph 2 allows us to intuit that the approximate value of k(jx) can be obtained by a general formula.
- 5. Proposed formula for k(jx): $k(jx) = 1 \frac{30\pi(bx)}{x c(jx)\pi(ax)}$. In the exposed calculations, the c(jx) value has resulted to be lesser than 3.
- 6. Final formula for k(jx): $k(jx) \approx 1 \frac{30\pi(bx)}{x 2.5\pi(ax)}$. I consider that will be equivalent to the formula obtained by mathematical analysis.
- 7. Considering valid the above formula and considering the calculated values of c(jx), (< 3), it can be accepted that c(jx) < 30.
- 8. Applying c(jx) < 30 in the proposed formula for k(jx): $k(jx) > 1 \frac{30\pi(bx)}{x 30\pi(ax)} = k(0x)$
- 9. Finally, for any x value: $k(jx) > k(\theta x)$. This statement must be rigorously demonstrated in the analytical formula.

Let us recall, page 10, the formula to calculate the pairs number of primes greater than \sqrt{x} that are formed with the sequences **A-B**.

$$\mathbf{P}_{\mathrm{PP}(x)} = \boldsymbol{\pi}_{(bx)} - \left(1 - k(jx)\right) \left(\frac{x}{30} - \boldsymbol{\pi}_{(ax)}\right) \qquad \text{Substituting } k(jx) \text{ for its formula:} \qquad k(jx) = 1 - \frac{30\boldsymbol{\pi}_{(bx)}}{x - c(jx)\boldsymbol{\pi}_{(ax)}}$$

$$\mathbf{P}_{\text{PP}(x)} = \pi(bx) - \frac{30\pi(bx)}{x - c(jx)\pi(ax)} \left(\frac{x}{30} - \pi(ax)\right) = \pi(bx) - \frac{x\pi(bx) - 30\pi(ax)\pi(bx)}{x - c(jx)\pi(ax)} = \frac{x\pi(bx) - c(jx)\pi(ax)\pi(bx) - x\pi(bx) + 30\pi(ax)\pi(bx)}{x - c(jx)\pi(ax)}$$

$$\mathbf{P}_{\mathrm{PP}(x)} = \frac{(30 - c(jx))\pi(ax)\pi(bx)}{x - c(jx)\pi(ax)}$$

In this formula, we can replace c(jx) by its already defined values:

$$c(jx) \approx 2.5 \qquad \qquad \mathbf{P}_{\mathbf{PP}(x)} \approx \frac{(30 - 2.5)\pi(ax)\pi(bx)}{x - 2.5\pi(ax)} \qquad \qquad \mathbf{P}_{\mathbf{PP}(x)} \approx \frac{27.5\pi(ax)\pi(bx)}{x - 2.5\pi(ax)}$$

$$C(jx) < 30$$
 $P_{PP}(x) > \frac{(30 - 30)\pi(ax)\pi(bx)}{x - 30\pi(ax)}$ $P_{PP}(x) > 0$

This final expression indicates that $P_{PP}(x)$ is always greater than 0 and considering that by its nature, (prime pairs), cannot be a fractional number (must be greater than 0, cannot have a value between 0 and 1) I gather that $P_{PP}(x)$ will be a natural number equal to or greater than 1. Similarly, I conclude that the $P_{PP}(x)$ value will increase when increasing x because also increase $\pi(ax)$ and $\pi(bx)$. We can record:

$$P_{PP}(x) \ge 1$$
 $P_{PP}(x)$ will be a natural number and will increase when increasing x

The above expression indicates that the pairs number of primes greater than \sqrt{x} that meet the conjecture for an even number x is always equal to or greater than 1.

With everything described, it can be confirmed that: The Goldbach Conjecture is true.

10. Final formula.

Considering that the conjecture has already been demonstrated, a formula can be defined to calculate the approximate number of partitions for an even number x.

According to the previous chapter, the number of these partitions, formed with sequences **A-B**, greater than \sqrt{x} and lesser than x is:

$$P_{PP}(x) \approx \frac{27.5\pi(ax)\pi(bx)}{x - 2.5\pi(ax)}$$

If no precision in the final formula is required, and for large values of x, the following can be considered:

- 1. On page 8 I have indicated that: $\pi(ax) \approx \pi(bx) \approx \frac{\pi(x)}{8}$ being $\pi(x)$ the number of primes lesser than or equal to x.
- 2. The term $2.5\pi(ax)$ can be neglected because it is be very small compared to x, $(1.59 \% \text{ of } x \text{ for } 10^9)$, $(0.77 \% \text{ of } x \text{ for } 10^{18})$.
- 3. By applying the above, the value of the denominator will increase, so, to compensate, I will put in the numerator 28 instead of 27,5.
- 4. The exposed data allows us to intuit that, as x is larger, the average value of c(jx) will decrease being lesser than 2,5.
- 5. The possible pairs of primes with one of them lesser than \sqrt{x} is very small compared to the total pairs number of primes.

With this in mind, the above formula can be slightly modified to make it more simple.

As a final concept, I consider that the numeric result of the obtained formula will be the approximate number of partitions which are formed with the sequences $\bf A$ and $\bf B$ and that meet Goldbach's conjecture for an even number $\bf x$.

$$P_{PP(x)} \approx \frac{28 \frac{\pi(x)}{8} \frac{\pi(x)}{8}}{x} \qquad \qquad P_{PP(x)} \approx \frac{7}{16} \frac{\pi^2(x)}{x}$$

Now, let's analyze the halves sequences (page 4). In this case, the sequences **A** and **B** are formed with the same group of primes. Let us recall the number 784, used as example at the beginning.

$$784 = 30 \cdot 26 + 4 = (30n_4 + 17) + (30n_5 + 17)$$
 being: $26 = n_4 + n_5 + 1$

We will write the sequence \mathbf{A} of all numbers $(30n_4 + 17)$ from 0 to 784. (We write the complete sequence in two halves). Also we will write the sequence \mathbf{B} of all numbers $(30n_5 + 17)$ from 784 to 0. (We write the complete sequence in two halves).

We can see that these two sequences have the same terms written in reverse order, so that the pairs of terms are repeated. If we apply the same procedure as used for the complete sequences, we will obtain the same result. In this case, the number of different pairs of primes that will meet the conjecture will be half of those in the complete sequence.

Then, and considering what has been described for the halves sequences, we will adjust the last formula (that uses 2 groups) to the number of groups of primes used (3, 6, 4 or 8) in each even number multiplying $\frac{7}{16} \frac{\pi^2(x)}{x}$, respectively, by 3/2, 3, 2 or 4.

Performing the multiplications described and being G(x),... the actual number of Goldbach's partitions for an even number x:

$$G(x) \approx \frac{21}{32} \frac{\pi^2(x)}{x}$$
 Partitions number for the even number that is not multiple of 6 or 10.
 $G_6(x) \approx \frac{21}{16} \frac{\pi^2(x)}{x}$ Partitions number for the even number that is multiple of 6.

$$G_{10(x)} \approx \frac{7}{8} \frac{\pi^2(x)}{x}$$
 Partitions number for the even number that is multiple of 10.

G₃₀(x)
$$\approx \frac{7}{4} \frac{\pi^2(x)}{x}$$
 Partitions number for the even number that is multiple of 30.

Final formulas, being: G(x), $G_{0}(x)$, $G_{0}(x)$, $G_{0}(x)$ = Actual number of Goldbach's partitions for the even numbers x.

x = Even number greater than 30.

 $\pi(x)$ = Number of primes lesser than or equal to x.

Although they could be obtained by the programmable controller, we will take the actual values of $\pi(x)$ from Wikipedia to check the precision of formulas of $G_{10}(x)$ and G(x). Although we will only check these two, I consider that the precision of the four above formulas will be similar.

	$\underline{\boldsymbol{\pi}}(x)$	$G_{10(x)}$ (PLC)	Formula result	Difference
1. To 10^6	78.498	5.382	5.392	+ 0,185 %
2. To 10^7	664.579	38.763	38.646	-0,302 %
3. To 10^8	5.761.455	291.281	290.451	-0,285 %
4. To 10^9	50.847.534	2.273.918	2.262.288	-0,511 %
	$\underline{\pi}(x)$ (PLC)	G(x) (PLC)	Formula result	<u>Difference</u>
5. To $2^{28} = 268.435.456$	14.630.810	525.109	523.319	-0,341 %

To express the final formulas as an x function, we will use the prime numbers theorem^[3], (page 8): $\pi(x) \sim \frac{x}{\ln(x)}$ Substituting $\pi(x)$ in the above formulas and simplifying:

$$G(x) \sim \frac{21}{32} \frac{x}{\ln^2(x)}$$
 Partitions number for the even number that is not multiple of 6 or 10. To 16.384, formula: 114 partitions, actual: 151

$$G_6(x) \sim \frac{21}{16} \frac{x}{\ln^2(x)}$$
 Partitions number for the even number that is multiple of 6. To 13.122 formula: 191 partitions, actual: 245

$$G_{10}(x) \sim \frac{7}{8} \frac{x}{\ln^2(x)}$$
 Partitions number for the even number that is multiple of 10. To 31.250 formula: 255 partitions, actual: 326

$$G_{30}(x) \sim \frac{7}{4} \frac{x}{\ln^2(x)}$$
 Partitions number for the even number that is multiple of 30. To 21.870 formula: 383 partitions, actual: 483

The sign \sim indicates that these formulas have an asymptotic behavior, giving results lesser than actual values when applied to small numbers but this difference gradually decreases as we analyze larger numbers.

If the even number is multiple of one or more primes greater than 5, and as seen on page 6, increases the pairs proportion of composites so that, ultimately, more pairs of primes will be formed.

Due to this, the difference between the actual number of partitions and the corresponding formula result will increase. Examples:

To 16.016 Formula result: 112 partitions. Actual: 193 partitions. Multiple of 7, 11 and 13.

To 16.018 Formula result: 112 partitions. Actual: 152 partitions.

A better approach for this theorem is given by the offset logarithmic integral function^[3] $\mathbf{Li}(x)$: $\pi(x) \approx \mathbf{Li}(x) = \int_2^x \frac{dy}{\ln(y)}$

Substituting $\pi(x)$ again, we obtain four more precise formulas:

 $G(x) \approx \frac{21}{32} \int_2^x \frac{dy}{\ln^2(y)}$ Partitions number for the even number that is not multiple of 6 or 10.

 $G_6(x) \approx \frac{21}{16} \int_2^x \frac{dy}{\ln^2(y)}$ Partitions number for the even number that is multiple of 6.

 $G_{10(x)} \approx \frac{7}{8} \int_{2}^{x} \frac{dy}{\ln^{2}(y)}$ Partitions number for the even number that is multiple of 10.

 $G_{30}(x) \approx \frac{7}{4} \int_{2}^{x} \frac{dy}{\ln^{2}(y)}$ Partitions number for the even number that is multiple of 30.

11. Comparison with the Twin Primes Conjecture.

Twin Primes Conjecture statement ^[4]: "There are infinitely many primes p such that p + 2 is also prime". We call *Twin Primes* the pair of consecutive primes that are separated only by an even number. Examples: (11, 13), (29, 31).

Goldbach's conjecture and the twin primes conjecture are similar in that both can be studied by combining two groups of primes to form pairs that add an even number, in the first, or pairs of twin primes in the second.

We will write the three combinations of groups of primes with which all pairs of twin primes greater than 7 will be formed:

$$(30n_1 + 11)$$
 and $(30n_1 + 13)$ $(30n_2 + 17)$ and $(30n_2 + 19)$ $(30n_3 + 29)$ and $(30n_3 + 31)$

We will write the sequences **A** and **B** corresponding to number 780 and the combination $(30n_1 + 11)$ and $(30n_1 + 13)$, underlining the 11 twin prime pairs that are formed. We use list of primes lesser than 1.000.

A first difference between these two conjectures refers to the order of the terms in sequences A-B.

In Goldbach's conjecture, the terms are in reverse order (from lowest to highest in sequence **A** and from highest to lowest in sequence **B**) whilst in the twin primes conjecture, the terms of both sequences are in the same order (from lowest to highest).

Let us recall that the probability of a natural number being prime, decreases when increasing its value, so analyzing the sequences **A-B** of Goldbach's conjecture, we see that the two terms of each pairs that are formed have different probability to be primes because one of them has a value between 0 and x/2 and the other between x/2 and x.

On the other hand, analyzing the sequences **A-B** of the twin primes conjecture we see that the two terms of each pairs that are formed have virtually, the same probability to be primes since the difference between them is only two units.

Given the above, I conclude that in the Goldbach conjecture there is a greater "difficulty" to form pairs of primes.

As seen on page 6, this "difficulty" is lesser if the even number is a multiple of one or more primes greater than 5, because more pairs of composites are formed and, therefore, also more pairs of primes will be formed.

A second difference refers to the groups of terms analyzed in each demonstration that I have developed.

In the proof of Goldbach's conjecture, we analyzed the groups of terms (7j + a), (11j + b), (13j + c), (17j + d),... of sequence **B** (or **A**). In the proof of twin primes conjecture, we analyzed the groups of terms (7m + 2), (11m + 2), (13m + 2), (17m + 2),... of sequence **B**. In the latter, also we can analyze the groups of terms (7m - 2), (11m - 2), (13m - 2), (17m - 2),... of sequence **A**.

Let us recall that the numbers a, b, c, d,... that appear in the proof of Goldbach's conjecture, are the remains of dividing the even number x by the primes from 7 to the prime previous to \sqrt{x} , so that a, b, c, d,... will have different values for each even number. If the even number is a multiple (for example, multiple of 7 and 11) we would have: a = b = 0.

In the case of the twin primes conjecture, we can say that a = b = c = d = ... = 2 and, therefore, the terms analyzed always have the same configuration. Simply, it increases their number when x increases.

Because of this, it can be deduced that, when increasing x, the behavior of terms (7m + 2), (11m + 2),... of the twin primes conjecture will be more regular, $(c(jx) \approx 2,2)$, than the behavior of terms (7j + a), (11j + b),... of Goldbach's conjecture, $(c(jx) \approx 2,5)$.

A final difference would be related to the number of combinations of groups of primes and the number of these groups that are used. Let us recall this question for Goldbach's conjecture (page 3):

- 1. For the even number that is not multiple of 6 or 10: it results 2 different combinations using 3 groups of primes.
- 2. For the even number that is multiple of 6: it results 3 different combinations using 6 groups of primes.
- 3. For the even number that is multiple of 10: it results 2 different combinations using 4 groups of primes.
- 4. For the even number that is multiple of 30: it results 4 different combinations using the 8 prime numbers groups available.
- 5. For the twin primes conjecture: it results 3 different combinations using 6 groups of primes (always the same groups).

By analyzing the above data, we conclude that:

- 1. For the even number that is not multiple of 6 or 10: the partitions number is, approximately, ½ of the number of twin prime pairs.
- 2. For the even number that is multiple of 6: the partitions number is, approximately, equal to the number of twin prime pairs.
- 3. For the even number that is multiple of 10: the partitions number is, approximately, 2/3 of the number of twin prime pairs.
- 4. For the even number that is multiple of 30: the partitions number is, approximately, 4/3 of the number of twin prime pairs.

As we have seen, the number of pairs of primes that add an even number x (power of 2) is: $G(x) \approx \frac{21}{32} \frac{\pi^2(x)}{x}$

For the even number that is multiple 10: $G_{10}(x) \approx \frac{7}{8} \frac{\pi^2(x)}{x}$

According to the proof that I have developed, the number of twin prime pairs that are lesser than x is: $G_G(x) \approx \frac{21}{16} \frac{\pi^2(x)}{x}$

As numerical support, and using the programmable controller, the following data has been obtained:

To $268.435.456 = 2^{28}$ 525.109 prime pairs that add 2^{28} , being both primes greater than 2^{14} . 1.055.991 twin prime pairs that are greater than 2^{14} and lesser than 2^{28} .

For the even number that is multiple of 10:

To 10^9 2.273.918 prime pairs that add 10^9 , being both primes greater than $10^{4.5}$. 3.424.019 twin prime pairs that are greater than $10^{4.5}$ and lesser than 10^9 .

Ternary Goldbach Conjecture

The conjecture that has been studied is called strong or binary because there is another, weak or ternary, Goldbach's also, which states [5]: "All odd number greater than 7 can be written as a sum of three odd primes".

In May 2013, the Peruvian-born mathematician Harald Andrés Helfgott, a researcher at French CNRS at École Normale Supérieure in Paris, has published an article on web arXiv.org in which it is demonstrated that the ternary Goldbach conjecture is true for all odd numbers greater than 10²⁹. For the lesser odd numbers, and in collaboration with David Platt, computers have been used to verify that they also meet the conjecture.

Accepting that the binary Goldbach conjecture is proven, we can write down:

(Even number > 4) = (odd prime) + (odd prime)

Adding the odd prime 3: (Even number > 4) + 3 = (odd prime) + (odd prime) + 3

Therefore, it follows: (Odd number > 7) = (odd prime) + (odd prime) + (odd prime)

The article of Harald Helfgott and the above expression allows us to say that: The Ternary Goldbach Conjecture is true.

We will study now how to calculate the representations number of an odd number greater than 7 as a sum of three odd primes.

Hardy-Littlewood theorem statement [6]: "If General Riemann Hypothesis is true, then: $r_{3(x)} \sim 6_{3(x)} \frac{x^2}{\ln^3(x)}$ ".

In this formula, $r_3(x)$ is the representations number of an odd number x greater than 7 as the sum of three odd primes and $\mathfrak{G}_3(x)$ a factor that depends of x being its value between two constants.

A simple mathematical reasoning can be done to obtain the formula of the previous theorem.

Let us recall that $\pi(x) \sim \frac{x}{\ln(x)}$ is the number of primes lesser than or equal to x. Being p_1 , p_2 , p_3 , p_4 ,... these primes (from first odd prime, $p_1 = 3$) and N_1 , N_2 , N_3 , N_4 ,... the even numbers remaining of each prime of the odd number x, we will have:

$$x = p_1 + N_1 = p_2 + N_2 = p_3 + N_3 = p_4 + N_4 = \dots$$

And so on until the last prime that is a distance greater than 4 of x.

Given the above, it can be deduced that the actual number of representations $r_3(x)$ will be equal to the sum of Goldbach's partitions $G_{(N1)}$, $G_{(N2)}$, $G_{(N3)}$, $G_{(N3)}$, $G_{(N4)}$,... of all the even numbers N_1 , N_2 , N_3 , N_4 ,...

$$r_3(x) = G_{(N1)} + G_{(N2)} + G_{(N3)} + G_{(N4)} + \dots$$

In the above expression, the number of summands will be, approximately, equal to the number of primes lesser than x.

Recalling the formulas to calculate the number of Goldbach's partitions, we will call $\mathbf{Gm}(x) = \mathbf{\delta}_3(x) \frac{x}{\ln^2(x)}$ the average value of $\mathbf{G}_{(N1)}$, $\mathbf{G}_{(N2)}$, $\mathbf{G}_{(N3)}$, $\mathbf{G}_{(N4)}$,... being $\mathbf{\delta}_3(x)$ a factor that depends of x. With this in mind, we can write:

$$r_{\beta(x)} \sim \frac{x}{\ln(x)} \, 6_{3(x)} \frac{x}{\ln^2(x)}$$

$$r_{\beta(x)} \sim 6_{3(x)} \frac{x^2}{\ln^3(x)}$$

We can note that, after a "forced" reasoning, we obtain the same formula as the above theorem.

Getting data using a programmable controller

Let us recall: Multiples: include all composites and the primes lesser than \sqrt{x} .

Primes: only those that are greater than \sqrt{x} .

Sequence A

- 1. The four data highlighted in **bold** are those obtained by the programmable controller.
- 2. The sum of the number of multiples 7m, 11m,... and the number of primes is the total number of terms of the sequence. It must match with the formula result: $\frac{x}{30}$ (page 4).
- 3. The sum of the number of multiples and the number of primes of form (7j + a), (11j + b),... is the total number of these terms. It must match with the number of multiples 7m, 11m,... of sequence **B** (page 6).
- 4. I used a calculator to obtain the following information:
 - 5. $P_{PPx} = \text{Number of prime pairs being both greater than } \sqrt{x}$. It must match with the P_{PPx} of sequence **B**. $P_{PPx} = (\text{Number of primes of sequence } \mathbf{A}) (\text{Number of primes of form } (7j + a), (11j + b), \dots \text{ of sequence } \mathbf{A})$
 - 6. k_{ax} = Number of multiples 7m, 11m,... divided by the total number of terms of sequence **A**.
 - 7. k_{jx} = Number of multiples that there are in the terms (7j + a), (11j + b),... divided by the total number of these.

Proposed formula for
$$k_{jx}$$
: $k(jx) = 1 - \frac{30\pi(ax)}{x - c(jx)\pi(bx)}$ (page 13).

- 8. c_{jx} = Constant of proposed formula for k_{jx} . Solving: $c_{(jx)} = \frac{x \frac{30\pi(ax)}{1 k(jx)}}{\pi(bx)}$
- 9. $k_{0x} = \text{Minimum value of } k_{jx} \text{ for which the conjecture would not be met: } k(\theta x) = 1 \frac{30\pi(ax)}{x 30\pi(bx)} \text{ (pages 10 and 11)}.$

Sequence B

- 1. The four data highlighted in **bold** are those obtained by the programmable controller.
- 2. The sum of the number of multiples 7m, 11m,... and the number of primes is the total number of terms of the sequence. It must match with the formula result: $\frac{x}{30}$ (page 4).
- 3. The sum of the number of multiples and the number of primes of form (7j + a), (11j + b),... is the total number of these terms. It must match with the number of multiples 7m, 11m,... of sequence **A** (page 6).
- 4. I used a calculator to obtain the following information:
 - 5. $P_{PPx} = Number of prime pairs being both greater than <math>\sqrt{x}$. It must match with the P_{PPx} of sequence **A**. $P_{PPx} = (Number of primes of sequence$ **B**) (Number of primes of form <math>(7j + a), (11j + b),... of sequence **B**)
 - 6. k_{bx} = Number of multiples 7m, 11m,... divided by the total number of terms of sequence **B**.
 - 7. k_{jx} = Number of multiples that there are in the terms (7j + a), (11j + b),... divided by the total number of these.

Proposed formula for
$$k_{jx}$$
: $k(jx) = 1 - \frac{30\pi(bx)}{x - c(jx)\pi(ax)}$ (page 13).

- 8. c_{jx} = Constant of proposed formula for k_{jx} . Solving: $c_{(jx)} = \frac{x \frac{30\pi(bx)}{1 k(jx)}}{\pi(ax)}$
- 9. $k_{0x} = \text{Minimum value of } k_{jx} \text{ for which the conjecture would not be met: } \mathbf{k}(0x) = \mathbf{1} \frac{\mathbf{30}\pi(bx)}{\mathbf{x} \mathbf{30}\pi(ax)} \text{ (pages 10 and 11).}$

Choosing the group (30n + 29) as an example, we will count the number of multiples that there are in each of the groups (7j + a), (11j + b), (13j + c), (17j + d),... until the group of prime 307. The obtained values are highlighted in **bold**.

Although for this analysis, any sequence of primes can be chosen, and to count each term only once, we will do it in ascending order (7, 11, 13, 17, 19, 23,..., 307).

- 1. Multiples that there are in the group (7j + a): they are all included.
- 2. Multiples that there are in the group (11j + b): not included those who are also (7j + a).
- 3. Multiples that there are in the group (13j + c): not included those who are also (7j + a) or (11j + b).

And so on until the group of prime 307.

The percentages indicated are relative to the total number of terms (7j + a), (11j + b), (13j + c), (17j + d),...

```
\underline{10^6} = (30n_1 + 10) = (30n_2 + 11) + (30n_3 + 29)
                                                   33.333 pairs
                                                                                        Highest prime to divide 997
Sequence A (30n_2 + 11)
                                                                                        Sequence B (30n_3 + 29)
Total number of terms
                                           33.333
                                                                                        Total number of terms
                                                                                                                                  33.333
                                           23.545
                                                                                                                                  23.548
       Multiples 7m, 11m,...
                                                                                               Multiples 7m, 11m,...
       Primes greater than 103
                                                                                               Primes greater than 103
                                            9.788
                                                                                                                                   9.785
Number of terms (7j + a), (11j + b),...
                                           23.548
                                                                                        Number of terms (7j + a), (11j + b),...
                                                                                                                                  23.545
       Multiples (7j + a), (11j + b),...
                                           16.448
                                                                                               Multiples (7j + a), (11j + b),...
                                                                                                                                  16.448
       Primes (7j + a), (11j + b),...
                                            7.100
                                                                                               Primes (7j + a), (11j + b),...
                                                                                                                                    7.097
                                                                      P_{PPx} = 9.788 - 7.100 = 9.785 - 7.097 = 2.688
P_{PPx} = Number of prime pairs being both greater than 10^3
Not included the possible prime pairs in which one of them is lesser than 10<sup>3</sup>
                                                                                        k_{bx} = 0,70644...
k_{ax} = 0.70635...
k_{ix} = 0,698488194
                                  k_{ix} / k_{ax} = 0.988859927
                                                                                        k_{ix} = 0,698577192
                                                                                                                            k_{ix} / k_{bx} = 0.988859927
                                                                                        c_{jx} = 2,668453186
c_{jx} = 2,668143788
k_{0x} = 0,584344256
                                                                                        k_{0x} = 0,58441871
                                  k_{0x} / k_{ax} = 0.827264688
                                                                                                                            k_{0x} / k_{bx} = 0.827264687
                                                                                                                                                       0,794 %
Multiples (7j + a)
                       3.140
                                  13,336 %
                                                          Multiples (31j + h)
                                                                                     451
                                                                                              1,915 %
                                                                                                                     Multiples (61j + t)
Multiples (11j + b)
                                   7,504 %
                                                          Multiples (37j + i)
                                                                                    379
                                                                                              1,609 %
                                                                                                                     Multiples (67j + u)
                                                                                                                                                       0,756 %
                       1.767
                                                                                                                                              178
                                                                                              1.389 %
Multiples (13j + c)
                       1.374
                                   5,835 %
                                                          Multiples (41j + l)
                                                                                    327
                                                                                                                     Multiples (71j + v)
                                                                                                                                                       0,671 %
                                                                                                                                              158
Multiples (17j + d)
                       1.010
                                   4,289 %
                                                          Multiples (43j + o)
                                                                                     298
                                                                                              1,265 %
                                                                                                                     Multiples (73j + x)
                                                                                                                                              157
                                                                                                                                                       0,666 %
Multiples (19j + e)
                         841
                                   3,572 %
                                                          Multiples (47j + q)
                                                                                     271
                                                                                             1,151 %
                                                                                                                     Multiples (79j + y)
                                                                                                                                              135
                                                                                                                                                       0,573 %
                                   2,799 %
                                                          Multiples (53j + r)
                                                                                             0,998 %
Multiples (23j + f)
                         659
                                                                                                                     Multiples (83j + z)
                                                                                                                                                       0,535 %
                                                                                     235
                                                                                                                                              126
                                                          Multiples (59j + s)
Multiples (29j + g)
                         491
                                   2,085 %
                                                                                    208
                                                                                             0,883 %
Multiples group 89
                         121
                                   0,514 %
                                                          Multiples group 163
                                                                                      69
                                                                                              0,293 %
                                                                                                                     Multiples group 239
                                                                                                                                               49
                                                                                                                                                       0,208 %
                                   0,459 %
Multiples group 97
                         108
                                                          Multiples group 167
                                                                                      70
                                                                                              0.297 %
                                                                                                                     Multiples group 241
                                                                                                                                                       0,229 %
                                                                                                                                               54
Multiples group 101
                         108
                                   0,459 %
                                                          Multiples group 173
                                                                                      71
                                                                                              0,301 %
                                                                                                                     Multiples group 251
                                                                                                                                               47
                                                                                                                                                       0,2 %
                                   0,471 %
                                                                                                                     Multiples group 257
                                                                                                                                                       0,204 %
Multiples group 103
                         111
                                                          Multiples group 179
                                                                                      62
                                                                                              0,263 %
                                                                                                                                               48
                                                                                                                                                       0,183 %
Multiples group 107
                          96
                                   0,408 %
                                                          Multiples group 181
                                                                                      61
                                                                                              0,259 %
                                                                                                                     Multiples group 263
                                                                                                                                               43
                                   0,437 %
                         103
                                                                                      59
                                                                                              0,251 %
Multiples group 109
                                                          Multiples group 191
                                                                                                                     Multiples group 269
                                                                                                                                               41
                                                                                                                                                       0.174 %
Multiples group 113
                           92
                                   0,391 %
                                                          Multiples group 193
                                                                                      61
                                                                                              0,259 %
                                                                                                                     Multiples group 271
                                                                                                                                               43
                                                                                                                                                       0,183 %
Multiples group 127
                           84
                                   0,357 %
                                                          Multiples group 197
                                                                                      55
                                                                                              0,234 %
                                                                                                                     Multiples group 277
                                                                                                                                               43
                                                                                                                                                       0,183 %
                                                                                      57
Multiples group 131
                          83
                                                                                              0,242 %
                                                                                                                                                       0,17 %
                                   0,352 %
                                                          Multiples group 199
                                                                                                                     Multiples group 281
                                                                                                                                               40
Multiples group 137
                           80
                                   0,34 %
                                                          Multiples group 211
                                                                                      59
                                                                                              0,251 %
                                                                                                                     Multiples group 283
                                                                                                                                               38
                                                                                                                                                       0,161 %
Multiples group 139
                                                          Multiples group 223
                                                                                      47
                                                                                                                     Multiples group 293
                                                                                                                                                       0,178 %
                           78
                                   0,331 %
                                                                                              0,2 %
                                                                                                                                               42
                                                                                              0,221 %
                                                                                                                     Multiples group 307
Multiples group 149
                           67
                                   0,284 %
                                                          Multiples group 227
                                                                                      52
                                                                                                                                               35
                                                                                                                                                       0,149 %
Multiples group 151
                                                          Multiples group 229
                           76
                                   0,323 %
                                                                                      43
                                                                                              0,183 %
Multiples group 157
                                   0,28 %
                                                          Multiples group 233
                                                                                              0,229 %
                                                                                                          Total multiples in the groups 7 to 307 15.008 63,742 %
                                                                                        Highest prime to divide 997
\underline{10^6} = (30n_1 + 10) = (30n_2 + 17) + (30n_3 + 23)
                                                   33.333 pairs
Sequence A (30n_2 + 17)
                                                                                        Sequence B (30n_3 + 23)
                                          33.333
                                                                                                                                  33.333
Total number of terms
                                                                                        Total number of terms
       Multiples 7m, 11m,...
                                           23.546
                                                                                               Multiples 7m, 11m,...
                                                                                                                                  23.514
       Primes greater than 103
                                            9.787
                                                                                               Primes greater than 103
                                                                                                                                   9.819
Number of terms (7j + a), (11j + b),...
                                           23.514
                                                                                        Number of terms (7j + a), (11j + b),...
                                                                                                                                  23.546
       Multiples (7j + a), (11j + b),...
                                           16.421
                                                                                               Multiples (7j + a), (11j + b),...
                                                                                                                                  16.421
                (7j + a), (11j + b),...
                                            7.093
                                                                                                        (7j + a), (11j + b),...
                                                                                                                                   7.125
P_{PPx} = Number of prime pairs being both greater than 10<sup>3</sup>
                                                                      P_{PPx} = 9.787 - 7.093 = 9.819 - 7.125 = 2.694
Not included the possible prime pairs in which one of them is lesser than 10<sup>3</sup>
k_{ax} = 0,70638...
                                                                                        k_{bx} = 0,70542...
k_{jx} = 0,698349919
                                  k_{jx} / k_{ax} = 0,98862218
                                                                                        k_{jx} = 0,697400832
                                                                                                                            k_{ix} / k_{bx} = 0.98862218
                                                                                        c_{jx} = 2,711148007
c_{ix} = 2,714499199
k_{0x} = 0,583785776
                                  k_{0x} / k_{ax} = 0,826438939
                                                                                        k_{0x} = 0,582992398
                                                                                                                            k_{0x} / k_{bx} = 0.826438955
10^7 = (30n_1 + 10) = (30n_2 + 11) + (30n_3 + 29)
                                                   333.333 pairs
                                                                                        Highest prime to divide 3.137
Sequence A (30n_2 + 11)
                                                                                        Sequence B (30n_3 + 29)
Total number of terms
                                           333.333
                                                                                        Total number of terms
                                                                                                                                  333.333
                                                                                                                                  250.369
       Multiples 7m, 11m,...
                                           250,287
                                                                                               Multiples 7m, 11m,...
       Primes greater than 103.5
                                                                                               Primes greater than 103.5
                                            83.046
                                                                                                                                   82.964
```

Number of terms (7j + a), (11j + b),...

Multiples (7j + a), (11j + b),...

 $(7j + a), (11j + b), \dots$

 P_{PPx} = Number of prime pairs being both greater than $10^{3.5}$ P_{PPx} = 83.046 - 63.733 = 82.964 - 63.651 = 19.313 Not included the possible prime pairs in which one of them is lesser than $10^{3.5}$

250.369

186.636

63.733

Number of terms (7j + a), (11j + b),...

Multiples (7j + a), (11j + b),...

 $(7j + a), (11j + b), \dots$

250.287

186.636

63.651

Multiples group 157	636	0,254 %	Multiples group 233	416	0,166 %	Total multiples in the groups 7 to	307	156.956 62,71 %
Multiples group 151	679	0,271 %	Multiples group 229	437	0,175 %	m . 1 . 12 1 . 2 . 4	207	156056 62.51.0
Multiples group 149	687	0,274 %	Multiples group 227	452	0,181 %	Multiples group 307	323	0,129 %
Multiples group 139	726	0,29 %	Multiples group 223	443	0,177 %	Multiples group 293	346	*
Multiples group 137	767	0,306 %	Multiples group 211	478	0,197 %	Multiples group 283	357	0,143 %
Multiples group 131	789	0,315 %	Multiples group 199	493	0,2 %	Multiples group 281	357	0,143 %
Multiples group 127	848	0,339 %	Multiples group 197	508	0,203 %	Multiples group 277	353	0,141 %
Multiples group 113	960	0,384 %	Multiples group 193	505	0,202 %	Multiples group 271	363	0,145 %
Multiples group 109	987	0,394 %	Multiples group 191	518	0,207 %	Multiples group 269	367	0,147 %
Multiples group 107	1.035	0,413 %	Multiples group 181	560	0,224 %	Multiples group 263	379	0,151 %
Multiples group 103	1.104	0,441 %	Multiples group 179	537	0,214 %	Multiples group 257	385	0,154 %
Multiples group 101	1.093	0,437 %	Multiples group 173	583	0,233 %	Multiples group 251	379	0,151 %
Multiples group 97	1.197	0,478 %	Multiples group 167	601	0,24 %	Multiples group 241	423	0,169 %
Multiples group 89	1.333	0,533 %	Multiples group 163	623	0,249 %	Multiples group 239	401	0,16 %
Multiples $(29j + g)$	5.314	2,123 %	Multiples $(59j + s)$	2.192	0,876 %	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Multiples $(23j + f)$	6.985	2,791 %	Multiples $(53j + r)$	2.477	0,99 %	Multiples $(83j + z)$	1.425	0,569 %
Multiples $(19j + e)$	8.893	3,553 %	Multiples $(47j + q)$	2.876	1,149 %	Multiples $(79j + y)$	1.520	0,607 %
Multiples $(17j + d)$	10.549	4,215 %	Multiples $(43j + o)$	3.244	1,296 %	Multiples $(73j + x)$	1.680	0,671 %
Multiples $(13j + c)$	14.714	5,879 %	Multiples $(41j + l)$	3.441	1,375 %	Multiples $(71j + v)$	1.730	0,691 %
Multiples $(11j + b)$	19.045	7,609 %	Multiples $(37j + i)$	3.893	1,555 %	Multiples $(67j + u)$	1.862	0,744 %
Multiples $(7j + a)$	33.750	13,484 %	Multiples $(31j + h)$	4.843	1,935 %	Multiples $(61j + t)$	2.095	0,837 %
$k_{0x} = 0,668306022$		$k_{0x} / k_{ax} = 0,8900$	052025		0,66852497		52025	
$k_{jx} = 0,745443725$ $c_{ix} = 2,565591768$		$k_{jx} / k_{ax} = 0,9927$	784256	,	0,74568795 2,56636034	y	84256	
$k_{ax} = 0.75086175$					0,751107			

 $\underline{10^7} = (30n_1 + 10) = (30n_2 + 17) + (30n_3 + 23)$ 333.333 pairs Highest prime to divide 3.137 Sequence **A** $(30n_2 + 17)$ Sequence **B** $(30n_3 + 23)$ Total number of terms Total number of terms 333.333 333,333 Multiples 7m, 11m,... 250.283 Multiples 7m, 11m,... 250.238 Primes greater than 3.162 83.050 Primes greater than 3.162 83.095 Number of terms (7j + a), (11j + b),... Number of terms (7j + a), (11j + b),... 250.238 250.283 Multiples (7j + a), (11j + b),... 186.638 Multiples (7j + a), (11j + b),... 186.638 Primes (7j + a), (11j + b),...63.600 Primes (7j + a), (11j + b),...63.645

 $P_{PPx} =$ Number of prime pairs being both greater than $10^{3.5}$ $P_{PPx} = 83.050 - 63.600 = 83.095 - 63.645 = 19.450$ Not included the possible prime pairs in which one of them is lesser than $10^{3.5}$

 $\underline{10^8} = (30n_1 + 10) = (30n_2 + 11) + (30n_3 + 29)$ 3.333.333 pairs Highest prime to divide 9.973 Sequence **A** $(30n_2 + 11)$ Sequence **B** $(30n_3 + 29)$

Total number of terms Total number of terms 3.333.333 3.333.333 Multiples 7m, 11m,... 2.613.173 Multiples 7m, 11m,... 2.613.453 Primes greater than 10⁴ 720.160 Primes greater than 10⁴ 719.880 Number of terms (7j + a), (11j + b),... Number of terms (7j + a), (11j + b),... 2.613.453 2.613.173 2.039.019 2.039.019 Multiples (7j + a), (11j + b),... Multiples (7j + a), (11j + b),... Primes (7j + a), (11j + b),...Primes (7j + a), (11j + b),...574.154

 P_{PPx} = Number of prime pairs being both greater than 10^4 P_{PPx} = 720.160 - 574.434 = 719.880 - 574.154 = 145.726 Not included the possible prime pairs in which one of them is lesser than 10^4

$k_{ax} = 0.7839519$ $k_{jx} = 0.780201136$ $c_{ix} = 2.370531694$	k	$k_{ix} / k_{ax} = 0,9952$	215469	$k_{jx} = 0$	0,7840359 0,780284734 2,370765683	$k_{jx}/k_{bx}=0.995$	215469	
$k_{0x} = 0,724441224$	k	$k_{0x} / k_{ax} = 0.9240$	088775	J	0,724518848	$k_{0x} / k_{bx} = 0,924$	088776	
Multiples $(7j + a)$	356.077	13,626 %	Multiples $(31j + h)$	50.268	1,924 %	Multiples $(61j + t)$	21.820	0,835 %
Multiples $(11j + b)$	199.519	7,635 %	Multiples $(37j + i)$	40.841	1,563 %	Multiples $(67j + u)$	19.527	0,747 %
Multiples $(13j + c)$	154.831	5,925 %	Multiples $(41j + l)$	35.803	1,37 %	Multiples $(71j + v)$	18.162	0,695 %
Multiples $(17j + d)$	110.081	4,212 %	Multiples $(43j + o)$	33.363	1,277 %	Multiples $(73j + x)$	17.423	0,667 %
Multiples $(19j + e)$	92.988	3,558 %	Multiples $(47j + q)$	29.791	1,14 %	Multiples $(79j + y)$	15.842	0,606 %
Multiples $(23j + f)$	73.084	2,797 %	Multiples $(53j + r)$	25.885	0,991 %	Multiples $(83j + z)$	14.889	0,57 %
Multiples $(29j + g)$	55.555	2,126 %	Multiples $(59j + s)$	22.922	0,877 %			

```
Multiples group 89
                          13.782
                                     0,527 %
                                                          Multiples group 163
                                                                                     6.608
                                                                                               0,253 %
                                                                                                                    Multiples group 239
                                                                                                                                               4.042
                                                                                                                                                       0,155 %
Multiples group 97
                          12.476
                                     0,477 %
                                                          Multiples group 167
                                                                                     6.389
                                                                                               0,244 %
                                                                                                                    Multiples group 241
                                                                                                                                               4.019
                                                                                                                                                        0,154 %
Multiples group 101
                          11.884
                                     0,455 %
                                                          Multiples group 173
                                                                                     6.100
                                                                                               0,233 %
                                                                                                                    Multiples group 251
                                                                                                                                               3.850
                                                                                                                                                        0,147 %
Multiples group 103
                                     0,442 %
                                                                                     5.894
                          11.554
                                                          Multiples group 179
                                                                                               0.226 %
                                                                                                                    Multiples group 257
                                                                                                                                               3.692
                                                                                                                                                        0.141 %
Multiples group 107
                          11.022
                                     0,422 %
                                                          Multiples group 181
                                                                                     5.734
                                                                                               0,219 %
                                                                                                                    Multiples group 263
                                                                                                                                               3.623
                                                                                                                                                        0,139 %
Multiples group 109
                                     0,409 %
                                                          Multiples group 191
                                                                                     5.488
                                                                                               0,21 %
                                                                                                                    Multiples group 269
                                                                                                                                               3.523
                                                                                                                                                        0,135 %
                          10.684
Multiples group 113
                                     0,389 %
                                                          Multiples group 193
                                                                                                                    Multiples group 271
                                                                                                                                               3.495
                          10.163
                                                                                     5.313
                                                                                               0,203 %
                                                                                                                                                        0,134 %
                                     0,342 %
                                                                                                                                               3.392
                                                                                                                                                        0,13 %
Multiples group 127
                           8.942
                                                          Multiples group 197
                                                                                     5.207
                                                                                               0,199 %
                                                                                                                    Multiples group 277
Multiples group 131
                           8.636
                                     0,33 %
                                                          Multiples group 199
                                                                                     5.122
                                                                                               0,196 %
                                                                                                                    Multiples group 281
                                                                                                                                               3.335
                                                                                                                                                        0,128 %
                                     0,315 %
Multiples group 137
                           8.227
                                                          Multiples group 211
                                                                                     4.761
                                                                                               0,182 %
                                                                                                                    Multiples group 283
                                                                                                                                               3.305
                                                                                                                                                        0,126 %
Multiples group 139
                           7.968
                                     0.305 %
                                                          Multiples group 223
                                                                                     4.474
                                                                                               0.171 %
                                                                                                                    Multiples group 293
                                                                                                                                               3.187
                                                                                                                                                        0.122 %
                                                          Multiples group 227
Multiples group 149
                           7.392
                                     0,283 %
                                                                                     4.407
                                                                                               0,169 %
                                                                                                                    Multiples group 307
                                                                                                                                               3.014
                                                                                                                                                       0,115 %
Multiples group 151
                           7.240
                                     0,277 %
                                                          Multiples group 229
                                                                                     4.309
                                                                                               0,165 %
                           6.897
                                                          Multiples group 233
                                                                                     4.240
                                                                                               0,162 %
                                                                                                           Total multiples in the groups 7 to 307 1.642.061 62,838 %
Multiples group 157
                                     0,264 %
\underline{10^8} = (30n_1 + 10) = (30n_2 + 17) + (30n_3 + 23)
                                                                                       Highest prime to divide 9.973
                                                   3.333.333 pairs
                                                                                       Sequence B (30n_3 + 23)
Sequence A (30n_2 + 17)
Total number of terms
                                          3,333,333
                                                                                       Total number of terms
                                                                                                                                 3.333.333
       Multiples 7m, 11m,...
                                          2.613.261
                                                                                              Multiples 7m, 11m,...
                                                                                                                                 2.613.125
       Primes greater than 104
                                            720.072
                                                                                              Primes greater than 104
                                                                                                                                   720.208
Number of terms (7j + a), (11j + b),...
                                                                                       Number of terms (7j + a), (11j + b),...
                                          2.613.125
                                                                                                                                 2.613.261
       Multiples (7j + a), (11j + b),...
                                          2.038.608
                                                                                              Multiples (7j + a), (11j + b),...
                                                                                                                                 2.038.608
       Primes (7j + a), (11j + b),...
                                            574.517
                                                                                                                                   574.653
                                                                                              Primes (7j + a), (11j + b),...
                                                                     P_{PPx} = 720.072 - 574.517 = 720.208 - 574.653 = 145.555
P_{PPx} = Number of prime pairs being both greater than 10^4
Not included the possible prime pairs in which one of them is lesser than 10<sup>4</sup>
                                                                                       k_{bx} = 0,7839375...
k_{ax} = 0,7839783...
k_{jx} = 0,780141784
                                 k_{jx} / k_{ax} = 0.99510625
                                                                                                                           k_{jx} / k_{bx} = 0.99510625
                                                                                       k_{jx} = 0.780101183
c_{ix} = 2,42296808
                                                                                       c_{ix} = 2,42285258
\vec{k}_{0x} = 0,724440312
                                 k_{0x} / k_{ax} = 0.924056494
                                                                                       k_{0x} = 0,724402611
                                                                                                                           k_{0x} / k_{bx} = 0.924056495
\underline{10^9} = (30n_1 + 10) = (30n_2 + 11) + (30n_3 + 29) 33.333.333 pairs
                                                                         Highest prime to divide 31.607 square root 31.622
                                                                                                                                      50.847.534 primes lesser than 109
Sequence A (30n_2 + 11)
                                                                                       Sequence B (30n_3 + 29)
                                                                                                                                 33.333.333
Total number of terms
                                          33.333.333
                                                                                       Total number of terms
       Multiples 7m, 11m,...
                                          26.977.564
                                                                                              Multiples 7m, 11m,...
                                                                                                                                 26.977.414
       Primes greater than 10<sup>4.5</sup>
                                                                                              Primes greater than 10<sup>4.5</sup>
                                            6.355.769
                                                                                                                                   6.355.919
Number of terms (7j + a), (11j + b),...
Multiples (7j + a), (11j + b),...
                                          26.977.414
                                                                                       Number of terms (7j + a), (11j + b),...
                                                                                                                                 26.977.564
                                          21.758.538
                                                                                              Multiples (7j + a), (11j + b),...
                                                                                                                                 21.758.538
       Primes (7j + a), (11j + b),...
                                            5.218.876
                                                                                              Primes (7j + a), (11j + b),...
                                                                                                                                   5.219.026
P_{PPx} = Number of prime pairs being both greater than 10^{4.5}
                                                                     P_{PPx} = 6.355.769 - 5.218.876 = 6.355.919 - 5.219.026 = 1.136.893
Not included the possible prime pairs in which one of them is lesser than 10<sup>4.5</sup>
k_{ax} = 0.809326928
                                                                                       k_{bx} = 0.809322428
```

$k_{jx} = 0,806546468$ $c_{ix} = 2,261319599$	i	$k_{jx} / k_{ax} = 0,996564479$)	,),806541984 2,26130754	y	1479		
$k_{0x} = 0.76440407$	i	$k_{0x} / k_{ax} = 0,944493559$	9	J	0,76439982		3559		
Multiples $(7j + a)$	3.702.786	13,725 %	Multiples $(31j + h)$	517.983	1,92 %	Multiples $(61j + t)$	224.011	0,83 %	
Multiples $(11j + b)$	2.067.520	7,664 %	Multiples $(37j + i)$	420.774	1,56 %	Multiples $(67j + u)$	200.865	0,745 %	
Multiples $(13j + c)$	1.600.628	5,933 %	Multiples $(41j + l)$	369.785	1,371 %	Multiples $(71j + v)$	186.614	0,692 %	
Multiples $(17j + d)$	1.137.457	4,216 %	Multiples $(43j + o)$	344.202	1,276 %	Multiples $(73j + x)$	178.908	0,663 %	
Multiples $(19j + e)$	959.914	3,558 %	Multiples $(47j + q)$	307.696	1,141 %	Multiples $(79j + y)$	163.259	0,605 %	
Multiples $(23j + f)$	753.704	2,794 %	Multiples $(53j + r)$	267.233	0,991 %	Multiples $(83j + z)$	153.399	0,569 %	
Multiples $(29j + g)$	573.050	2,124 %	Multiples $(59j + s)$	235.662	0,874 %				
Multiples group 89	141.414	0,524 %	Multiples group 163	68.943	0,256 %	Multiples group 239	43.564	0,161 %	
Multiples group 97	128.131	0,475 %	Multiples group 167	66.855	0,248 %	Multiples group 241	43.153	0,16 %	
Multiples group 101	122.098	0,453 %	Multiples group 173	64.156	0,238 %	Multiples group 251	41.212	0,153 %	
Multiples group 103	118.537	0,439 %	Multiples group 179	61.727	0,229 %	Multiples group 257	39.983	0,148 %	
Multiples group 107	112.655	0,418 %	Multiples group 181	60.797	0,225 %	Multiples group 263	38.915	0,144 %	
Multiples group 109	110.000	0,408 %	Multiples group 191	57.203	0,212 %	Multiples group 269	37.905	0,14 %	
Multiples group 113	105.034	0,389 %	Multiples group 193	56.272	0,209 %	Multiples group 271	37.475	0,139 %	
Multiples group 127	92.824	0,344 %	Multiples group 197	54.872	0,203 %	Multiples group 277	36.498	0,135 %	
Multiples group 131	89.279	0,331 %	Multiples group 199	54.100	0,2 %	Multiples group 281	35.761	0,133 %	
Multiples group 137	84.745	0,314 %	Multiples group 211	50.725	0,188 %	Multiples group 283	35.390	0,131 %	
Multiples group 139	82.963	0,308 %	Multiples group 223	47.673	0,177 %	Multiples group 293	34.012	0,126 %	
Multiples group 149	76.942	0,285 %	Multiples group 227	46.648	0,173 %	Multiples group 307	32.328	0,12 %	
Multiples group 151	75.319	0,279 %	Multiples group 229	46.141	0,171 %				
Multiples group 157	71.971	0,267 %	Multiples group 233	44.870	0,166 %	Total multiples in the groups 7 to 3	807 17.0	14.540 63,069	<i>)</i> %

$\underline{10^9} = (30n_1 + 10) = (30n_2 + 17) + (30n_3 + 23)$ 33.333.333 pairs Highest pri	me to divide 31.607 square root 31.622 $50.847.534$ primes lesser than 10^9
Sequence A $(30n_2 + 17)$	Sequence B $(30n_3 + 23)$
Total number of terms 33.333.333 Multiples $7m$, $11m$, 26,977.923 Primes greater than $10^{4.5}$ 6.355.410 Number of terms $(7j + a)$, $(11j + b)$, 26.977.320 Multiples $(7j + a)$, $(11j + b)$, 21.758.935 Primes $(7j + a)$, $(11j + b)$, 5.218.385	Total number of terms 33.333.333 Multiples $7m$, $11m$, 26.977.320 Primes greater than $10^{4.5}$ 6.356.013 Number of terms $(7j + a)$, $(11j + b)$, 26.977.923 Multiples $(7j + a)$, $(11j + b)$, 21.758.935 Primes $(7j + a)$, $(11j + b)$, 5.218.988
P_{PPx} = Number of prime pairs being both greater than $10^{4.5}$ P_{PPx} = 6.355.41 Not included the possible prime pairs in which one of them is lesser than $10^{4.5}$	0 - 5.218.385 = 6.356.013 - 5.218.988 = 1.137.025
$k_{ax} = 0.809337698$ $k_{ix} = 0.806563995$ $k_{ix} / k_{ax} = 0.996572873$	$k_{bx} = 0.809319608$ $k_{ix} = 0.806545967$ $k_{ix} / k_{bx} = 0.996572873$
$k_{jx} = 0,800303993$ $c_{jx} = 2,255995237$ $k_{0x} = 0,764416557$ $k_{0x} / k_{ax} = 0,944496418$	$k_{jx} = 0,806545967$ $k_{jx} / k_{bx} = 0,996572873$ $c_{jx} = 2,255948601$ $k_{0x} = 0,764399471$ $k_{0x} / k_{bx} = 0,944496418$
$\kappa_{0x} - 0.704410337$ $\kappa_{0x} / \kappa_{ax} = 0.7244420410$	$\kappa_{0x} - V_{x}/V_{yx} - V_{yx}/V_{yx} - V_{y$
$\underline{8.000.000 = 8 \cdot 10^6} = (30n_1 + 20) = (30n_2 + 1) + (30n_3 + 19)$ 266.667 pairs	Highest prime to divide 2.819
Sequence A $(30n_2 + 1)$	Sequence B $(30n_3 + 19)$
Total number of terms 266.667 Multiples $7m$, $11m$, 199.312+1 Primes greater than 2.828 67.354 Number of terms $(7j + a)$, $(11j + b)$, 199.314 Multiples $(7j + a)$, $(11j + b)$, 147.802+1 Primes $(7j + a)$, $(11j + b)$, 51.511	Total number of terms 266.667 Multiples $7m$, $11m$, 199.314 Primes greater than 2.828 67.353 Number of terms $(7j + a)$, $(11j + b)$, 199.312 Multiples $(7j + a)$, $(11j + b)$, 147.802 Primes $(7j + a)$, $(11j + b)$, 51.510
P_{PPx} = Number of prime pairs being both greater than 2.828 P_{PPx} = 67.354 – Not included the possible prime pairs in which one of them is lesser than 2.828	51.511 = 67.353 - 51.510 = 15.843
$k_{ax} = 0.747419065$ $k_{jx} = 0.741553528$ $k_{jx} / k_{ax} = 0.992152277$ $k_{jx} / k_{ax} = 0.992152277$	$k_{bx} = 0.747426565$ $k_{jx} = 0.741560969$ $c_{jx} = 2.695611584$ $k_{jx} / k_{bx} = 0.992152277$
$k_{0x} = 0.662070338$ $k_{0x} / k_{ax} = 0.885808736$	$k_{0x} = 0,662073659$ $k_{0x} / k_{hx} = 0,88580429$
$8.000.000 = 8 \cdot 10^6 = (30n_1 + 20) = (30n_2 + 7) + (30n_3 + 13)$ 266.667 pairs	Highest prime to divide 2.819
Sequence A $(30n_2 + 7)$	Sequence B $(30n_3 + 13)$
Total number of terms 266.667 Multiples $7m$, $11m$, 199.224 Primes greater than 2.828 67.443 Number of terms $(7j + a)$, $(11j + b)$, 199.241 Multiples $(7j + a)$, $(11j + b)$, 147.663 Primes $(7j + a)$, $(11j + b)$, 51.578	Total number of terms 266.667 Multiples $7m$, $11m$, 199.241 Primes greater than 2.828 67.426 Number of terms $(7j + a)$, $(11j + b)$, 199.224 Multiples $(7j + a)$, $(11j + b)$, 147.663 Primes $(7j + a)$, $(11j + b)$, 51.561
P_{PPx} = Number of prime pairs being both greater than 2.828 P_{PPx} = 67.443 – Not included the possible prime pairs in which one of them is lesser than 2.828	51.578 = 67.426 - 51.561 = 15.865
$k_{ax} = 0,747089066$ $k_{jx} = 0,741127579$ $k_{jx} = 2,732174197$ $k_{0x} = 0,661499827$ $k_{0x} / k_{ax} = 0,885436364$	$k_{bx} = 0,747152816$ $k_{jx} = 0,74119082$ $k_{jx} = 2,732386249$ $k_{0x} = 0,661556274$ $k_{0x} = 0,885436365$
$\underline{80.000.000 = 8 \cdot 10^7} = (30n_1 + 20) = (30n_2 + 1) + (30n_3 + 19)$ 2.666.667 pairs	Highest prime to divide 8.941
Sequence A $(30n_2+1)$	Sequence B $(30n_3 + 19)$
Total number of terms 2.666.667 Multiples $7m$, $11m$, 2.083.272+1 Primes greater than 8.944 583.394 Number of terms $(7j + a)$, $(11j + b)$, 2.083.493 Multiples $(7j + a)$, $(11j + b)$, 1.619.431+1 Primes $(7j + a)$, $(11j + b)$, 464.061	Total number of terms 2.666.667 Multiples $7m$, $11m$, 2.083.493 Primes greater than 8.944 583.174 Number of terms $(7j + a)$, $(11j + b)$, 2.083.272 Multiples $(7j + a)$, $(11j + b)$, 1.619.431 Primes $(7j + a)$, $(11j + b)$, 463.841
P_{PPx} = Number of prime pairs being both greater than 8.944 P_{PPx} = 583.394 Not included the possible prime pairs in which one of them is lesser than 8.944	- 464.061 = 583.174 - 463.841 = 119.333
$k_{ax} = 0.781226902$ $k_{jx} = 0.77726731$ $c_{jx} = 2.438913946$ $k_{0x} = 0.719992295$ $k_{0x} / k_{ax} = 0.921617385$	$k_{bx} = 0.781309777$ $k_{jx} = 0.777349765$ $c_{jx} = 2.438924811$ $k_{0x} = 0.720068328$ $k_{jx} / k_{bx} = 0.921616942$

$80.000.000 = 8 \cdot 10^7 = (30n_1 + 20) = (30n_2 + 7) + (30n_3 + 13)$ 2.666.667 pairs	Highest prime to divide 8.941
Sequence A $(30n_2 + 7)$	Sequence B $(30n_3 + 13)$
Total number of terms 2.666.667 Multiples $7m$, $11m$, 2.083.064 Primes greater than 8.944 583.603 Number of terms $(7j + a)$, $(11j + b)$, 2.083.030 Multiples $(7j + a)$, $(11j + b)$, 1.619.203 Primes $(7j + a)$, $(11j + b)$, 463.827	Total number of terms 2.666.667 Multiples $7m$, $11m$, 2.083.030 Primes greater than 8.944 583.637 Number of terms $(7j + a)$, $(11j + b)$, 2.083.064 Multiples $(7j + a)$, $(11j + b)$, 1.619.203 Primes $(7j + a)$, $(11j + b)$, 463.861
P_{PPx} = Number of prime pairs being both greater than 8.944 P_{PPx} = 583.603 Not included the possible prime pairs in which one of them is lesser than 8.944	- 463.827 = 583.637 - 463.861 = 119.776
$k_{ax} = 0.781148902$ $k_{jx} = 0.777330619$ $k_{jx} / k_{ax} = 0.995111965$ $c_{jx} = 2.350453759$ $k_{0x} = 0.719829722$ $k_{0x} / k_{ax} = 0.921501291$	$k_{bx} = 0.781136152$ $k_{jx} = 0.777317931$ $k_{jx} / k_{bx} = 0.995111965$ $c_{jx} = 2.350418595$ $k_{0x} = 0.719817973$ $k_{0x} / k_{bx} = 0.921501291$
$9.000.000 = 9.10^6 = (30n_1 + 30) = (30n_2 + 1) + (30n_3 + 29)$ 300.000 pairs	Highest prime to divide 2.999
Sequence A $(30n_2 + 1)$	Sequence B $(30n_3 + 29)$
Total number of terms 300.000 Multiples $7m$, $11m$, 224.798+1 Primes greater than 3.000 75.201 Number of terms $(7j + a)$, $(11j + b)$, 224.776 Multiples $(7j + a)$, $(11j + b)$, 167.109+1 Primes $(7j + a)$, $(11j + b)$, 57.666	Total number of terms 300.000 Multiples $7m$, $11m$, 224.776 Primes greater than 3.000 75.224 Number of terms $(7j + a)$, $(11j + b)$, 224.798 Multiples $(7j + a)$, $(11j + b)$, 167.109 Primes $(7j + a)$, $(11j + b)$, 57.689
P_{PPx} = Number of prime pairs being both greater than 3.000 P_{PPx} = 75.201 – Not included the possible prime pairs in which one of them is lesser than 3.000	57.666 = 75.224 - 57.689 = 17.535
$k_{ax} = 0,749326666$ $k_{jx} = 0,743446809$ $k_{jx} = 2,743605177$ $k_{0x} = 0,66544026$ $k_{jx} / k_{ax} = 0,992153145$ $k_{0x} / k_{ax} = 0,888050952$	$k_{bx} = 0.749253333$ $k_{jx} = 0.743374051$ $c_{jx} = 2.741843369$ $k_{0x} = 0.665372176$ $k_{0x} / k_{bx} = 0.888047001$
$9.000.000 = 9 \cdot 10^{6} = (30n_{1} + 30) = (30n_{2} + 7) + (30n_{3} + 23)$ 300.000 pairs	Highest prime to divide 2.999
$\underline{9.000.000 = 9 \cdot 10^6} = (30n_1 + 30) = (30n_2 + 7) + (30n_3 + 23)$ 300.000 pairs Sequence A $(30n_2 + 7)$	Highest prime to divide 2.999 Sequence B $(30n_3 + 23)$
	•
Sequence A $(30n_2 + 7)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.699 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.509	Sequence B $(30n_3 + 23)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.699 Primes greater than 3.000 75.301 Number of terms $(7j + a)$, $(11j + b)$, 224.761 Multiples $(7j + a)$, $(11j + b)$, 167.190
Sequence A $(30n_2 + 7)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.699 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.509 P _{PPx} = Number of prime pairs being both greater than 3.000 P _{PPx} = $75.239 - 6$	Sequence B $(30n_3 + 23)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.699 Primes greater than 3.000 75.301 Number of terms $(7j + a)$, $(11j + b)$, 224.761 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.571
Sequence A $(30n_2 + 7)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.699 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.509 P _{PPx} = Number of prime pairs being both greater than 3.000 P _{PPx} = 75.239 – Not included the possible prime pairs in which one of them is lesser than 3.000 $k_{ax} = 0.749203333$ $k_{jx} = 0.744062056$ $k_{jx} / k_{ax} = 0.993137674$ $c_{jx} = 2.400922383$	Sequence B $(30n_3 + 23)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.699 Primes greater than 3.000 75.301 Number of terms $(7j + a)$, $(11j + b)$, 224.761 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.571 57.509 = 75.301 – 57.571 = 17.730 $k_{bx} = 0.748996666$ $k_{jx} = 0.743856807$ $c_{jx} = 2.400313332$
Sequence A $(30n_2 + 7)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.699 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.509 P _{PPx} = Number of prime pairs being both greater than 3.000 P _{PPx} = 75.239 – Not included the possible prime pairs in which one of them is lesser than 3.000 $k_{ax} = 0.749203333$ $k_{jx} = 0.744062056$ $k_{jx} / k_{ax} = 0.993137674$ $c_{jx} = 2.400922383$ $k_{0x} = 0.665156498$ $k_{0x} / k_{ax} = 0.887818391$	Sequence B $(30n_3 + 23)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.699 Primes greater than 3.000 75.301 Number of terms $(7j + a)$, $(11j + b)$, 224.761 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.571 • 57.509 = 75.301 – 57.571 = 17.730 $k_{bx} = 0.748996666$ $k_{jx} = 0.743856807$ $k_{jx} / k_{bx} = 0.993137674$ $c_{jx} = 2.400313332$ $k_{0x} = 0.664973015$ $k_{0x} / k_{bx} = 0.88781839$
Sequence A $(30n_2 + 7)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.699 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.509 P _{PPx} = Number of prime pairs being both greater than 3.000 P _{PPx} = $75.239 - 100000000000000000000000000000000000$	Sequence B $(30n_3 + 23)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.699 Primes greater than 3.000 75.301 Number of terms $(7j + a)$, $(11j + b)$, 224.761 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.571 $-57.509 = 75.301 - 57.571 = 17.730$ $k_{bx} = 0.748996666$ $k_{jx} = 0.74896666$ $k_{jx} = 0.743856807$ $c_{jx} = 2.400313332$ $k_{0x} = 0.664973015$ $k_{0x} / k_{bx} = 0.88781839$ Highest prime to divide 2.999
Sequence A $(30n_2 + 7)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.699 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.509 Pp _{Px} = Number of prime pairs being both greater than 3.000 Pp _{Px} = 75.239 – Not included the possible prime pairs in which one of them is lesser than 3.000 $k_{ax} = 0.749203333$ $k_{jx} = 0.744062056$ $k_{jx} / k_{ax} = 0.993137674$ $k_{jx} = 2.400922383$ $k_{0x} = 0.665156498$ $k_{0x} / k_{ax} = 0.887818391$ $\frac{9.000.000 = 9 \cdot 10^6}{6} = (30n_1 + 30) = (30n_2 + 11) + (30n_3 + 19)$ 300.000 pairs Sequence A $(30n_2 + 11)$ Total number of terms $(7j + a)$, $(11j + b)$, (75.300) Number of terms $(7j + a)$, $(11j + b)$, (75.300) Number of terms $(7j + a)$, $(11j + b)$, (75.676)	Sequence B $(30n_3 + 23)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.699 Primes greater than 3.000 75.301 Number of terms $(7j + a)$, $(11j + b)$, 224.761 Multiples $(7j + a)$, $(11j + b)$, 167.190 Primes $(7j + a)$, $(11j + b)$, 57.571 $-57.509 = 75.301 - 57.571 = 17.730$ $k_{bx} = 0.748996666$ $k_{jx} = 0.748956807$ $c_{jx} = 2.400313332$ $k_{0x} = 0.664973015$ $k_{0x} / k_{bx} = 0.88781839$ Highest prime to divide 2.999 Sequence B $(30n_3 + 19)$ Total number of terms 300.000 Multiples $7m$, $11m$, 224.761 Primes greater than 3.000 75.239 Number of terms $(7j + a)$, $(11j + b)$, 224.700 Multiples $(7j + a)$, $(11j + b)$, 224.700 Multiples $(7j + a)$, $(11j + b)$, 167.085

$\underline{9.000.000 = 9 \cdot 10^6} = (30n_1 + 30) = (30n_2 + 13) + (30n_3 + 17)$ 300.000 pairs	Highest prime to divide 2.999
Sequence A $(30n_2 + 13)$	Sequence B $(30n_3 + 17)$
Total number of terms 300.000 Multiples $7m$, $11m$, 224.749 Primes greater than 3.000 75.251 Number of terms $(7j + a)$, $(11j + b)$, 224.696 Multiples $(7j + a)$, $(11j + b)$, 167.079 Primes $(7j + a)$, $(11j + b)$, 57.617	Total number of terms 300.000 Multiples $7m$, $11m$, 224.696 Primes greater than 3.000 75.304 Number of terms $(7j + a)$, $(11j + b)$, 224.749 Multiples $(7j + a)$, $(11j + b)$, 167.079 Primes $(7j + a)$, $(11j + b)$, 57.670
$\begin{split} P_{PPx} &= \text{Number of prime pairs being both greater than 3.000} \qquad P_{PPx} = 75.251 - \\ \text{Not included the possible prime pairs in which one of them is lesser than 3.000} \end{split}$	57.617 = 75.304 – 57.670 = 17.634
$k_{ax} = 0,749163333$ $k_{jx} = 0,743577989$ $c_{jx} = 2,603269404$ $k_{0x} = 0,665098622$ $k_{0x} / k_{ax} = 0,88778854$	$k_{bx} = 0.748986666$ $k_{jx} = 0.74340264$ $c_{jx} = 2.602708519$ $k_{0x} = 0.664941779$ $k_{0x} = 0.887788539$
$\underline{90.000.000} = 9.10^{7} = (30n_{1} + 30) = (30n_{2} + 1) + (30n_{3} + 29)$ 3.000.000 p	pairs Highest prime to divide 9.479
Sequence A $(30n_2 + 1)$	Sequence B $(30n_3 + 29)$
Total number of terms 3.000.000 Multiples $7m$, $11m$, 2.348.173+1 Primes greater than 9.486 651.827-1 Number of terms $(7j + a)$, $(11j + b)$, 2.347.976 Multiples $(7j + a)$, $(11j + b)$, 1.829.138 Primes $(7j + a)$, $(11j + b)$, 518.838	Total number of terms 3.000.000 Multiples $7m$, $11m$, 2.347.976 Primes greater than 9.486 652.024 Number of terms $(7j + a)$, $(11j + b)$, 2.348.173 Multiples $(7j + a)$, $(11j + b)$, 1.829.138 Primes $(7j + a)$, $(11j + b)$, 519.035
P_{PPx} = Number of prime pairs being both greater than 9.486 P_{PPx} = 651.827 - Not included the possible prime pairs in which one of them is lesser than 9.486	- 518.838 = 652.024 - 519.035 = 132.989 (-1)
$k_{ax} = 0.782724333$ $k_{jx} = 0.779027553$ $c_{jx} = 2.309215414$ $k_{0x} = 0.722387707$ $k_{0x} / k_{ax} = 0.9922914589$	$k_{bx} = 0,782658666$ $k_{jx} = 0,778962197$ $c_{jx} = 2,309036271$ $k_{0x} = 0,722327102$ $k_{0x} / k_{bx} = 0,995277035$
$\underline{90.000.000} = 9.10^{7} = (30n_{1} + 30) = (30n_{2} + 7) + (30n_{3} + 23)$ 3.000.000 p	pairs Highest prime to divide 9.479
Sequence A $(30n_2 + 7)$	Sequence B $(30n_3 + 23)$
Total number of terms $3.000.000$ Multiples $7m$, $11m$, $2.348.028$ Primes greater than 9.486 651.972 Number of terms $(7j + a)$, $(11j + b)$, $2.347.948$ Multiples $(7j + a)$, $(11j + b)$, $1.829.330$ Primes $(7j + a)$, $(11j + b)$, 518.618	Total number of terms $3.000.000$ Multiples $7m$, $11m$, $2.347.948$ Primes greater than 9.486 652.052 Number of terms $(7j + a)$, $(11j + b)$, $2.348.028$ Multiples $(7j + a)$, $(11j + b)$, $1.829.330$ Primes $(7j + a)$, $(11j + b)$, 518.698
P_{PPx} = Number of prime pairs being both greater than 9.486 P_{PPx} = 651.972 - Not included the possible prime pairs in which one of them is lesser than 9.486	- 518.618 = 652.052 - 518.698 = 133.354
$k_{ax} = 0.782676$ $k_{jx} = 0.779118617$ $c_{jx} = 2.222960729$ $k_{0x} = 0.72232264$ $k_{0x} / k_{ax} = 0.992888449$	$k_{bx} = 0,782649333$ $k_{jx} = 0,779092072$ $k_{jx} = 2,222890318$ $k_{0x} = 0,72229803$ $k_{0x} / k_{bx} = 0,995454846$
$\underline{90.000.000 = 9.10^7} = (30n_1 + 30) = (30n_2 + 11) + (30n_3 + 19)$ 3.000.000 pairs	Highest prime to divide 9.479
Sequence A $(30n_2 + 11)$	Sequence B $(30n_3 + 19)$
Total number of terms $3.000.000$ Multiples $7m$, $11m$, $2.347.956$ Primes greater than 9.486 652.044 Number of terms $(7j + a)$, $(11j + b)$, $2.348.253$ Multiples $(7j + a)$, $(11j + b)$, $1.828.760$ Primes $(7j + a)$, $(11j + b)$, 519.493	Total number of terms 3.000.000 Multiples $7m$, $11m$, 2.348.253 Primes greater than 9.486 651.747 Number of terms $(7j + a)$, $(11j + b)$, 2.347.956 Multiples $(7j + a)$, $(11j + b)$, 1.828.760 Primes $(7j + a)$, $(11j + b)$, 519.196
P_{PPx} = Number of prime pairs being both greater than 9.486 P_{PPx} = 652.044 - Not included the possible prime pairs in which one of them is lesser than 9.486	- 519.493 = 651.747 - 519.196 = 132.551
$k_{ax} = 0.782652$ $k_{jx} = 0.778774689$ $c_{jx} = 2.420244777$ $k_{0x} = 0.722328045$ $k_{jx} / k_{ax} = 0.995045932$ $k_{0x} / k_{ax} = 0.922923655$	$k_{bx} = 0.782751$ $k_{jx} = 0.778873198$ $c_{jx} = 2.420526556$ $k_{0x} = 0.722419415$ $k_{jx} / k_{bx} = 0.995045932$ $k_{0x} / k_{bx} = 0.922923656$

$90.000.000 = 9 \cdot 10^{7} = (30n_{1} + 30) = (30n_{2} + 13) + (30n_{3} + 17)$ 3.000.000 pair	irs Highest prime to divide 9.479
Sequence A $(30n_2 + 13)$	Sequence B $(30n_3 + 17)$
Total number of terms 3.000.000 Multiples $7m$, $11m$, 2.347.924 Primes greater than 9.486 652.076 Number of terms $(7j + a)$, $(11j + b)$, 2.347.962 Multiples $(7j + a)$, $(11j + b)$, 1.828.299 Primes $(7j + a)$, $(11j + b)$, 519.663	Total number of terms 3.000.000 Multiples $7m$, $11m$, 2.347.962 Primes greater than 9.486 652.038 Number of terms $(7j + a)$, $(11j + b)$, 2.347.924 Multiples $(7j + a)$, $(11j + b)$, 1.828.299 Primes $(7j + a)$, $(11j + b)$, 519.625
P_{PPx} = Number of prime pairs being both greater than 9.486 P_{PPx} = 652.07 Not included the possible prime pairs in which one of them is lesser than 9.486	6 - 519.663 = 652.038 - 519.625 = 132.413
$k_{ax} = 0.782641333$ $k_{jx} = 0.778674867$ $k_{jx} = 0.778675008$ $k_{0x} = 0.722280002$ $k_{0x} / k_{ax} = 0.9922874848$	$k_{bx} = 0.782654$ $k_{jx} = 0.77868747$ $k_{jx} = 0.77868747$ $k_{jx} = 0.994931949$ $k_{jx} = 0.722291692$ $k_{0x} = 0.722291692$ $k_{0x} = 0.922874848$
$\underline{300.000.000 = 3 \cdot 10^8} = (30n_1 + 30) = (30n_2 + 1) + (30n_3 + 29)$ 10 ⁷ pairs	Highest prime to divide 17.317
Sequence A $(30n_2 + 1)$	Sequence B $(30n_3 + 29)$
Total number of terms $10.000.000$ Multiples $7m$, $11m$, $7.969.053+1$ Primes greater than 17.320 $2.030.946$ Number of terms $(7j + a)$, $(11j + b)$, $7.968.588$ Multiples $(7j + a)$, $(11j + b)$, $6.324.515+1$ Primes $(7j + a)$, $(11j + b)$, $1.644.072$	Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.588 Primes greater than 17.320 2.031.412 Number of terms $(7j + a)$, $(11j + b)$, 7.969.053 Multiples $(7j + a)$, $(11j + b)$, 6.324.515 Primes $(7j + a)$, $(11j + b)$, 1.644.538
P_{PPx} = Number of prime pairs being both greater than 17.320 P_{PPx} = 2.030.5 Not included the possible prime pairs in which one of them is lesser than 17.320	246 - 1.644.072 = 2.031.412 - 1.644.538 = 386.874
$k_{ax} = 0.7969053$ $k_{jx} = 0.793680762$ $c_{jx} = 2.308152416$ $k_{0x} = 0.745131006$ $k_{0x} / k_{ax} = 0.935030807$	$k_{bx} = 0.7968588$ $k_{jx} = 0.79363445$ $c_{jx} = 2.307957765$ $k_{0x} = 0.745087434$ $k_{0x} / k_{bx} = 0.93503069$
$\underline{300.000.000 = 3.10^8} = (30n_1 + 30) = (30n_2 + 7) + (30n_3 + 23)$ 10^7 pairs	Highest prime to divide 17.317
$300.000.000 = 3 \cdot 10^{8} = (30n_{1} + 30) = (30n_{2} + 7) + (30n_{3} + 23)$ 10^{7} pairs Sequence A $(30n_{2} + 7)$	Highest prime to divide 17.317 Sequence B $(30n_3 + 23)$
Sequence A $(30n_2 + 7)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.657 Primes greater than 17.320 2.031.343 Number of terms $(7j + a)$, $(11j + b)$, 7.968.695 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.891	Sequence B $(30n_3 + 23)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.695 Primes greater than 17.320 2.031.305 Number of terms $(7j + a)$, $(11j + b)$, 7.968.657 Multiples $(7j + a)$, $(11j + b)$, 6.323.804
Sequence A $(30n_2 + 7)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.657 Primes greater than 17.320 $2.031.343$ Number of terms $(7j + a)$, $(11j + b)$, 7.968.695 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.891 P _{PPx} = Number of prime pairs being both greater than 17.320 $P_{PPx} = 2.031.3$	Sequence B $(30n_3 + 23)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.695 Primes greater than 17.320 2.031.305 Number of terms $(7j + a)$, $(11j + b)$, 7.968.657 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.853
Sequence A $(30n_2 + 7)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.657 Primes greater than 17.320 2.031.343 Number of terms $(7j + a)$, $(11j + b)$, 7.968.695 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.891 P _{PPx} = Number of prime pairs being both greater than 17.320 P _{PPx} = 2.031.3 Not included the possible prime pairs in which one of them is lesser than 17.320 $k_{ax} = 0.7968657$ $k_{jx} = 0.793580881$ $k_{jx} / k_{ax} = 0.995877826$ $c_{jx} = 2.350215256$	Sequence B $(30n_3 + 23)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.695 Primes greater than 17.320 2.031.305 Number of terms $(7j + a)$, $(11j + b)$, 7.968.657 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.853 343 - 1.644.891 = 2.031.305 - 1.644.853 = 386.452 $k_{bx} = 0.7968695$ $k_{jx} = 0.793584665$ $k_{jx} = 0.793584665$ $k_{jx} = 2.350225822$
Sequence A $(30n_2 + 7)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.657 Primes greater than 17.320 2.031.343 Number of terms $(7j + a)$, $(11j + b)$, 7.968.695 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.891 P _{PPx} = Number of prime pairs being both greater than 17.320 P _{PPx} = 2.031.3 Not included the possible prime pairs in which one of them is lesser than 17.320 $k_{ax} = 0.7968657$ $k_{jx} = 0.793580881$ $k_{jx} / k_{ax} = 0.995877826$ $c_{jx} = 2.350215256$ $k_{0x} = 0.745084609$ $k_{0x} / k_{ax} = 0.935019049$	Sequence B $(30n_3 + 23)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.695 Primes greater than 17.320 2.031.305 Number of terms $(7j + a)$, $(11j + b)$, 7.968.657 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.853 343 – 1.644.891 = 2.031.305 – 1.644.853 = 386.452 $k_{bx} = 0.7968695$ $k_{jx} = 0.7968695$ $k_{jx} = 0.793584665$ $c_{jx} = 2.350225822$ $k_{0x} = 0.745088162$ $k_{0x} / k_{bx} = 0.935019048$
Sequence A $(30n_2 + 7)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.657 Primes greater than 17.320 2.031.343 Number of terms $(7j + a)$, $(11j + b)$, 7.968.695 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.891 P _{PPx} = Number of prime pairs being both greater than 17.320 P _{PPx} = 2.031.3 Not included the possible prime pairs in which one of them is lesser than 17.320 $k_{ax} = 0.7968657$ $k_{jx} = 0.793580881$ $k_{jx} / k_{ax} = 0.995877826$ $c_{jx} = 2.350215256$ $k_{0x} = 0.745084609$ $k_{0x} / k_{ax} = 0.935019049$ $\frac{300.000.000 = 3 \cdot 10^8}{300.000.000} = (30n_1 + 30) = (30n_2 + 11) + (30n_3 + 19)$ 10^7 pairs	Sequence B $(30n_3 + 23)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.695 Primes greater than 17.320 2.031.305 Number of terms $(7j + a)$, $(11j + b)$, 7.968.657 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.853 343 – 1.644.891 = 2.031.305 – 1.644.853 = 386.452 $k_{bx} = 0.7968695$ $k_{jx} = 0.7968695$ $k_{jx} = 0.793584665$ $c_{jx} = 2.350225822$ $k_{0x} = 0.745088162$ $k_{0x} / k_{bx} = 0.935019048$ Highest prime to divide 17.317
Sequence A $(30n_2 + 7)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.657 Primes greater than 17.320 2.031.343 Number of terms $(7j + a)$, $(11j + b)$, 7.968.695 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.891 P _{PPx} = Number of prime pairs being both greater than 17.320 P _{PPx} = 2.031.3 Not included the possible prime pairs in which one of them is lesser than 17.320 $k_{ax} = 0.7968657$ $k_{jx} = 0.793580881$ $k_{jx} / k_{ax} = 0.995877826$ $c_{jx} = 2.350215256$ $k_{0x} = 0.745084609$ $k_{0x} / k_{ax} = 0.935019049$ 300.000.000 = $3 \cdot 10^8 = (30n_1 + 30) = (30n_2 + 11) + (30n_3 + 19)$ 10^7 pairs Sequence A $(30n_2 + 11)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.686 Primes greater than 17.320 2.031.314 Number of terms $(7j + a)$, $(11j + b)$, 7.968.872 Multiples $(7j + a)$, $(11j + b)$, 7.968.72 Multiples $(7j + a)$, $(11j + b)$, 1.644.788	Sequence B $(30n_3 + 23)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.695 Primes greater than 17.320 2.031.305 Number of terms $(7j + a)$, $(11j + b)$, 7.968.657 Multiples $(7j + a)$, $(11j + b)$, 6.323.804 Primes $(7j + a)$, $(11j + b)$, 1.644.853 $343 - 1.644.891 = 2.031.305 - 1.644.853 = 386.452$ $k_{bx} = 0.7968695$ $k_{jx} = 0.7968695$ $k_{jx} = 0.793584665$ $c_{jx} = 2.350225822$ $k_{0x} = 0.745088162$ $k_{0x} / k_{bx} = 0.995877826$ Highest prime to divide 17.317 Sequence B $(30n_3 + 19)$ Total number of terms 10.000.000 Multiples $7m$, $11m$, 7.968.872 Primes greater than 17.320 2.031.128 Number of terms $(7j + a)$, $(11j + b)$, 7.968.686 Multiples $(7j + a)$, $(11j + b)$, 7.968.686 Multiples $(7j + a)$, $(11j + b)$, 7.968.686

```
300.000.000 = 3 \cdot 10^8 = (30n_1 + 30) = (30n_2 + 13) + (30n_3 + 17)
                                                                       10<sup>7</sup> pairs
                                                                                          Highest prime to divide 17.317
Sequence A (30n_2 + 13)
                                                                                          Sequence B (30n_3 + 17)
Total number of terms
                                            10.000.000
                                                                                          Total number of terms
                                                                                                                                      10.000.000
                                             7.968.552
                                                                                                                                       7.968.561
       Multiples 7m, 11m,...
                                                                                                 Multiples 7m, 11m,...
                                             2.031.448
                                                                                                                                       2.031.439
       Primes greater than 17.320
                                                                                                 Primes greater than 17.320
Number of terms (7j + a), (11j + b),...
                                             7.968.561
                                                                                          Number of terms (7j + a), (11j + b),...
                                                                                                                                       7.968.552
       Multiples (7j + a), (11j + b),...
                                             6.324.315
                                                                                                 Multiples (7j + a), (11j + b),...
                                                                                                                                       6.324.315
                                                                                                 Primes (7j + a), (11j + b),...
       Primes (7j + a), (11j + b),...
                                             1.644.246
                                                                                                                                       1.644.237
                                                                       P_{PPx} = 2.031.448 - 1.644.246 = 2.031.439 - 1.644.237 = 387.202
P_{PPx} = Number of prime pairs being both greater than 17.320
Not included the possible prime pairs in which one of them is lesser than 17.320
k_{ax} = 0.7968552
                                                                                          k_{bx} = 0.7968561
k_{ix} = 0.793658353
                                  k_{ix} / k_{ax} = 0.99598817
                                                                                          k_{ix} = 0.793659249
                                                                                                                               k_{ix} / k_{bx} = 0.99598817
c_{jx} = 2,287981074
                                                                                          c_{jx} = 2,287983736
                                                                                          k_{0x} = 0,745067987
                                                                                                                               k_{0x} / k_{bx} = 0,935009454
k_{0x} = 0,745067145
                                  k_{0x} / k_{ax} = 0.935009453
2^{22} = 4.194.304 = (30n_1 + 4) = (30n_2 + 11) + (30n_3 + 23)
                                                                        139.810 pairs
                                                                                               Highest prime to divide 2.039
                                                                                          Sequence B (30n_3 + 23)
Sequence A (30n_2 + 11)
                                            139.810
                                                                                          Total number of terms
                                                                                                                                     139.810
Total number of terms
       Multiples 7m, 11m,...
                                            102.838
                                                                                                 Multiples 7m, 11m,...
                                                                                                                                      102.841
       Primes greater than 2.048
                                             36.972
                                                                                                 Primes greater than 2.048
                                                                                                                                       36.969
Number of terms (7j + a), (11j + b),...
                                                                                                                                      102.838
                                            102.841
                                                                                          Number of terms (7j + a), (11j + b),...
       Multiples (7j + a), (11j + b),...
                                             74.981
                                                                                                 Multiples (7j + a), (11j + b),...
                                                                                                                                       74.981
       Primes (7j + a), (11j + b),...
                                                                                                 Primes (7j + a), (11j + b),...
                                             27,860
                                                                                                                                       27.857
P_{PPx} = Number of prime pairs being both greater than 2.048
                                                                       P_{PPx} = 36.972 - 27.860 = 36.969 - 27.857 = 9.112
Not included the possible prime pairs in which one of them is lesser than 2.048
k_{ax} = 0,735555396
                                                                                          k_{bx} = 0,735576854
                                                                                          k_{ix} = 0,729117641
k_{ix} = 0.729096372
                                  k_{ix} / k_{ax} = 0,991218846
                                                                                                                               k_{ix} / k_{bx} = 0,991218846
                                                                                          c_{jx} = 2,705221428
c_{ix} = 2,70514953
k_{0x} = 0,640494043
                                  k_{0x} / k_{ax} = 0.870762482
                                                                                          k_{0x} = 0,640512728
                                                                                                                               k_{0x} / k_{bx} = 0.870762482
2^{23} = 8.388.608 = (30n_1 + 8) = (30n_2 + 1) + (30n_3 + 7)
                                                              279.621 pairs
                                                                                          Highest prime to divide 2.887
Sequence A (30n_2 + 1)
                                                                                          Sequence B (30n_3 + 7)
                                                                                          Total number of terms
Total number of terms
                                           279.621
                                                                                                                                     279.621
       Multiples 7m, 11m,...
                                            209.240+1
                                                                                                 Multiples 7m, 11m,...
                                                                                                                                     209,137
                                             70.380
                                                                                                                                       70.484
       Primes greater than 2.896
                                                                                                 Primes greater than 2.896
Number of terms (7j + a), (11j + b),...
                                            209.137
                                                                                          Number of terms (7j + a), (11j + b),...
                                                                                                                                     209.240
                                            155.356+1
                                                                                                 Multiples (7j + a), (11j + b),...
       Multiples (7j + a), (11j + b),...
                                                                                                                                     155,356
       Primes (7j + a), (11j + b),...
                                             53,780
                                                                                                 Primes (7j + a), (11j + b),...
                                                                                                                                       53.884
P_{PPx} = Number of prime pairs being both greater than 2.896
                                                                       P_{PPx} = 70.380 - 53.780 = 70.484 - 53.884 = 16.600
Not included the possible prime pairs in which one of them is lesser than 2.896
k_{ax} = 0,748298589
                                                                                          k_{bx} = 0,747930234
                                                                                          k_{jx} = 0,742477537
k_{jx} = 0,742843208
                                  k_{ix} / k_{ax} = 0.992709619
                                                                                                                               k_{ix} / k_{bx} = 0.992709619
c_{ix} = 2,526146914
                                                                                          c_{ix} = 2,5233892
k_{0x} = 0.663473002
                                                                                          k_{0x} = 0.663143231
                                                                                                                               k_{0x} / k_{bx} = 0.886637818
                                  k_{0x} / k_{ax} = 0.886642058
2^{24} = 16.777.216 = (30n_1 + 16) = (30n_2 + 17) + (30n_3 + 29)
                                                                   559.240 pairs
                                                                                          Highest prime to divide 4.093
                                                                                          Sequence B (30n_3 + 29)
Sequence A (30n_2 + 17)
                                           559.240
                                                                                                                                     559.240
Total number of terms
                                                                                          Total number of terms
       Multiples 7m, 11m,...
                                            424.629
                                                                                                 Multiples 7m, 11m,...
                                                                                                                                     424.501
       Primes greater than 4.096
                                            134.611
                                                                                                 Primes greater than 4.096
                                                                                                                                     134.739
                                                                                                                                     424.629
Number of terms (7j + a), (11j + b),...
                                            424.501
                                                                                          Number of terms (7j + a), (11j + b),...
       Multiples (7j + a), (11j + b),...
                                                                                                 Multiples (7j + a), (11j + b),...
                                           320,414
                                                                                                                                     320,414
       Primes (7j + a), (11j + b),...
                                           104.087
                                                                                                 Primes (7j + a), (11j + b),...
                                                                                                                                     104.215
P_{PPx} = Number of prime pairs being both greater than 4.096
                                                                       P_{PPx} = 134.611 - 104.087 = 134.739 - 104.215 = 30.524
Not included the possible prime pairs in which one of them is lesser than 4.096
                                                                                          k_{bx} = 0,759067663
k_{ax} = 0,759296545
                                                                                          k_{jx} = 0,754573992
k_{jx} = 0,754801519
                                  k_{jx} / k_{ax} = 0,994080013
                                                                                                                               k_{jx} / k_{bx} = 0,994080013
c_{jx} = 2,282775574
                                                                                          c_{jx} = 2,282139908
                                                                                          k_{0x} = 0.682690464
k_{0x} = 0.682896316
                                  k_{0x} / k_{ax} = 0.899380249
                                                                                                                               k_{0x} / k_{bx} = 0.899380249
```

```
2^{25} = 33.554.432 = (30n_1 + 2) = (30n_2 + 13) + (30n_3 + 19)
                                                                   1.118.481 pairs
                                                                                          Highest prime to divide 5.791
                                                                                          Sequence B (30n_3 + 19)
Sequence A (30n_2 + 13)
Total number of terms
                                            1.118.481
                                                                                          Total number of terms
                                                                                                                                     1.118.481
                                             860.580
                                                                                                                                       860.726
       Multiples 7m, 11m,...
                                                                                                 Multiples 7m, 11m,...
                                             257.901
                                                                                                 Primes greater than 5.792
       Primes greater than 5.792
                                                                                                                                       257,755
Number of terms (7j + a), (11j + b),...
                                              860.726
                                                                                          Number of terms (7j + a), (11j + b),...
                                                                                                                                       860.580
       Multiples (7j + a), (11j + b),...
                                                                                                 Multiples (7j + a), (11j + b),...
                                              658.409
                                                                                                                                       658.409
       Primes (7j + a), (11j + b),...
                                              202.317
                                                                                                 Primes (7j + a), (11j + b),...
                                                                                                                                       202.171
                                                                       P_{PPx} = 257.901 - 202.317 = 257.755 - 202.171 = 55.584
P_{PPx} = Number of prime pairs being both greater than 5.792
Not included the possible prime pairs in which one of them is lesser than 5.792
k_{ax} = 0.769418523
                                                                                          k_{bx} = 0.769549058
k_{ix} = 0.764946103
                                  k_{ix} / k_{ax} = 0.994187272
                                                                                                                               k_{ix} / k_{bx} = 0.994187272
                                                                                          k_{ix} = 0.765075879
c_{jx} = 2,476961963
                                                                                          c_{jx} = 2,477347165
                                  k_{0x} / k_{ax} = 0,910256332
                                                                                                                               k_{0x} / k_{bx} = 0,910256333
k_{0x} = 0,700368084
                                                                                          k_{0x} = 0.700486904
\underline{2^{26} = 67.108.864} = (30n_1 + 4) = (30n_2 + 11) + (30n_3 + 23)
                                                                   2.236.962 pairs
                                                                                          Highest prime to divide 8.191
                                                                                          Sequence B (30n_3 + 23)
Sequence A (30n_2 + 11)
                                           2.236,962
                                                                                                                                     2.236,962
                                                                                          Total number of terms
Total number of terms
       Multiples 7m, 11m,...
                                            1.742.437
                                                                                                 Multiples 7m, 11m,...
                                                                                                                                     1.742.039
       Primes greater than 8.192
                                             494.525
                                                                                                 Primes greater than 8.192
                                                                                                                                       494.923
Number of terms (7j + a), (11j + b),...
                                            1.742.039
                                                                                          Number of terms (7j + a), (11j + b),...
                                                                                                                                     1.742.437
       Multiples (7j + a), (11j + b),...
                                           1.350.052
                                                                                                 Multiples (7j + a), (11j + b),...
                                                                                                                                     1.350.052
       Primes (7j + a), (11j + b),...
                                                                                                 Primes (7j + a), (11j + b),...
                                             391.987
                                                                                                                                       392.385
                                                                       P_{PPx} = 494.525 - 391.987 = 494.923 - 392.385 = 102.538
P_{PPx} = Number of prime pairs being both greater than 8.192
Not included the possible prime pairs in which one of them is lesser than 8.192
k_{ax} = 0,778930084
                                                                                          k_{bx} = 0,778752164
                                                                                          k_{ix} = 0,774806779
k_{ix} = 0,774983797
                                  k_{ix} / k_{ax} = 0,994933708
                                                                                                                               k_{ix} / k_{bx} = 0,994933708
                                                                                          c_{jx} = 2,377536801
c_{ix} = 2,378037211
\vec{k}_{0x} = 0,716122909
                                  k_{0x} / k_{ax} = 0,919367377
                                                                                          k_{0x} = 0,715959336
                                                                                                                               k_{0x} / k_{bx} = 0.919367378
2^{27} = 134.217.728 = (30n_1 + 8) = (30n_2 + 1) + (30n_3 + 7)
                                                                   4.473.925 pairs
                                                                                              Highest prime to divide 11.579
Sequence A (30n_2 + 1)
                                                                                          Sequence B (30n_3 + 7)
                                                                                          Total number of terms
                                                                                                                                     4.473.925
Total number of terms
                                           4.473.925
                                           3.523.978+1
       Multiples 7m, 11m,...
                                                                                                 Multiples 7m, 11m,...
                                                                                                                                     3,523,523
                                              949.946
                                                                                                                                       950.402
       Primes greater than 11.585
                                                                                                 Primes greater than 11.585
Number of terms (7j + a), (11j + b),...
                                           3.523.523
                                                                                          Number of terms (7j + a), (11j + b),...
                                                                                                                                     3.523.978
       Multiples (7j + a), (11j + b),...
                                           2.762.690+1
                                                                                                 Multiples (7j + a), (11j + b),...
                                                                                                                                     2,762,690
       Primes (7j + a), (11j + b),...
                                              760.832
                                                                                                 Primes (7j + a), (11j + b),...
                                                                                                                                       761.288
P_{PPx} = Number of prime pairs being both greater than 11.585
                                                                       P_{PPx} = 949.946 - 760.832 = 950.402 - 761.288 = 189.114
Not included the possible prime pairs in which one of them is lesser than 11.585
k_{ax} = 0,787670334
                                                                                          k_{bx} = 0,787568633
                                                                                          k_{jx} = 0,783969139
k_{ix} = 0.784070375
                                  k_{ix} / k_{ax} = 0.995429611
                                                                                                                               k_{ix} / k_{bx} = 0.995429611
c_{ix} = 2,354564853
                                                                                          c_{ix} = 2,354141254
k_{0x} = 0,730398752
                                  k_{0x} / k_{ax} = 0.927289908
                                                                                          k_{0x} = 0.730304239
                                                                                                                               k_{0x} / k_{bx} = 0.927289645
2^{28} = 268.435.456 = (30n_1 + 16) = (30n_2 + 17) + (30n_3 + 29)
                                                                                          Highest prime to divide 16.381
                                                                  8.947.848 pairs
                                                                                          Sequence B (30n_3 + 29)
Sequence A (30n_2 + 17)
                                            8.947.848
                                                                                                                                     8.947.848
Total number of terms
                                                                                          Total number of terms
       Multiples 7m, 11m,...
                                           7.119.164
                                                                                                 Multiples 7m, 11m,...
                                                                                                                                     7.119.276
       Primes greater than 16.384
                                           1.828.684
                                                                                                 Primes greater than 16.384
                                                                                                                                     1.828.572
Number of terms (7j + a), (11j + b),...
                                           7.119.276
                                                                                          Number of terms (7j + a), (11j + b),...
                                                                                                                                     7.119.164
       Multiples (7j + a), (11j + b),...
                                           5.640.478
                                                                                                 Multiples (7j + a), (11j + b),...
                                                                                                                                     5.640.478
       Primes (7j + a), (11j + b),...
                                           1,478,798
                                                                                                 Primes (7j + a), (11j + b),...
                                                                                                                                     1.478.686
P_{PPx} = Number of prime pairs being both greater than 16.384
                                                                       P_{PPx} = 1.828.684 - 1.478.798 = 1.828.572 - 1.478.686 = 349.886
Not included the possible prime pairs in which one of them is lesser than 16.384
                                                                                          k_{bx} = 0,795641141
k_{ax} = 0,795628624
                                                                                          k_{jx} = 0,792294994
                                                                                                                               k_{jx} / k_{bx} = 0,9957944
k_{jx} = 0,792282529
                                  k_{jx} / k_{ax} = 0,9957944
c_{jx} = 2,36480182
                                                                                          c_{jx} = 2,364835628
                                                                                          \vec{k}_{0x} = 0.74314795
k_{0x} = 0.743136259
                                  k_{0x} / k_{ax} = 0.934024035
                                                                                                                               k_{0x} / k_{bx} = 0.934024035
```

= (3011) 1	$(5) = (30n_4 + 23) + (30n_5 + 23)$	4.473.924 pairs Highest prime to divide 16.381
sequence A $(30n_4 + 23)$ from	om 0 to 134.217.728	Sequence B $(30n_5 + 23)$ from 134.217.728 to 268.435.456
Total number of terms	4.473.924	Total number of terms 4.473.924
Multiples 7 <i>m</i> , 11 <i>m</i> , Primes greater than 16.	3.523.743 384 950.181	Multiples 7 <i>m</i> , 11 <i>m</i> , 3.595.452 Primes greater than 16.384 878.472
Number of terms $(7j + a)$, $(11j)$		Number of terms $(7j + a)$, $(11j + b)$, 3.523.743
Multiples $(7j + a)$, $(11j)$		Multiples $(7j + a)$, $(11j + b)$, 2.820.494
Primes $(7j + a), (11j)$	+ b), 774.958	Primes $(7j + a), (11j + b), \dots$ 703.249
	peing both greater than 16.384 the pairs in which one of them is lesser	$\begin{split} P_{PPx} &= 950.181 - 774.958 = 878.472 - 703.249 = 175.223 \\ than \ 16.384 \end{split}$
$x_{ax} = 0.787617983$		$k_{bx} = 0,803646195$
$z_{jx} = 0,784461592$	$k_{jx} / k_{ax} = 0,995992484$	$k_{jx} = 0.80042557$ $k_{jx} / k_{bx} = 0.995992484$
$c_{jx} = 2,237432384$	1 /1 0.024116542	$c_{jx} = 2,279504226$
$k_{0x} = 0,735726988$	$k_{0x} / k_{ax} = 0,934116542$	$k_{0x} = 0,750699204$ $k_{0x} / k_{bx} = 0,934116541$
$2^{29} = 536.870.912 = (30n_1 + 2)^{-1}$	$a = (30n_0 + 13) + (30n_0 + 19)$ 17.8	395.697 pairs Highest prime to divide 23.167
Sequence A $(30n_2 + 13)$	$1 = (30h_2 + 13) + (30h_3 + 17)$	Sequence B $(30n_3 + 19)$
/	17 995 697	
Fotal number of terms Multiples $7m$, $11m$,	17.895.697 14.371.638	Total number of terms 17.895.697 Multiples 7 <i>m</i> , 11 <i>m</i> , 14.372.432
Primes greater than 23.		Primes greater than 23.170 3.523.265
Number of terms $(7j + a)$, $(11j)$		Number of terms $(7j + a)$, $(11j + b)$, 14.371.638
Multiples $(7j + a)$, $(11j)$	+ b), 11.498.803	Multiples $(7j + a)$, $(11j + b)$, 11.498.803
Primes $(7j + a), (11j)$	+ b), 2.873.629	Primes $(7j + a), (11j + b),$ 2.872.835
	peing both greater than 23.170 the pairs in which one of them is lesser	$P_{PPx} = 3.524.059 - 2.873.629 = 3.523.265 - 2.872.835 = 650.430 \label{eq:ppx}$ than 23.170
$k_{ax} = 0,803077857$ $k_{ix} = 0,800059655$	$k_{ix} / k_{ax} = 0.996241707$	$k_{bx} = 0.803122225$ $k_{ix} = 0.800103857$ $k_{ix}/k_{bx} = 0.996241707$
$c_{ix} = 2,300236897$	$R_{jx} / R_{ax} = 0,550241707$	$c_{ix} = 2,300353829$
$k_{0x} = 0.754804268$	$k_{0x} / k_{ax} = 0.939889278$	$k_{0x} = 0.754845969$ $k_{0x} / k_{bx} = 0.939889278$
$7.000.000 = 7 \cdot 10^6 = (30n_1 + 10^6)$ in this case: $a = 0$	$(30n_2 + 11) + (30n_3 + 29) 233$.333 pairs Highest prime to divide 2.633
Sequence A $(30n_2 + 11)$		Sequence B $(30n_3 + 29)$
Fotal number of terms	233.333	Total number of terms 233.333 Multiples 7 <i>m</i> , 11 <i>m</i> , 173.747
Multiples $7m$, $11m$, Primes greater than 2.6	173.796 45 59.537	Multiples 7 <i>m</i> , 11 <i>m</i> , 173.747 Primes greater than 2.645 59.586
Number of terms $(7j + a)$, $(11j)$		Number of terms $(7j + a)$, $(11j + b)$, 173.796
Multiples $(7j + a)$, $(11j)$		Multiples $(7j + a)$, $(11j + b)$, 131.298
Primes $(7j + a), (11j)$	+ <i>b</i>), 42.449	Primes $(7j + a), (11j + b), \dots$ 42.498
P_{PPx} = Number of prime pairs Not included the possible prime	being both greater than 2.645 the pairs in which one of them is lesser	$P_{PPx} = 59.537 - 42.449 = 59.586 - 42.498 = 17.088 \label{eq:PPx}$ than 2.645
$x_{ax} = 0.744841064$		$k_{bx} = 0,744631063$
$k_{jx} = 0.75568499$	$k_{jx} / k_{ax} = 1,014558712$	$k_{jx} = 0.755471932$ $k_{jx} / k_{bx} = 1.014558712$
$c_{jx} = -5,214054931$ $k_{0x} = 0,657335748$	$k_{0x} / k_{ax} = 0.882518136$	$c_{jx} = -5,212329083$ $k_{0x} = 0,657150419$ $k_{0x} / k_{bx} = 0,882518136$
.0x - 0,03/333/40	κ _{Ux} / κ _{ax} — 0,002310130	$\kappa_{0x} - \nu_{,03} / \nu_{30} + \nu_{30} = \nu_{,082} / \nu_{,082} = \nu_{$
$7.000.000 = 7 \cdot 10^6 = (30n_1 + 10^6)$	$(30n_2 + 17) + (30n_3 + 23) 233$.333 pairs Highest prime to divide 2.633
In this case: $a = 0$		
Sequence A $(30n_2 + 17)$		Sequence B $(30n_3 + 23)$
Total number of terms	233.333	Total number of terms 233.333
Multiples $7m$, $11m$,	173.764	Multiples 7 <i>m</i> , 11 <i>m</i> , 173.783
Primes greater than 2.6		Primes greater than 2.645 59.550
Number of terms $(7j + a)$, $(11j)$		Number of terms $(7j + a)$, $(11j + b)$, 173.764
Multiples $(7j + a)$, $(11j)$ Primes $(7j + a)$, $(11j)$		Multiples $(7j + a)$, $(11j + b)$, 131.356 Primes $(7j + a)$, $(11j + b)$, 42.408
	•	
$P_{PPx} = Number of prime pairs 1$		$P_{PPx} = 59.569 - 42.427 = 59.550 - 42.408 = 17.142$
	e pairs in which one of them is lesser	than 2.645

 $k_{ax} = 0,744703921$ $k_{bx} = 0,744785349$ $k_{ix} = 0,755862196$ $k_{ix} / k_{ax} = 1,014983505$ $k_{ix} = 0.755944844$ $k_{ix} / k_{bx} = 1,014983505$ $c_{jx} = -5,372347613$ $c_{jx} = -5,373039944$ $k_{0x} = 0,657294458$ $k_{0x} = 0,657222595$ $k_{0x} / k_{ax} = 0,882528715$ $k_{0x} / k_{bx} = 0,882528715$ 495.762 pairs $14.872.858 = 2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 = (30n_1 + 28) = (30n_2 + 11) + (30n_3 + 17)$ Highest prime to divide 3.853 In this case: a = b = c = d = e = f = 0Sequence **B** $(30n_3 + 17)$ Sequence **A** $(30n_2 + 11)$ 495.762 495.762 Total number of terms Total number of terms Multiples 7m, 11m,... 375.402 Multiples 7m, 11m,... 375.451 Primes greater than 3.856 120.360 Primes greater than 3.856 120.311 Number of terms (7j + a), (11j + b),... 375.451 Number of terms (7j + a), (11j + b),... 375.402 Multiples (7j + a), (11j + b),... 302.245 Multiples (7j + a), (11j + b),... 302.245 Primes (7j + a), (11j + b),...73,206 Primes (7j + a), (11j + b),...73,157 P_{PPx} = Number of prime pairs being both greater than 3.856 $P_{PPx} = 120.360 - 73.206 = 120.311 - 73.157 = 47.154$ Not included the possible prime pairs in which one of them is lesser than 3.856 $k_{bx} = 0,757321053$ $k_{ax} = 0,757222215$ $k_{ix} = 0.805018497$ $k_{jx} = 0.805123574$ $k_{ix} / k_{ax} = 1,063120549$ $k_{ix} / k_{bx} = 1,063120549$ $c_{jx} = -30,30331135$ $c_{jx} = -30,31126361$ $k_{0x} / k_{ax} = 0.897260372$ $k_{0x} = 0,679425487$ $k_{0x} = 0,67951417$ $k_{0x} / k_{bx} = 0.897260372$ The programmable controller used is very slow to perform calculations with numbers greater than 10°. To know the approximate values of c_{ix} for higher numbers, we will use data from Wikipedia concerning to the Twin Primes Conjecture. Twin Primes Conjecture statement: "There are infinitely many primes p such that p + 2 is also prime." We call Twin Primes the pair of consecutive primes that are separated only by an even number. To form twin prime pairs, the following combinations of groups of primes are used: $(30n_1 + 11)$ and $(30n_1 + 13)$, $(30n_2 + 17)$ and $(30n_2 + 19)$, $(30n_3 + 29)$ and $(30n_3 + 31)$ Goldbach's conjecture and the twin primes conjecture are similar in that both can be studied by combining two groups of primes to form pairs of primes that add an even number, in the first, or pairs of twin primes in the second. With this in mind, we can use data (*) from Wikipedia concerning to the number of primes and to the number of twin prime pairs lesser than a given number (from 10^{10} to 10^{18}). 10^{10} 455.052.511* primes 27.412.679* twin prime pairs Number of terms in each sequence **A** or **B**: $10^{10} / 30 = 333.333.333$ Approximate number of primes in each sequence **A** or **B**: 455.052.511 / 8 = 56.881.563 (1) 27.412.679 / 3 = 9.137.559 Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): Approximate number of multiples 7m, 11m,... 333.333.333 - 56.881.563 = 276.451.770 (2) Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,... Approximate number of primes (7m + 2), (11m + 2),... 56.881.563 - 9.137.559 = 47.744.004 (3) Approximate number of multiples (7m + 2), (11m + 2),... (11m + 2),... (30.601.303 - 3.107.303 - 47.744.004 - (3) - (30.601.303 - 3.107.303 - 3Total number of terms in sequence B 333.333.333 Multiples 7m, 11m,. $k_{bx} \approx 0.82935531$ ≈ 276.451.770 (2)Primes greater than 105 ≈ 56.881.563 $k_{jx} \approx 0.827297166$ $k_{ix} / k_{bx} \approx 0.99751838$ (1) Number of terms (7m + 2), (11m + 2),... $c_{ix} \approx 2,095100568$ $\approx 276.451.770$ (2) Multiples (7m + 2), (11m + 2),... $k_{0x} \approx 0,794244171$ ≈ 228.707.766 (4) $k_{0x} / k_{bx} \approx 0.957664539$ Primes (7m + 2), (11m + 2),... \approx 47.744.004 (3) $k_{7x} \approx 0,800914529$ 10^{11} 4.118.054.813* primes 224.376.048* twin prime pairs Number of terms in each sequence **A** or **B**: $10^{11} / 30 = 3.333.333.333$ Approximate number of primes in each sequence **A** or **B**: 4.118.054.813 / 8 = 514.756.851 (1) 224.376.048 / 3 = 74.792.016 Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): Approximate number of multiples 7m, 11m,... 3.333.333.333 - 514.756.851 = 2.818.576.482 (2) Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,... Approximate number of primes (7m + 2), (11m + 2),... 514.756.851 - 74.792.016 = 439.964.835 (3) Approximate number of multiples (7m + 2), (11m + 2),... 2.818.576.482 - 439.964.835 = 2.378.611.647 (4) Total number of terms in sequence B 3.333.333.333 Multiples 7m, 11m,... ≈ 2.818.576.482 (2) $k_{bx} \approx 0.845572944$ Primes greater than 10^{5,5} $k_{jx} \approx 0.843905305$ $k_{jx} / k_{bx} \approx 0,998027799$ ≈ 514.756.851 (1) Number of terms (7m + 2), (11m + 2),... $c_{jx} \approx 2,075447865$ $\approx 2.818.576.482$ (2) Multiples (7m + 2), (11m + 2),... $k_{0x} \approx 0.817369919$ ≈ 2.378.611.647 (4) $k_{0x} / k_{bx} \approx 0.966646254$

 $k_{7x} \approx 0.819835102$

Primes (7m+2), (11m+2),...

≈ 439.964.835 (3)

Number of terms in each sequence **A** or **B**:

 $10^{12} / 30 = 33.333.333.333$

Approximate number of primes in each sequence **A** or **B**: 37.607.912.018 / 8 = 4.700.989.002 (1) Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): 1.870.585.220 / 3 = 623.528.406 33.333.333.333 - 4.700.989.002 = 28.632.344.331 (2) Approximate number of multiples 7m, 11m,... Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,... Approximate number of primes (7m + 2), (11m + 2),... 4.700.989.002 - 623.528.406 = 4.077.460.596 (3) Approximate number of multiples (7m + 2), (11m + 2),... 28.632.344.331 - 4.077.460.596 = 24.554.883.735 (4) 4.700.989.002 - 623.528.406 = 4.077.460.596 (3) $k_{bx} \approx 0.85897033$ 33.333.333.333 Total number of terms in sequence B Multiples 7m, 11m,... ≈ 28.632.344.331 $k_{jx} \approx 0.857592499$ $k_{jx} / k_{bx} \approx 0.99839595$ Primes greater than 106 ≈ 4.700.989.002 $c_{jx} \approx 2,058134681$ (1) Number of terms (7m + 2), (11m + 2),... ≈ 28.632.344.331 (2) $k_{0x} \approx 0.835815434$ $k_{0x} / k_{bx} \approx 0.973043427$ Multiples (7m + 2), (11m + 2),... ≈ 24.554.883.735 (4) $k_{7x} \approx 0.835465384$ Primes (7m + 2), (11m + 2),...≈ 4.077.460.596 $k_{IIx} \approx 0.844867362$ (3) 10^{13} 346.065.536.839* primes 15.834.664.872* twin prime pairs $10^{13} / 30 = 333.333.333.333$ Number of terms in each sequence **A** or **B**: 346.065.536.839 / 8 = 43.258.192.105 (1) Approximate number of primes in each sequence **A** or **B**: 15.834.664.872 / 3 = 5.278.221.624 Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): Approximate number of multiples 7m, 11m,... 333.333.333.333 - 43.258.192.105 = 290.075.141.228 (2) Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,... Approximate number of primes (7m + 2), (11m + 2),... 43.258.192.105 – 5.278.221.624 = 37.979.970.481 (3) Approximate number of multiples (7m + 2), (11m + 2),... 290.075.141.228 – 37.979.970.481 = 252.095.170.747 (4) Total number of terms in sequence B 333.333.333.333 Multiples 7m, 11m,... $\approx 290.075.141.228$ (2) $k_{bx}\approx 0,870225423$ $k_{jx} \approx 0.869068509$ Primes greater than 106,5 ≈ 43.258.192.105 (1) $k_{ix} / k_{bx} \approx 0.998670559$ Number of terms (7m + 2), (11m + 2),... ≈ 290.075.141.228 $c_{jx} \approx 2,042626025$ (2)Multiples (7m + 2), (11m + 2),... ≈ 252.095.170.747 $k_{0x} \approx 0.85087246$ $k_{0x} / k_{bx} \approx 0.977760977$ (4)Primes (7m + 2), (11m + 2),...≈ 37.979.970.481 (3) 10^{14} 3.204.941.750.802* primes 135.780.321.665* twin prime pairs $10^{14} / 30 = 3.333.333.333.333$ Number of terms in each sequence **A** or **B**: Approximate number of primes in each sequence **A** or **B**: 3.204.941.750.802 / 8 = 400.617.718.850 (1) Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): 135.780.321.665 / 8135.780.321.665 / 3 = 45.260.107.221 3.333.333.333.333 - 400.617.718.850 = 2.932.715.614.483 (2) Approximate number of multiples 7m, 11m,... Number of terms (7m+2), (11m+2),... is, approximately, equal to the number of multiples 7m, 11m,... Approximate number of primes (7m + 2), (11m + 2),... 400.617.718.850 - 45.260.107.221 = 355.357.611.629 (3) Approximate number of multiples (7m + 2), (11m + 2),... 2.932.715.614.483 – 355.357.611.629 = 2.577.358.002.854 (4) Total number of terms in sequence B 3.333.333.333.333 Multiples 7m, 11m,... $\approx 2.932.715.614.483$ $k_{bx} \approx 0.879814684$ (2) Primes greater than 107 ≈ 400.617.718.850 (1) $k_{ix} \approx 0.878829842$ $k_{ix} / k_{bx} \approx 0.998880626$ Number of terms (7m + 2), (11m + 2),... $c_{jx} \approx 2,028807737$ ≈ 2.932.715.614.483 (2) Multiples (7m + 2), (11m + 2),... $\approx 2.577.358.002.854$ (4) $k_{0x} \approx 0.863397011$ $k_{0x} / k_{bx} \approx 0.981339623$ Primes (7m+2), (11m+2),...≈ 355.357.611.629 (3) 10^{15} 29.844.570.422.669* primes 1.177.209.242.304* twin prime pairs Number of terms in each sequence **A** or **B**: $10^{15} / 30 = 33.333.333.333.333$ Approximate number of primes in each sequence **A** or **B**: 29.844.570.422.669 / 8 = 3.730.571.302.833 (1) Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): 1.177.209.242.304 / 3 = 392.403.080.768Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,... Approximate number of primes (7m + 2), (11m + 2),... 3.730.571.302.833 - 392.403.080.768 = 3.338.168.221.065 (3) Approximate number of multiples (7m + 2), (11m + 2), ... 29.602.762.030.500 - 3.338.168.221.065 = 26.264.593.809.435 (4) Total number of terms in sequence B 33.333.333.333 Multiples 7m, 11m,... $\approx 29.602.762.030.500$ (2) $k_{bx} \approx 0.888082861$ Primes greater than 10^{7,5} \approx 3.730.571.302.833 $k_{ix} \approx 0.887234568$ $k_{ix} / k_{bx} \approx 0,999044804$ (1) $c_{jx} \approx 2,016482789$ Number of terms (7m + 2), (11m + 2),... ≈ 29.602.762.030.500 (2) Multiples (7m + 2), (11m + 2),... $\approx 26.264.593.809.435$ $k_{0x} \approx 0.873978945$ $k_{0x} / k_{bx} \approx 0.984118693$ (4) Primes (7m+2), (11m+2),...≈ 3.338.168.221.065 (3)

Number of terms in each sequence **A** or **B**: $10^{16} / 30 = 333.333.333.333.333$

Approximate number of primes in each sequence **A** or **B**: 279.238.341.033.925 / 8 = 34.904.792.629.240 (1)

Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): 10.304.195.697.298 / 3 = 3.434.731.897.432

333.333.333.333.333 - 34.904.792.629.240 = 298.428.540.704.093 (2) Approximate number of multiples 7m, 11m,...

Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,...

Approximate number of primes (7m + 2), (11m + 2),... 34.904.792.629.240 - 3.434.731.897.432 = 31.470.060.721.808 (3) Approximate number of multiples (7m + 2), (11m + 2),... 298.428.540.704.093 - 31.470.060.721.808 = 266.958.479.982.285 (4)

			$k_{bx} \approx 0.895285622$	
Total number of terms in sequence B	333.333.333.333.333		$k_{jx} \approx 0.894547415$	$k_{jx} / k_{bx} \approx 0.999175451$
Multiples $7m$, $11m$,	≈ 298.428.540.704.093	(2)	$c_{jx} \approx 2,005561339$	
Primes greater than 10 ⁸	≈ 34.904.792.629.240	(1)	$k_{0x} \approx 0.883038021$	$k_{0x} / k_{bx} \approx 0.986319895$
Number of terms $(7m + 2)$, $(11m + 2)$,	≈ 298.428.540.704.093	(2)	$k_{7x} \approx 0.877833225$	
Multiples $(7m + 2)$, $(11m + 2)$,	≈ 266.958.479.982.285	(4)	$k_{IIx} \approx 0.884814184$	
Primes $(7m + 2), (11m + 2),$	≈ 31.470.060.721.808	(3)	$k_{I3x} \approx 0.886559424$	

 10^{18} 24.739.954.287.740.860* primes 808.675.888.577.436* twin prime pairs

 $10^{18} / 30 = 33.333.333.333.333.333$ Number of terms in each sequence **A** or **B**:

Approximate number of primes in each sequence **A** or **B**: 24.739.954.287.740.860 / 8 = 3.092.494.285.967.607 (1)

Approximate number of twin prime pairs in the sequences **A-B** (1 combination of 3): 808.675.888.577.436 / 3 = 269.558.629.525.812

33.333.333.333.333.333.333 - 3.092.494.285.967.607 = 30.240.839.047.365.726 (2) Approximate number of multiples 7m, 11m,...

Number of terms (7m + 2), (11m + 2),... is, approximately, equal to the number of multiples 7m, 11m,...

Approximate number of primes (7m + 2), (11m + 2),... 3.092.494.285.967.607 - 269.558.629.525.812 = 2.822.935.656.441.795 (3)

Approximate number of multiples (7m + 2), (11m + 2),... 30.240.839.047.365.726 - 2.822.935.656.441.795 = 27.417.903.390.923.931 (4)

			$k_{bx} \approx 0.907225171$	
Total number of terms in sequence B	33.333.333.333.333		$k_{jx} \approx 0.906651543$	$k_{jx} / k_{bx} \approx 0.999367712$
Multiples $7m$, $11m$,	≈ 30.240.839.047.365.726	(2)	$c_{jx} \approx 1,987076711$	
Primes greater than 10 ⁹	≈ 3.092.494.285.967.607	(1)	$k_{0x} \approx 0.897737814$	$k_{0x} / k_{bx} \approx 0.989542445$
Number of terms $(7m + 2)$, $(11m + 2)$,	$\approx 30.240.839.047.365.726$	(2)	$k_{7x} \approx 0.8917627$	
Multiples $(7m + 2)$, $(11m + 2)$,	≈ 27.417.903.390.923.931	(4)	$k_{IIx} \approx 0.897947688$	
Primes $(7m + 2), (11m + 2),$	≈ 2.822.935.656.441.795	(3)	$k_{I3x} \approx 0.899493935$	

Bibliography:

- [1] Dirichlet's theorem. Wikipedia and information on this theorem that appears in Internet.
- [2] Prime numbers theorem in arithmetic progressions. Wikipedia and information on this theorem that appears in Internet.
- [3] <u>Prime numbers theorem.</u> Wikipedia and information on this theorem that appears in Internet.
- [4] Twin Primes Conjecture. Wikipedia and information on this conjecture that appears in Internet.
- [5] Ternary Goldbach Conjecture. Wikipedia and information on this conjecture that appears in Internet.
- [6] El Diablo de los Números. Javier Cilleruelo Mateo, (2000).

Este documento dispone de una versión en español en: http://viXra.org/abs/1406.0026