An answer to Beal's Conjecture

-By Francis Thasayyan

26th Aug'14

BEAL'S CONJECTURE: If $A^x + B^y = C^z$, where A, B, C, x, y and z are positive integers and x, y and z are all greater than 2, then A, B and C must have a common prime factor.

This document explains the simple validity of Beal's conjecture.

Solution:

Given that x, y & z are positive integers and greater than 2. Assume that A1, B1, & C1 are positive integers which are co-prime. We know that for any two positive integers

\Rightarrow A1 ^x + B1 ^x = C1		I
\Rightarrow A1 ^x - B1 ^x = C1	if A1>B1	
By rearranging	$A1^{x} = B1^{x} + C1$	II
\Rightarrow A1 ^x - B1 ^x = -C1	if A1 <b1< td=""><td></td></b1<>	
By rearranging	$A1^{x}$ + $C1$ = $B1^{x}$	III
All the three equations are	e in the form of A^{x} (+/-) B^{x}	= +/- C

Step1: Multiply equation I with a common factor C1^x or its multiples[#]

	$C1^{x} * A1^{x} + C1^{x} * B1^{x} = C1^{(x+1)}$	-	 -	
⇒	$(C1*A1)^{x} + (C1*B1)^{x} = C1^{(x+1)}$			 IV

Let A=C1*A1, B=C1*B1, C=C1 & z=x+1

Since A1, B1, C1 are positive integers, A, B, C are also positive integers.

Now equation IV can be rewritten as

 $A^{x} + B^{x} = C^{z}$

If the numbers A, B & C can be factored further then value of x, z will change further to x, y & z and the equation can be rewritten as $\mathbf{A}^{x} + \mathbf{B}^{y} = \mathbf{C}^{z}$

Here it is proved that if $\mathbf{A}^{\mathbf{x}} + \mathbf{B}^{\mathbf{y}} = \mathbf{C}^{\mathbf{z}}$ where A, B, C, x, y, z are positive integers x, y, z are greater than 2 then there is a common factor C1 between the three numbers.

Now if we apply the same from step1 to equations II & III we can conclude that $A^x + B^y = C^z$ where C1 is the common factor.

Hence from the above we can say that the numbers which are following Beal's Conjecture can be rewritten in the form of $A^x + B^x = C$ or $A^x = B^x + C$ or $A^x + C = B^x$

Example1:

Let us assume any 2 numbers say A=7, B=3 & x=4

Now we know that $7^4 + 3^4 = 2482$

Let us assume a multiplication factor 2482⁴. (We can take multiples of 2482 also. Since there is no other common factor between the three numbers, any other factor may not result into Beal conjecture).

Now 7⁴ * 2482⁴ + 3⁴*2482⁴ = 2482*2482⁴

 \Rightarrow 17374⁴+7746⁴=2482⁵

which is a Beal's conjecture with a common factor of 2482⁴.

Instead of addition if we assume $7^4 \cdot 3^4 = 2320$ By rearranging we can say that $3^4 + 2320 = 7^4$ Here we can assume a multiplication factor of 2320^4 or its multiples. Now $3^{4*}2320^4 + 2320^*2320^4 = 7^{4*}2320^4$ $\Rightarrow 6960^4 + 2320^5 = 16240^4$

which is a Beal's conjecture with a common factor of 2320^4 .

Example2:

Let us assume 2 smaller numbers say A=3, B=1 & x=3

Now we know that $3^3+1^3=28$ Let us assume a multiplication factor $2^{3*}224^{3}$. Now $3^{3*}2^{3*}224^{3}+1^{3*}2^{3*}224^{3}=28*2^{3*}224^{3}$ \Rightarrow **1344³+448³=224⁴**

which is a Beal's conjecture with a common factor of 448³.

Instead of addition if we assume $3^3-1^3=26$ By rearranging we can say that $1^3+26=3^3$ Here we can assume a multiplication factor of 2^3208^3 or its multiples. Now $1^{3*}2^{3*}208^3+26^{*}2^{3*}208^3=3^{3*}2^{3*}208^3$

 \Rightarrow 416³+208⁴=1248³

which is a Beal's conjecture with a common factor of 416³.

Table-A below shows some examples of conjecture which are satisfying Beal's criteria (in the form of $A^x + B^y = C^z$) and can be rewritten in the form of $A1^x$ (+/-) $B1^x = C1$ after division by the HCF. We can note that A1, B1 & C1 are co-prime.

SI No	A ^x +B ^y =C ^z form	HCF	A1 ^x (+/-) B1 ^x = +/-C1 form
1	$27^4 + 162^3 = 9^7$	9 ⁶	$1^3+2^3=9$
2	$3^3 + 6^3 = 3^5$	3 ³	$1^3+2^3=9$
3 4	$144^3 + 288^3 = 72^4$	72 ³ 2 ¹	$1^3+2^3=9$
	$117^4 + 234^3 = 585^3$	117 ³	$117+2^3=5^3$
5 6	294 ³ +98 ⁴ =490 ³	98 ³	$3^3 + 98 = 5^3$
6	54 ⁵ +54 ⁵ =972 ³	54 ⁵	$1^{5}+1^{5}=2$
7	91 ³ +13 ⁵ =104 ³	13 ³	$7^3 + 169 = 8^3$
8	961 ³ +31 ⁵ =62 ⁵	315	$31+1^5=2^5$
9	$61^4 + 244^3 = 305^3$	61 ³ 91 ³	61+4 ³ =5 ³
10	91 ⁴ +455 ³ =546 ³	91 ³	91+5 ³ =6 ³
11	211 ⁶ +422 ⁵ =633 ⁵	211 ⁵ 2 ³	$211+2^5=3^5$
12	$2^3+2^3=2^4$	2 ³	1 ³ +1 ³ =2
13	$32^3 + 8^5 = 4^8$	8 ⁵	$1^5 + 1^5 = 2$
14	$512^3 + 512^3 = 128^4$	128 ³ 4 ³	1 ³ +1 ³ =2
15	32 ⁴ +32 ⁴ =8 ⁷	8 ⁴ 4 ⁴	14+14=2
16	$152^4 + 608^3 = 912^3$	152 ³ 2 ³	19+2 ³ =3 ³
17	242 ⁵ +242 ⁶ =726 ⁵	242 ⁵	$1^{5}+242=3^{5}$
18	63 ³ +63 ⁴ =252 ³	63 ³	$1^3 + 63 = 4^3$
19	273 ³ +364 ³ =91 ⁴	91 ³	3 ³ +4 ³ =91
20	$65^3 + 260^3 = 65^4$	65 ³	1 ³ +4 ³ =65

<u> Table - A</u>

21	455 ³ +1001 ³ =182 ⁴	91 ³	5 ³ +11 ³ =1456 (91 *2 ⁴)
22	$35^5 + 310^3 = 435^3$	5 ³	420175+62 ³ =87 ³
23	$37^4 + 111^3 = 148^3$	37 ³	$37+3^3=4^3$
24	$127^4 + 762^3 = 889^3$	127 ³	$127+6^3=7^3$
25	88 ⁷ +176 ⁵ =528 ⁵	176 ⁵	242+1 ⁵ =3 ⁵

Conclusion:

BEAL'S conjecture $A^x + B^y = C^z$, where A, B, C, x, y and z are positive integers and x, y and z are all greater than 2, has been derived from the basic expression $A^x + - B^x = C$ where A, B, C & x are positive integers & x>2, by multiplication with a suitable common factor. We know that the above expression $A^x + - B^x = C$ is true for any positive integers & **therefore Beal's conjecture is also true for the condition specified.**

Contact details: For further clarification if any please contact francis kt@yahoo.co.in

Note: #- Any multiplication factor will not change the results of the equation. But we will not be able to form the Beal's conjecture. Only a set of multiplication factor will leads to the formation of Beal's conjecture.

A, B, C, x, y, z are general terms & hence need not be the same between the two different expressions.

A, B, C, x, y, z are assumed to be finite positive integers.
