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Summary 

Subatomic particles, their interactions and the wave equation that governs their mass and motion are presented in 
this paper.  There is one wave equation, in two distinct forms, with three fundamental constants.  The wave forms 
are longitudinal and transverse, and the three constants are density, amplitude and frequency.  The equations are 
further derived based on wave differences – amplitude and frequency – that are the cause of particle formation and 
interactions with other particles.   

This challenges a century-old equation in physics, therefore the burden of proof of a newly proposed wave equation 
is to not only calculate and match data from existing experiments, but further to explain and derive other known 
equations as it is suggested that this new wave equation forms the basis of energy equations from classical and 
quantum mechanics.   

First, the new wave equations are proposed and used to match known data as proof that these equations work.  In 
Section 1, amongst other calculations, these equations are used to: 

o Calculate the rest energy and mass of subatomic particles that appear in nature 

o Calculate energies and wavelengths from hydrogen electron transitions   

o Calculate ionization energies of the first twenty elements 

Second, the equations are derived with an explanation of why they work, describing the reason for mass, the 
quantum jumps of the electron in an atomic orbit and what happens to particles in an antimatter collision.  The 
equations give meaning to the way the universe works.   

Third, and most importantly, the newly proposed wave equations are used to derive the current equations used for 
mass-energy, energy-momentum and Planck’s relation.  In addition, a derivation and explanation is given to the 
relativity equations.   

The findings in this paper conclude that particles and their interactions are not only governed by a simple wave 
equation that ties quantum and classical equations together, but further that particles themselves are simply made 
from the building blocks of a wave center that is the sink/source of waves that travel throughout the universe.  This 
building block, possibly the electron neutrino, forms the basis of particle creation similar to how protons assembled 
in a nucleus give rise to different atomic elements. 

Further experiments and calculations to confirm this hypothesis are suggested in the concluding remarks.	  
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1. Particle Wave Equation 
This paper introduces longitudinal and transverse wave equations that can be used to calculate particle energy, mass 
and properties of the electromagnetic wave.  These equations derive from a simple wave equation that consists of 
density, frequency and amplitude, which form matter and govern how particles interact and exchange energy.   

The equations explained hereafter match experimental data of subatomic particles, including 1) particle mass and 
energy, 2) atomic orbitals, 3) photon energy and wavelengths of hydrogen orbital transitions and 4) ionization 
energies of the first twenty elements.  This was accomplished with new wave equations without requiring the use of 
Planck’s constant or the Rydberg constant. 

This research began following a previous paper on the structure of matter using a wave equation, where it was 
noted that leptons mysteriously fit into magic numbers (2,8, 20, 28, 50) also seen in the structures of atomic 
elements.  The work in Explaining the Mass of Leptons with Wave Structure Matter was incomplete, but provided the 
foundation of this paper.1  In this paper, it is proposed that there is a fundamental particle, matching the properties 
of the neutrino, and that all particles can be created from various arrangements of neutrinos.  

This view of particle formation and their interactions, based on waves, is admittedly very different than the current 
explanation and energy equations used today.  Thus, Section 1 of this paper begins with these new equations and 
their results, which are consistent with known experiments and data.  In later sections, the equations are explained 
and then used to derive classical energy equations. 

To begin, it is assumed that the energy in the universe, including particles, comes from a base wave energy equation 
in the following form: 

 

Wave Energy Equation 

(1) 

 

Where: 

E = Energy 
ρ = Density 
V = Volume 
fl = longitudinal frequency 
Al = longitudinal amplitude 

 

1.1.   Longitudinal and Transverse Wave Equations 

There are two forms of the energy wave: longitudinal and transverse.  Detailed explanations of these waves and how 
they are derived is reserved for Section 2, however, this section will describe the equations themselves, their 
constants and variables and the notation used for calculations.  For the purpose of understanding the wave 
equations in this section, it assumes particles are created from longitudinal in-waves and out-waves focused at a 
wave center, and movement of a particle, particularly a vibration, creates a transverse wave.  These equations are: 

E !V f
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Wave Equations 

  

Longitudinal Energy Equation 

(1.1.1) 

 

  

Transverse Energy Equation 

(1.1.2) 

 

  

Transverse Energy Interaction Equation 

(1.1.3) 

 

 

Transverse Wavelength Equation 

(1.1.4) 

 

  

Transverse Wavelength Interaction Equation 

(1.1.5) 

 

 

Energy calculations are in joules (J) and wavelength in meters (m) unless otherwise specified.  Eqs. 1.1.2 and 1.1.4 
can be derived from Eqs. 1.1.3 and 1.1.5 respectively and will be shown later. 
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Notation 

The above equations include notation to simplify variations of energies and wavelengths at different particle sizes 
(K) and shells (n), in addition to differentiating longitudinal and transverse waves.  The following notation was used:   

Notation Meaning 

 
l - longitudinal 

 
t - transverse 

 
Energy at K wave center count and n shell 

 
Transverse wavelength at K wave center count and n shell 

Table 1.1.1 – Wave Equation Notation 

 

Constants and Variables 

The equations also include new variables and constants not common in current physics equations and are explained 
below in Table 1.1.2.  The methodology to arrive at the values for amplitude, wavelength and density constants are 
detailed later in Section 3.   

Of particular note is that variable n, sometimes used for orbital sequence, has been renamed for particle shells at 
each wavelength from the particle core.  Orbitals have been renamed to a capitalized N signifying that they are a 
subset of wavelength shells at certain distances from the particle core. 

 

Symbol Definition Value 

Al Amplitude (longitudinal) 3.63947 x 10-10  (m) 

λl Wavelength (longitudinal) 2.78661 x 10-17 (m) 

ρ Density (aether) 9.45943 x 10-30  (kg/m3) 

δ Amplitude factor variable - (m3) 

K Particle core wave center count variable - dimensionless 

n Particle shells  variable - dimensionless 

N Particle orbits (formerly n) variable - dimensionless 

Table 1.1.2 – Wave Equation Constants and Variables 
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Amplitude Factor – 1s Orbital 

The amplitude factor is used to calculate amplitude difference between particles, which determines the strength of 
their attraction or repulsion.  This factor will be different for various particles and distances from other particles 
that affect its longitudinal amplitude.   

The simplest amplitude factor is an atom that is fully ionized.  For any nucleus with protons (Z), the amplitude 
factor to remove the last electron in the 1s orbital before it is fully ionized is shown below in Eq. 1.1.6.  For 
terminology, this is referred to in this paper as Orbital 1s(0), meaning there are zero electrons remaining in the 1s 
orbital. 

  

Amplitude Factor Equation – 1s(0) Orbital Ionization  

 

(1.1.6) 

 

When other electrons are present in an atom, the amplitude factor is no longer dependent solely on the protons (Z) 
in the nucleus.  Eq. 1.1.7 describes the amplitude factor to remove one electron from the 1s orbital, including any 
electrons in the outer orbitals.  For terminology, this will be referred to as Orbital 1s(1), meaning that one electron 
remains.  This equation works for the ionization energy up to the first twenty elements, calcium (Z=20). Z is the 
number of protons, and N1e, N2e, N3e, and N4e are the number of electrons in orbital shell N=1 (1s orbital), 
N=2 (2s, 2p orbitals), N=3 (3s, 3p orbitals) and N=4 (4s, 4p orbitals) respectively.  Note the sequence 2, 8, 8, 8 in 
the denominators that match the orbital shells.   

  

Amplitude Factor Equation – 1s(1) Orbital Ionization (up to Z=20) 

 
 

(1.1.7) 

 

Orbital Equation - Hydrogen 

Orbitals are gaps where an electron is both attracted and repelled, but the repelling waves cancel at specific points 
based on the configuration of the atom’s nucleus.  This is explained in more detail in Section 2.  

The structure of hydrogen has been worked into an equation because of its simplicity with one proton in the 
nucleus.  Other structures remain to be completed.  For hydrogen, the orbits can be expressed by the number of 
wavelengths from the particle core, n.  The orbit, N, is a function of the fine structure constant as described in Eq. 
1.1.8.  This yields the number of wavelengths to each orbit (nN).  

 

Hydrogen Orbital Equation 
 

(1.1.8) 
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α = Fine Structure Constant = 7.29735257 x 10-3 

 

1.2.   Particle Formulation 

This section describes how to utilize the Longitudinal Energy Equation to calculate the energy of lepton particles: 
electron neutrino, muon neutrino, tau neutrino, electron, muon electron and tau electron.   

The three neutrinos are known to oscillate, meaning they can change into each other (becoming larger in mass or 
smaller in mass).  While the electron family, like many other particles, are known to decay into particles of smaller 
mass.  This implies that there may be a fundamental particle that is the basic building block of energy that causes 
the formation of these particles.  In the wave equation solution, this fundamental building block is a wave center 
(K), which will be shown to have properties matching the smallest neutrino – the electron neutrino.  In-waves and 
out-waves converge at the wave center, creating standing waves which are measured as the particle’s mass and 
energy. 

 

Particle Energy 

An example calculation using the Longitudinal Energy Equation (Eq. 1.1.1) is found below to demonstrate the 
calculation of the electron’s mass.  Although the energy of a particle (which is distinguished by its number of wave 
centers, K), can be calculated at any wavelength shell (n) using the equation, the particle’s energy is contained where 
n=K.  The electron has ten wave centers, or K=10.  At n=10 wavelengths, the electron’s energy is found.  A 
detailed explanation will be presented later in Section 2. 

The energy in Eq. 1.2.3 is measured in joules, i.e. the rest energy of the electron is 8.18 x 10-14 joules. 

  

(1.2.1) 

  

(1.2.2) 

 
(1.2.3) 

 

Using the same equation, all values of K from 1 to 120 were calculated where n=K.  The data is provided below for 
leptons in Table 1.2.1, where the calculations (in GeV) are found in red.  This data is compared to the CODATA 
values for these particles found in italics.2  
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Table 1.2.1 – Lepton Mass 

Note the similarities of the rest energy of these particles at magic numbers that are also found in the Periodic Table 
of Elements: 2, 8, 20, 28 and 50.  Only K=2 is unfilled with a particle that has either not been discovered, or has 
such small energy that it may be misunderstood to be the electron neutrino.   

With the exception of the proton and neutron, which are already known to consist of smaller particles (thought to 
be quarks), the leptons are particles that appear in nature, even if they rapidly oscillate or decay into other particles.  
Other particles that are created in particle accelerator labs, including the Higgs boson, were calculated but placed 
into the Appendix for reference since these particles have very different characteristics than leptons.   

Fig. 1.2.1 shows leptons as a function of wave centers (K) and their energies. 

 

Fig 1.2.1 – Lepton Mass (function of K wave centers) 

At this point, it could be merely coincidence that the lepton family of particles fit into the same magic numbers 
found in atomic elements.  But as the next section describes, the transverse wave equation also calculates these 
particle energies at the same values of K and n, and further, that the transverse equations will later be shown to 
calculate properties of the electromagnetic wave.   

 

K" 1" 2" 8" 10" 20" 28" 50"

Par+cle"Name" Neutrino" ""?""" Muon"Neutrino" Electron" Tau"Neutrino" Muon"Electron" Tau"Electron"

Calculated"Rest"Energy"(GeV)" 2.4EF09" 1.10EF07" 1.63EF04" 5.11EF04" 1.73EF02" 0.0948" 1.755"

CODATA&Rest&Energy&(GeV)& 2.2E609& 1.70E604& 5.11E604& 1.55E602& 0.1060& 1.777&

Calculated"Rest"Energy"(J)" 3.82E&19) 1.76E&17) 2.61E&14) 8.18E&14) 2.78E&12) 1.52E&11) 2.81E&10)

CODATA&Rest&Energy&(J)& 3.52E619& 2.72E614& 8.19E614& 2.48E612& 1.70E611& 2.85E610&
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Electron  

The Transverse Energy Equation (Eq. 1.1.2) can be used to calculate a particle’s potential transverse energy.  The 
explanation of the equation and how this energy becomes the electromagnetic wave is illustrated later in Section 2.  
In this section, an example is provided to calculate the energy of the electron.  Once again, the electron’s rest 
energy is found at K=10 and n=10.  

  

(1.2.4) 

  

(1.2.5) 

 
(1.2.6) 

 

The Compton wavelength of the electron (2.43 x 10-12 m) can also be calculated using the Transverse Wavelength 
Equation (Eq. 1.1.4).  Similar to the energy equation, the wavelength can be calculated at any shell (n).  But the 
Compton wavelength is found at n=K=10 in Eq. 1.2.9.  Wavelength is measured in meters.  

 
(1.2.7) 

 
(1.2.8) 

 
(1.2.9) 

 

A summary of each wavelength shell (n) through n=10, for both longitudinal and transverse energy, including 
transverse wavelength and frequency is found in Table 1.2.2.  Cells in red are highlighted where n=10, due to a 
match of the electron’s known mass and Compton wavelength.3 
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Electron 

• K = 10 
• Radius = 2.79 x 10-16 meters 

 

Table 1.2.2 – Electron Energy by Shell (n) 

Note the convergence at n=K=10 for the electron for both the longitudinal and transverse equations, which is also 
charted in Fig 1.2.2.   

 

Fig 1.2.2 – Electron Energy Longitudinal and Transverse Convergence 

 

Muon Electron  

Similarly, the muon electron has been calculated.  Its value of K, from Table 1.2.1 earlier is K=28.  At n=28, there 
is a match of the muon’s known rest energy.4  The muon electron has nearly three times the number of wave 
centers as the electron (28 vs 10), and thus its particle core is larger.  It has a Particle Core Wavelength Offset of 3 
wavelengths, which will be explained later in Section 2.3.  

Muon 

• K = 28 
• Radius = 7.80 x 10-16 meters 

 

Shell%(n)% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Longitudinal%Energy%(Sum)% 3.82E@14% 5.50E@14% 6.40E@14% 6.95E@14% 7.32E@14% 7.59E@14% 7.79E@14% 7.95E@14% 8.08E@14% 8.18E@14%

Transverse(Frequency( 1.24E+21( 6.18E+20( 4.12E+20( 3.09E+20( 2.47E+20( 2.06E+20( 1.77E+20( 1.54E+20( 1.37E+20( 1.24E+20(

Transverse(Wavelength( 2.43E@13( 4.85E@13( 7.28E@13( 9.71E@13( 1.21E@12( 1.46E@12( 1.70E@12( 1.94E@12( 2.18E@12( 2.43E@12%

Transverse%Energy%% 8.18E@13% 4.09E@13% 2.73E@13% 2.04E@13% 1.64E@13% 1.36E@13% 1.17E@13% 1.02E@13% 9.09E@14% 8.18E@14%

1.00E-‐14	  

1.00E-‐11	  

1.00E-‐08	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Electron	  (K=10)	  

Longitudinal	  Energy	  (Sum)	  

Transverse	  Energy	  	  

Shell%(n)% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 28%

Longitudinal%Energy%(Sum)% 6.58E@12% 9.46E@12% 1.10E@11% 1.20E@11% 1.26E@11% 1.31E@11% 1.34E@11% 1.37E@11% 1.39E@11% 1.41E@11% 1.52E@11%

Par$cle(Core(Wavelength(Offset( 3(

Transverse%Energy%% %% %% 3.94E@10% 1.97E@10% 1.31E@10% 9.85E@11% 7.88E@11% 6.57E@11% 5.63E@11% 4.93E@11% 1.52E@11%
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Table 1.2.3 – Muon Electron Energy by Shell (n) 

Again, like the electron, transverse and longitudinal wave energies converge.  For the muon, it converges at a magic 
number, n=28. 

 

Fig 1.2.3 – Muon Electron Energy Longitudinal and Transverse Convergence 

 

Tau Electron  

Lastly, the tau electron was calculated.  Its value of K, from Table 1.2.1 is K=50.  At n=50, there is a match of the 
tau’s known rest mass.5  The tau has five times the number of wave centers as the electron (50 vs 10) and has a 
much larger particle core, with an offset of 5 wavelengths. 

Tau 

• K = 50 
• Radius = 1.39 x 10-15 meters 

 

Table 1.2.4 – Tau Electron Energy by Shell (n) 

Once again, the energies are seen to converge.  This time at a magic number n=50. 

Shell%(n)% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 28% 50%

Longitudinal%Energy%(Sum)% 1.20E@10% 1.72E@10% 2.00E@10% 2.17E@10% 2.29E@10% 2.37E@10% 2.44E@10% 2.48E@10% 2.52E@10% 2.56E@10% 2.76E@10% 2.81E@10%

Par$cle(Core(Wavelength(Offset( 5(

Transverse%Energy%% %% %% %% %% 1.28E@08% 6.39E@09% 4.26E@09% 3.20E@09% 2.56E@09% 2.13E@09% 5.33E@10% 2.78E@10%

Core	  has	  radius	  of	  3	  wavelengths 
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Fig 1.2.4 – Tau Electron Energy Longitudinal and Transverse Convergence 

 

1.3.  Particle Interaction 

When two or more particles interact, their waves may be constructive or destructive, resulting in a difference in 
amplitude that causes particle movement.  Although the explanation is reserved for later (Section 2), this section 
describes the use of the transverse equations to calculate the energy required for ionization of electrons, energy 
produced by annihilation or energy required or produced for orbital transitions in an atom.    

 

Ionization 

When a particle experiences an amplitude difference, the transverse equation is modified to be the difference in 
energy from its initial position ni to its final position nf.  In the case of ionization, an electron is ejected from an 
atom and experiences an amplitude difference, as it is no longer attracted to the atom’s nucleus.  Once ejected, its 
distance (n wavelengths) is essentially infinity, so nf is set to infinity. 

Using the Transverse Energy Interaction Equation (Eq. 1.1.3), the final position is set to infinity, and the equation 
simplifies to:  
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Transverse Energy Interaction - Ionization  

(1.3.3) 

 

A negative sign in this equation means that energy (a photon) needs to be absorbed.  A positive value means that a 
photon is created. 

A similar derivation can be used to calculate the photon’s wavelength required for ionization, starting with the 
Transverse Wavelength Interaction Equation (Eq. 1.1.5) and inserting infinity in place of nf.  These ionization 
equations will be used later in this section. 

  

(1.3.4) 

  

(1.3.5) 

  

(1.3.6) 

  

Transverse Wavelength Interaction - Ionization  

(1.3.7) 

 

Annihilation 

The same energy equation for ionization can be used for annihilation, with one difference.  Rather than eject a 
particle, the particle (e.g. electron) is attracted to the point where it settles in a position near its attracting anti-matter 
counterpart (e.g. positron) where waves cancel and amplitude reaches zero.  Eq. 1.3.8 is very similar to Eq. 1.3.1, 
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with the exception of the initial and final starting positions of the particle.  This difference leads to positive sign 
instead of negative sign in the equation, indicating that it creates a photon instead of requiring energy to be 
absorbed. 

  

(1.3.8) 

  

(1.3.9) 

  

Transverse Energy Interaction - Annihilation  

(1.3.10) 

 

For example, annihilation of the electron and positron sit at half of the electron radius, where standing waves 
exactly cancel.  An electron is 10 wavelengths in radius (n=10) and its annihilation position with a positron is five 
wavelengths from its center (n=5).  The amplitude factor for positron-electron interaction is the same as the 
hydrogen model (δ =1).  Inserting these values into Eq. 1.3.10:  

  

(1.3.11) 

 
(1.3.12) 

 

The result of Eq. 1.3.12 is measured in joules, and shows the energy of a photon that is created during the 
annihilation process.  The positron would go through a similar process, creating a photon of the same energy as it 
settles to rest five wavelengths from the electron’s center. 

This indicates that the particles settle in a position where their longitudinal amplitudes completely cancel.  There is 
no mass that can be measured because their standing waves have collapsed and have transferred to transverse 
energy (photons).  However, the particles remain and their wave centers are still resonating at the same frequency – 
it is just that amplitude is zero or negligible.  These particles may eventually be separated again with sufficient energy 
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in the pair production process, which explains why an electron and positron can be created in a vacuum with a 
photon equal to or greater than the sum of its two masses.6 

 

Amplitude Factor Calculations – 1s Orbital 

The above annihilation equation introduced the use of the amplitude factor in the interaction equations.  For 
hydrogen, a positron-electron interaction, it has a value of one (1).  This section details the use of the Amplitude 
Factor Equation for the 1s orbital.  Future work may include determining this factor for other orbitals, but will 
likely require further analysis of p, d and f orbital types.   

The calculations are straightforward for an atom that has only one electron that will be removed from orbital 1s, 
referred to here as 1s(0).  Eq. 1.1.6 is used to determine the amplitude factor of these atoms.  Helium (He) with two 
protons (Z) in the nucleus is shown in the example below.  The amplitude factors for hydrogen through calcium, 
using Eq. 1.1.6, have been placed into Table 1.3.1 in column Amp Factor – 1s(0) Orbital.     

1s(0) Orbital (remove last electron from 1s orbital)  

  
(1.3.13) 

   
(1.3.14) 

 

The calculations for atoms with multiple electrons become more complex.  Eq. 1.1.7 is used to find the amplitude 
factor of an atom that removes one electron from orbital 1s, including any electrons in its outer shells.  This is 
referred to as orbital 1s(1), meaning one electron remains in the 1s orbital.  An example calculation is calcium with 
20 protons, 2 electrons in N1, 8 electrons in N2 and N3 each, and 2 electrons in N4: 

1s(1) Orbital (remove all electrons from outer shells and one electron from 1s orbital – leaving one) 

  
(1.3.15) 

   
(1.3.16) 

 

A similar process has been used for each of the first twenty elements.  Table 1.3.1 lists these calculations in column 
Amp Factor – 1s(1) Orbital, including the element structure - its protons and electron configuration. 

δ
He

2( ) 2=

δ
He

4=

δ
Ca

20
4

3

2 1−( )

2

8

8

1

2

8

8! "
# $ 1

3

2

8! "
# $+ + +! "

# $−! "
# $

2
=

δ
Ca

296.6=



 

 16 

  

Table 1.3.1 – Amplitude Factors – 1s(0) and 1s(1) Orbitals  

 

Orbital Calculations – Hydrogen 

It is well understood that atomic elements have orbital configurations that may vary, with hydrogen being the 
simplest since its nucleus consists of one proton.  The remaining energy equations in this section will utilize this 
orbital distance, measured by wavelengths (n) from the center of the nucleus.  

From Eq. 1.1.8, Hydrogen Orbital Equation, the wavelength distance of hydrogen orbitals are calculated.  For 
example, nN1 is the number of wavelengths to the 1s orbital (N1).  α is the fine structure constant (7.29735257x10-3 ).  
The first nine potential orbitals for hydrogen have been calculated and placed in Table 1.3.2, ranging from 187,789 
wavelengths for the first orbital to 15,210,881 wavelengths for the ninth orbital.   

 
(1.3.17) 

 (1.3.18) 

 
(1.3.19) 

 (1.3.20) 

Element' Protons'
Electrons'

(N1)'
Electrons'

(N2)'
Electrons'

(N3)'
Electrons'

(N4)'
Amp'Factor'(δ)'
1s(0)'Orbital'

Amp'Factor'(δ)'
1s(1)'Orbital'

H' 1" 1" 0" 0" 0" 1" 1.000"
He' 2" 2" 0" 0" 0" 4" 1.778"
Li' 3" 2" 1" 0" 0" 9" 4.694"
Be' 4" 2" 2" 0" 0" 16" 9.000"
B' 5" 2" 3" 0" 0" 25" 14.69"
C' 6" 2" 4" 0" 0" 36" 21.78"
N' 7" 2" 5" 0" 0" 49" 30.25"
O' 8" 2" 6" 0" 0" 64" 40.11"
F' 9" 2" 7" 0" 0" 81" 51.36"
Ne' 10" 2" 8" 0" 0" 100" 64.00"
Na' 11" 2" 8" 1" 0" 121" 79.51"
Mg' 12" 2" 8" 2" 0" 144" 96.69"
Al' 13" 2" 8" 3" 0" 169" 115.6"
Si' 14" 2" 8" 4" 0" 196" 136.1"
P' 15" 2" 8" 5" 0" 225" 158.3"
S' 16" 2" 8" 6" 0" 256" 182.3"
Cl' 17" 2" 8" 7" 0" 289" 207.8"
Ar' 18" 2" 8" 8" 0" 324" 235.1"
K' 19" 2" 8" 8" 1" 361" 265.0"
Ca' 20" 2" 8" 8" 2" 400" 296.6"

n
N1

10
1

α! "
# $

2
=

n
N1

187789=

n
N2

10
2

α! "
# $

2
=

n
N2

751155=
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Table 1.3.2 – Hydrogen Shells (n) and Orbitals (N) 

 

Hydrogen - Ionization 

Using the orbital distances (in wavelengths) and amplitude factors, the wave equations can now be used to calculate 
energies and wavelengths of particle interaction.  Beginning with hydrogen, this example calculates the wavelength 
of a photon absorbed to eject an electron (K=10) from the first orbital (shell N1, or n=187,1789).  Starting with 
Transverse Wavelength Interaction – Ionization, Eq. 1.3.7: 

 
(1.3.21) 

 
(1.3.22) 

 (1.3.23) 

Eq. 1.3.23 solves to be -9.113 x 10-8 meters, or -91.13 nanometers, a match of known hydrogen ionization energy 
data.  In fact, the calculated values for each of the remaining orbitals (displayed in red in Table 1.3.3) exactly match 
the known ionization energies and wavelengths of hydrogen data, shown in italics in the table.7  

Hydrogen  

• Amplitude Factor = 1.0 
 

 

Table 1.3.3 – Hydrogen Ionization 

In shell n=5, the ionization energy and wavelength of the electron-positron annihilation also match, showing a 
relation between ionization and annihilation energies as one equation; simply a difference of amplitude based on the 
distance between the particles.   

Shell%(n)% %187,789%% %751,155%% %1,690,098%% %3,004,618%% %4,694,716%% %6,760,391%% %9,201,644%% %12,018,474%% %15,210,881%%

Orbit%(N)% 1% 2% 3% 4% 5% 6% 7% 8% 9%

λ
t 10 187789,( )

4−( ) 187789( ) A
l

3 103·
=

λ
t 10 187789,( )

4−( ) 187789( ) 3.63947 10 10−·( )

3 103·
=

λ
t 10 187789,( )

91.13nm−=

Shell%(n)% 1% 5% %187,789%% %751,155%% %1,690,098%% %3,004,618%% %4,694,716%% %6,760,391%% %9,201,644%% %12,018,474%% %15,210,881%%

Orbit%(N)% 1% 2% 3% 4% 5% 6% 7% 8% 9%

Frequency) *6.18E+20) *1.24E+20) *3.29E+15) *8.22E+14) *3.66E+14) *2.06E+14) *1.32E+14) *9.14E+13) *6.71E+13) *5.14E+13) *4.06E+13)

Wavelength)(Calculated)) *4.85E*13) :2.43E:12% :9.11E:08% :3.65E:07% :8.20E:07% :1.46E:06% :2.28E:06% :3.28E:06% :4.47E:06% :5.83E:06% :7.38E:06%

Wavelength*(Measured)* 29.11E208* 23.65E207* 28.20E207* 21.46E206* 22.28E206* 23.28E206*

Transverse%Energy%(Calculated)% :4.09E:13% :8.18E:14% :2.18E:18% :5.44E:19% :2.42E:19% :1.36E:19% :8.71E:20% :6.05E:20% :4.44E:20% :3.40E:20% :2.69E:20%
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He+ - Ionization  

The same process can be used for other elements, including an ionized helium atom (He+) with 2 protons and only 
1 electron in the 1s (N1) orbital.  The photon energy required to ionize an He+ atom is shown below.  Amplitude 
factor for He+ from Table 1.3.1 is four (4).  

 

(1.3.24) 

 

(1.3.25) 

 
(1.3.26) 

 

He+ (Ionized) 

• Amplitude Factor = 4.0 
 

 

Table 1.3.4 – He+ Ionization 

Again, calculations using the wave equations are shown in red (measured in joules).  This matches measured He+ 
ionization energy, displayed in italics in Table 1.3.4.8 

 

First 20 Elements - Ionization  

The same equation and process was then used to calculate the ionization of electrons in the 1s orbital for the first 
20 elements, from hydrogen to calcium.  1s orbital distance is assumed to be n=187,789 wavelengths, although this 
may be an approximation as nucleus proton/neutron configuration becomes more complex as elements increase in 
size.  
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Shell%(n)% 1% 5% %187,789%% %751,155%% %1,690,098%% %3,004,618%% %4,694,716%%

Orbit%(N)% 1% 2% 3% 4% 5%

Frequency) *2.47E+21) *4.94E+20) *1.32E+16) *3.29E+15) *1.46E+15) *8.22E+14) *5.26E+14)

Wavelength) *1.21E*13) *6.07E*13) *2.28E*08) *9.11E*08) *2.05E*07) *3.65E*07) *5.70E*07)

Transverse%Energy%(Calculated)% E1.64EE12% E3.27EE13% E8.71EE18% E2.18EE18% E9.68EE19% E5.44EE19% E3.48EE19%

Transverse(Energy((Measured)( 18.71E118( 12.18E118( 19.68E119( 15.44E119( 13.48E119(



 

 19 

Eq. 1.3.25 shows the example calculation for calcium with 20 protons and 20 electrons, using the amplitude factor 
for calcium in Table 1.3.1, to determine the factor to remove the last electron from orbital 1s - column 1s(0)  Orbital 
in the table.  This amplitude factor for calcium is 400.  The results of the calculation (Eq. 1.3.27) is in joules, but 
then converted to MJ per mole to compare with experimental data (Eq. 1.3.29).  

 

(1.3.25) 

 

(1.3.26) 

 
(1.3.27) 

 

Convert energy in joules (J) to MJ/mol using Avogadro’s Constant.   

  
(1.3.28) 

  (1.3.29) 

 

This process was repeated for the first 20 elements and placed into Table 1.3.5 below in the –MJ/Mol - Calculated 
column in red.  It is compared against energy data from experiments in the far right column (MJ/Mol - Measured). 

Note that experimental data from the reference on Wikipedia is listed in KJ per mole, which has been converted in 
Table 1.3.5 to MJ per mole to be consistent with Table 1.3.6.  The experimental values used are the ionization 
energies for a fully ionized atom (values at the far right column of each element in the ionization table on Wikipedia).9   
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Table 1.3.5 – Ionization Energy Orbital 1s(0) – First 20 Elements 

 

A similar process was used to compare the results of ionization of the first electron in the 1s orbital, including 
electrons that are in outer shells.  Although the calculations are the same (Eqs. 1.3.25 to 1.3.29), a different 
amplitude factor is used in Eq. 1.3.25.   

The Ionization Energy for Orbital 1s(1) requires an amplitude factor that takes into consideration not only the 
protons (Z) in the nucleus, but surrounding electrons in outer orbitals.  Eq. 1.1.7 was used to calculate the 
amplitude factor, and the results were displayed in column 1s(1) Orbital of Table 1.3.1.  For example, calcium has an 
amplitude factor of 296.6. 

The ionization energy calculations (red) in MJ/mol are nearly an identical match with experimental data (last column 
in italics) in Table 1.3.6 below.10  

Element'
Amp'Factor'(δ)'
1s(0)'Orbital'

Energy'(J)''
Calculated'

>MJ/Mol'
Calculated'

MJ/Mol'
Measured'

H' 1" #2.18E#18" 1.31' 1.31$

He' 4" #8.71E#18" 5.25' 5.25$

Li' 9" #1.96E#17" 11.8' 11.8$

Be' 16" #3.48E#17" 21.0' 21.0$

B' 25" #5.44E#17" 32.8' 32.8$

C' 36" #7.84E#17" 47.2' 47.3$

N' 49" #1.07E#16" 64.3' 64.4$

O' 64" #1.39E#16" 83.9' 84.1$

F' 81" #1.76E#16" 106' 106$

Ne' 100" #2.18E#16" 131' 131$

Na' 121" #2.64E#16" 159' 159$

Mg' 144" #3.14E#16" 189' 189$

Al' 169" #3.68E#16" 222' 222$

Si' 196" #4.27E#16" 257' 258$

P' 225" #4.90E#16" 295' 296$

S' 256" #5.58E#16" 336' 337$

Cl' 289" #6.29E#16" 379' 381$

Ar' 324" #7.06E#16" 425' 427$

K' 361" #7.86E#16" 473' 476$

Ca' 400" #8.71E#16" 525' 528$
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Table 1.3.6 – Ionization Energy Orbital 1s(1) – First 20 Elements 

Although the values are very close, it is not an exact match.  The wavelength calculation for orbital 1s may be 
affected by various arrangements of protons and neutrons in the nucleus structure; however, hydrogen’s calculation 
does appear to be a good approximation.   

 

Hydrogen – Orbital Transition 

The last set of data demonstrating proof of wave equations is the transitional energies and wavelengths for an 
electron in a hydrogen atom that moves between orbitals.  In this case, it is a difference in energy between two 
positions relative to the nucleus, where ni is the initial orbital and nf is the final orbital.   

For example, the wavelength distances for hydrogen for the third orbital (N3) is 1,690,098 wavelengths from the 
proton, and 751,155 wavelengths for the second orbital (N2) according to Table 1.3.2.  Thus for an electron that 
transitions from N=3 to N=2 (3->2), nf = 751,155 and ni = 1,690,098.  Inserting these values into the Transverse 
Energy Interaction Equation (Eq. 1.1.3) yields:  

Element'
Amp'Factor'(δ)'
1s(1)'Orbital'

Energy'(J)''
Calculated'

=MJ/Mol'
Calculated'

MJ/Mol'
Measured'

H' 1.000$ %2.18E%18$ 1.31' 1.31$

He' 1.778$ %3.87E%18$ 2.33' 2.37$

Li' 4.694$ %1.02E%17$ 6.16' 6.26$

Be' 9.000$ %1.96E%17$ 11.8' 11.5$

B' 14.69$ %3.20E%17$ 19.3' 19.3$

C' 21.78$ %4.74E%17$ 28.6' 28.6$

N' 30.25$ %6.59E%17$ 39.7' 39.6$

O' 40.11$ %8.74E%17$ 52.6' 52.6$

F' 51.36$ %1.12E%16$ 67.4' 67.2$

Ne' 64.00$ %1.39E%16$ 83.9' 84.0$

Na' 79.51$ %1.73E%16$ 104' 104$

Mg' 96.69$ %2.11E%16$ 127' 126$

Al' 115.6$ %2.52E%16$ 152' 151$

Si' 136.1$ %2.96E%16$ 179' 178$

P' 158.3$ %3.45E%16$ 208' 208$

S' 182.3$ %3.97E%16$ 239' 239$

Cl' 207.8$ %4.53E%16$ 273' 273$

Ar' 235.1$ %5.12E%16$ 308' 309$

K' 265.0$ %5.77E%16$ 348' 347$

Ca' 296.6$ %6.46E%16$ 389' 390$
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(1.3.30) 

 
(1.3.31) 

 

Note a positive value in Eq. 1.3.31, meaning a photon is created.  And using Eq. 1.1.5, the Transverse Wavelength 
Interaction Equation, the wavelength of this photon emitted for hydrogen orbital transition 3->2 is: 

 

(1.3.32) 

 (1.3.33) 

 

Eq. 1.3.33 is solved to be 6.56 x 10-7 meters, or 656 nanometers.  This is an exact match of photon wavelengths 
measured in experiments.   Table 1.3.7 shows the calculations of the above transition (3->2) through to an electron 
in the ninth orbital transitioning to the second orbital (9->2).  Again, the calculations using the above equations are 
marked in red and the measured data from the hydrogen spectral series in italics.11 

Hydrogen 

• Amplitude Factor = 1.0 
 

 

Table 1.3.7 – Hydrogen Orbital Transition Energies and Wavelengths 

Table 1.3.7 is an exact match of the hydrogen spectrum, without the use of the Rydberg constant.  It’s accurate to at 
least three digits and can be used not only for orbital transitions, but also for ionization energies and annihilation 
properties.  
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Hydrogen)Shell)Transi1on)
33>2) 43>2) 53>2) 63>2) 73>2) 83>2) 93>2)

Frequency) 4.57E+14) 6.16E+14) 6.90E+14) 7.30E+14) 7.55E+14) 7.70E+14) 7.81E+14)

Wavelength)(Calculated)) 6.56E307) 4.86E307) 4.34E307) 4.10E307) 3.97E307) 3.89E307) 3.83E307)

Wavelength*(Measured)* 6.56E607* 4.86E607* 4.34E607* 4.10E607* 3.97E607* 3.89E607* 3.84E607*

Transverse)Energy)(Calculated)) 3.02E319) 4.08E319) 4.57E319) 4.84E319) 5.00E319) 5.10E319) 5.18E319)
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Given that the transverse equation can also be used to derive the mass of lepton particles at the same wave center 
count (K) as the longitudinal equation, it gives strong evidence that these particles are an assembly of wave centers 
that are most stable when structured in certain configurations, matching the same magic numbers seen in atomic 
elements.  Further, a single wave center configuration has properties that resemble the neutrino’s energy, and thus it 
is suggested that the neutrino is the fundamental particle and a combination of neutrinos creates other known 
particles.   

This section presents the data and strong case that particles are standing waves of energy and their interactions are 
based on these same waves.  
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2. Deriving and Explaining the Wave Equation 

In the previous section, the wave equations were introduced, including their use and calculation of particle 
properties including rest energy, ionization energy and transverse wavelengths.  This section describes the derivation 
of these equations, and more importantly, explains why they work and how particles interact.   

 

2.1.   Assumptions 

Before deriving the equations, it is important to understand the assumptions that were used to create the equations 
and constants.  Since particles are governed by longitudinal and transverse wave equations, an analogy may be 
helpful to understand how it works. 

Imagine a balloon, under water in the middle of a pool, which is rapidly inflated and deflated repeatedly.  The 
balloon will send spherical, longitudinal waves throughout the pool, losing energy proportional to the inverse square 
of the distance from the balloon.  Now, imagine the balloon, while still being rapidly inflated and deflated, is also 
traveling up-and-down, from the bottom of the pool to the top and back again.  This will create a secondary, 
transverse wave perpendicular to the motion – towards the sides of the pool.   

Next, consider the balloon as the fundamental particle.  There is nothing that is smaller than the balloon.  It is the 
wave center and responsible for creating waves that travel through the pool.  However, there may be a number of 
balloons arranged in geometric shapes that keep them together in a stable formation within the pool.  Their 
collective energies are amplified and the waves in the pool become much larger.  Although a simple analogy, this 
may paint a picture of how particles are formed. 

 

Particle Formation 

The following assumptions were made when understanding particle formation and motion: 

• The neutrino is the fundamental particle.  It is a wave center of spherical, longitudinal in-waves and out-
waves.  The amplitude of these waves decreases with the square of distance, with each wavelength, or 
shell (n).  It may be thought of as a source/sink for aether waves. 

• All other lepton particles are created from a combination of neutrinos.  A number of neutrinos (K) form 
the core of the particle, resulting in a standing wave formation from the combination of in-waves and 
out-waves. 

• Neutrinos prefer to reside at the node of the wave, minimizing amplitude spaced one wavelength apart.  
They will move to minimize amplitude if not at the node. 

• With sufficient energy, neutrinos may be pushed together in arrangement to create a new particle (i.e. 
neutrino oscillation), but will decay (break apart) if the structure does not lend itself to a geometric shape 
where each neutrino resides at the node in a wave. 

• When neutrinos are spaced in the nodes, at even wavelengths in the core, the waves are constructive.  A 
particle’s amplitude is the sum of its individual neutrino amplitudes in the particle core. 

• The anti-matter counterpart, the anti-neutrino, is pi-shifted on the wave (1/2 wavelength), residing in a 
node responsible for destructive waves when combined with the neutrino. 
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• Particle radius is proportional to the total wave amplitude, and is the edge of where standing waves 
convert to traveling, longitudinal waves. 

• Mass is the energy of standing waves within the particle’s radius. 

A visual of the wave, its amplitude, wavelength and nodes is shown in Fig 2.1.1.  Neutrinos and anti-neutrinos 
reside in the node of the wave to minimize amplitude and will move towards the node.  Neutrinos at wavelengths 
create constructive waves; a neutrino and antineutrino will be destructive due to wave phase difference. 

 

 

Fig 2.1.1 – Nodes and Neutrino Placement 

Figure 2.1.2 illustrates a particle, such as an electron, that is formed from standing waves (in-waves and out-waves).  
Eventually, standing waves transition to traveling waves as they cannot keep this form for infinity.  This defines the 
particle radius, at the edge of where the transition occurs.  The mass of the particle is then the energy captured 
within this radius, of the standing waves as shown below. 
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Fig 2.1.2 – Particle Radius and Mass 

 

Particle Interaction 

The following assumptions were made when understanding particle interaction, including atomic orbitals: 

• Particle vibration creates a transverse wave. 

• Longitudinal amplitude difference creates particle motion, as the particle seeks to minimize amplitude.  

• The difference in longitudinal energy is transferred to transverse energy in a wave packet known as the 
photon. 

• Particles and their anti-matter counterparts attract because of destructive waves between the particles; 
like particles (e.g. electron-electron) repel due to constructive waves, seeking to minimize amplitude. 

• Electrons in an atomic orbit are both attracted and repelled by the nucleus.  A positron is assumed to be 
at its core to attract the orbital electron; opposing forces in the nucleus repel the orbital electron.  These 
waves are assumed to experience wave cancellation, creating gaps or orbits in the atom.  

Fig. 2.1.3 illustrates the nucleus of an atom and how orbitals are created from the cancellation of waves at specific 
points.  It is assumed that there is a force that pushes outward on an electron in the orbital, but it is attracted by a 
positron in the core of the nucleus.  Orbitals will be dependent on the geometric structure of the proton, and or 
neutrons, and thus have different wave cancellation points that result in different orbitals for various combinations 
of protons and neutrons that make up an element’s core. 

 

Fig 2.1.3 – Orbitals at Wave Cancellation Points 

This paper does not propose a proton structure, but has merely provided an equation to calculate the orbitals for 
hydrogen.  Future work may go deeper into examining the geometric structure of each element’s nucleus that 
creates wave cancellations that match known orbitals.  One possibility for the structure of the proton is based on 
four electrons in a tetrahedron shape, with a positron in the core.  Because protons are known to contain three 
quarks, a proposed structure must match these results.  Four electrons and a positron would look like three high-
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energy electrons (possibly quarks), because the fourth electron and positron would have waves cancel (i.e. 
annihilation), thus not being detected. 

 

2.2.  Deriving the Longitudinal Wave Equation 

The Longitudinal Wave Equation was shown in Section 1 to calculate a particle’s energy.  In this section, the 
equation is derived from the base wave equation (Eq. 1) consisting of three variables: 1) density, 2) frequency and 3) 
amplitude.  Frequency is then broken into its parts: wavelength and wave speed.   

Fig 2.2.1 describes the spherical, longitudinal waves of which amplitude decreases with the square of distance.  As 
described in the assumptions in Section 2.1, the particle is assumed to consist of standing waves as a result of 
incoming and outgoing waves.  Also assumed is that the core of the particle may be made of one or more wave 
centers (K), expected to be neutrinos in this model.  Various combinations of neutrinos (K) will lead to different 
particles. 

 

Fig 2.2.1 –Spherical Longitudinal Waves Originating from Particle 

 

From the base wave equation (Eq. 1), a spherical volume is used for volume, frequency is replaced by wave speed 
and wavelength and a spherical amplitude is used that decreases with the square of distance.  This forms Eq. 2.2.1.  
The distance from the core, radius (r), is unknown, but can be substituted with the number of wavelength shells 
from the particle core, which is n times wavelength (Eq. 2.2.2).    

 

(2.2.1) 

 (2.2.2) 

 

In the assumptions, it was stated that energy is the sum of standing waves within the particle.  Eq. 2.2.3 replaces 
radius with the number of wavelengths, which is assumed to be one standing wave per wave center core.  Thus the 
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energy is assumed to be the sum of each shell, from n=1 to n=K.  For example, the electron neutrino at K=1 has 
one standing wave, and its particle radius is n=K=1.  The electron’s radius is n=K=10 wavelengths.  

Volume in this equation is a spherical volume of each shell (n), subtract the inner shell (n-1) which has already been 
calculated in the summation equation introduced in Eq. 2.2.3.  This equation can also be used to calculate the 
energy in each shell, without using the summation and solving for n independently. 

 

(2.2.3) 

 

Another assumption is that neutrinos reside at wavelengths such that their amplitudes constructively combine.  
Although not every geometric relationship makes this possible for all particles, which leads to decay as wave centers 
are forced out of a stable position on a wave node, certain structures (especially at magic numbers) make it possible 
to combine, resulting in increased amplitude as described in Fig 2.2.2.  The resultant wave is the sum of the 
amplitudes. 

 

Fig 2.2.2 –Constructive Waves 

 

Another assumption is that radius grows proportionally with the number of neutrinos in the particle core, so K is 
added into the equation at both radius and amplitude to grow proportionally, seen in Eq. 2.2.4.  This is then 
simplified in Eq. 2.2.5 to become the Longitudinal Energy Equation. 
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Longitudinal Energy Equation 

(2.2.5) 

 

 

2.3.  Deriving the Transverse Wave Equation 

This section derives and explains the transverse wave equations for transverse energy and wavelength, including the 
special case for particle interactions. 

 

Transverse Energy 

A transverse wave is created from a vibrating particle, perpendicular to the direction of motion as illustrated in Fig. 
2.3.1.  A faster vibrating particle results in a transverse wave with a shorter wavelength than a particle that vibrates 
slower.  And the greater the amplitude difference in a particle interaction, the faster the vibration.   

At rest, the particle’s amplitude is the number of neutrinos in the core (K) times amplitude (Al). In motion, the 
particle’s vibration range has a maximum of K squared (K2) times amplitude. 

 

Fig 2.3.1 –Transverse Wave Created by Particle 

During the vibration, longitudinal shell energy is transferred to a transverse wave.  The characteristic of this 
transition has an impact on the volume in which the energy is stored.  Figure 2.3.2 shows this volume transition 
from a spherical particle (Vl) to a cylindrical photon (Vt). 
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Fig 2.3.2 –Volume Change – Longitudinal to Transverse 

 

The ratio of these two volumes (Vlt) is derived in the following: 

 
(2.3.1) 

 

(2.3.2) 

 
(2.3.3) 

 

An interesting note, but unused in the wave equations, is that the fine structure for the electron is related by:  

 
(2.3.4) 

 

The transverse wave is the electromagnetic wave, and a property of this wave is that it has both an electric and 
magnetic field.  One possible way to consider the creation of this wave is that a particle is sending its longitudinal 
out-waves, while vibrating, creating a secondary, transverse wave (see Fig 2.3.2).  Thus the energy equation for this 
wave will have both a transverse frequency and longitudinal frequency, described in Eq. 2.3.5, where Vt is the 
volume of the cylindrical photon.  The origin of this equation is again the base wave equation (Eq. 1), substituting 
the aforementioned volume, frequencies and amplitudes.  It can be described as: 
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(2.3.5) 

 

The above equation has two new amplitudes related to the electric and magnetic fields: an amplitude of the 
transverse component (At) and an amplitude of the longitudinal component (Alt).  Transverse amplitude is related to 
the inverse of the transformed longitudinal amplitude, which goes through a volume change from spherical to 
cylindrical (photon) as described in the volume ratio (Vlt).    

 
(2.3.6) 

 
(2.3.7) 

Although the values of At and Alt independently are unknown, the relation of these amplitudes in Eq. 2.3.7 can be 
substituted into Eq. 2.3.5 as shown below.  Next, Vt and Vlt from previous equations are used to expand the 
equation in Eq. 2.3.9.  

 

(2.3.8) 

 
(2.3.9) 

 

This is then simplified into Eq. 2.3.10, before transverse wavelength is substituted into the equation seen in Eq. 
2.3.11 (note the transverse wavelength equation used for substitution is upcoming in Eq. 2.3.18). 
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(2.3.11) 

 

Simplify, expand Vlt and then the Transverse Wave Equation is finally derived in Eq. 2.3.14. 

 
(2.3.12) 

 

(2.3.13) 

 

Transverse Energy Equation 

(2.3.14) 

 

As an aside, back in Eq. 2.3.10, Planck’s constant can be seen.  Its value will be explained and validated later in 
Section 4.4. 

 
(2.3.15) 

 

The muon electron (K=28) and tau electron (K=50) have a slight modification of the Transverse Energy Equation 
due to a larger particle core than the electron.  These particles have a formation of neutrinos in the core that is 
larger than one wavelength and requires a particle core offset.  This is interesting, because the calculations of the 
transverse energies of these particles in Tables 1.2.3 and 1.2.4 present information about the size of the core.   

To understand why there is an offset, refer to the diagram in Fig. 2.3.3.  It is the particle core that vibrates, creating 
transverse waves.  The starting point for the transverse wave is the edge of the core, which may be more than one 
wavelength (n=1) from the center.  The calculations in Section 1.2 show a core of 3 wavelengths for the muon and 
5 wavelengths for the tau, which has been labeled the particle core offset (n+2) and (n+4) respectively. 
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Fig 2.3.3 –Particle Core Lengths and Offset – Muon Electron and Tau Electron 

 

Transverse Energy Interaction 

The transverse energy wave is the difference in longitudinal energy between particles and is a transfer of energy.  
Fig. 2.3.4 illustrates an electron in orbit, attracted by the nucleus.  It starts at initial position ni wavelengths from the 
nucleus core and ends at position nf.  Also pictured in the figure is a difference in amplitude as a result of 
constructive or destructive wave interference, amplitude factor δ. 

 

 

Fig 2.3.4 –Energy Transition 

The derivation of the interaction equation assumes the transverse wave energy is the difference between the energy 
states from the initial location and final location using the Transverse Energy Equation derived in Eq. 2.3.14, for 
two particles.  Also added into the equation is the amplitude factor to account for a difference in longitudinal 
amplitude during the transition.  After simplification, the resulting equation for interaction is described in Eq. 
2.3.17.  
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Transverse Energy Interaction Equation 

(2.3.17) 

Note the Transverse Energy Equation (Eq. 1.1.2) can be derived from the Transverse Energy Interaction Equation 
(Eq. 1.1.3).  The Transverse Energy Equation is used to measure the energy of a single particle, amplitude factor of 
1, within the particle’s radius defined by the two waves (in-wave and out-wave) that create a standing wave.  
Therefore, it has two waves that are added together to become the Transverse Energy Equation. 

 

Transverse Wavelength 

As the energy transitions from spherical waves to the cylindrical shape of the photon, the new, transverse 
wavelength is related to the original longitudinal amplitude (Al) and volume transformation (Vlt) of the particle 
described in Eq. 2.3.16.  In Fig 2.3.1, K2Al is the maximum displacement the particle can vibrate.   

After substituting for Vlt and then simplifying, the Transverse Wavelength Equation is derived in Eq. 2.3.18. 

 
(2.3.18) 

 
(2.3.19) 

 

Transverse Wavelength Equation 

(2.3.20) 

 

Transverse Wavelength Interaction 

Transverse Wavelength Interaction is similar to Transverse Energy Interaction.  This derivation starts with Eq. 
2.3.10, isolating transverse wavelength in the equation Eq. 2.3.21 below.  In this case, wavelength is related to the 
transverse energy difference for particle interaction from an initial shell (ni) to final shell (nf), thus Eq. 2.3.17 is 
substituted into the equation.  After simplifying the equation, the Transverse Wavelength Interaction Equation is 
shown in Eq. 2.2.23, which yields the wavelength of a photon for a particle changing energy states. 
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(2.3.21) 

 

(2.3.22) 

 

Transverse Wavelength Interaction Equation 

(2.3.23) 
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3. Methodology for Determining Wave Equation Constants 

This section describes the methodology that was used to find the constants that are used in the wave equations: 1) 
Longitudinal Amplitude, 2) Longitudinal Wavelength and 3) Density.  The fourth constant that is critical in these 
equations is already well known – the speed of light constant which is the speed at which waves travel through the 
aether.   

 

3.1.   Longitudinal Amplitude Constant 

The first constant solved was Longitudinal Amplitude.  The Transverse Wavelength Equation (Eq. 1.1.4) contains 
both amplitude and wavelength in the equation, but when the equation is set for the known properties of the 
electron (Compton wavelength of electron at K=10, n=10), one variable remained in the equation to be solved.   

The following is the calculation of Longitudinal Amplitude (Al in meters) in Eq. 3.1.5, based on the Compton 
wavelength of the electron (2.42631 x 10-12 meters) in Eq. 3.1.1.   

 
(3.1.1) 

 
(3.1.2) 

 
(3.1.3) 

 
(3.1.4) 

 
(3.1.5) 

 

3.2.   Longitudinal Wavelength Constant 

Knowing Longitudinal Amplitude, the next constant solved was Longitudinal Wavelength.  Again, the electron and 
its well-known properties were used to calculate the constant.  Given that transverse and longitudinal energies are 
equal at n=K, the Transverse Energy and Longitudinal Energy were set to equal (Eqs. 3.2.1 to 3.2.4 describe this 
process).  By doing this, density drops from the equation in Eq. 3.2.5 such that the remaining variables can be 
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inserted.  Longitudinal Amplitude was calculated above, and the electron properties are K=10 and transverse and 
longitudinal energies converge at n=10.   

The following is the calculation of Longitudinal Wavelength (λl in meters), found in Eq. 3.2.7. 
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3.3.   Aether Density Constant 

Finally, with Longitudinal Amplitude and Wavelength solved, it was possible to calculate density.  By using the 
Longitudinal Energy Equation, along with the known mass of the electron (8.1871 x 10-14 joules), density was 
calculated.  Again, electron values of K=10 and n=10 were used along with amplitude and wavelength values 
calculated above. 

The following is the calculation of density (ρ, in kg/m3), found in Eq. 3.3.4. 
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(3.3.1) 

 

(3.3.2) 

 
(3.3.3) 

 (3.3.4) 

 

3.4.   Observations about the Constants 

There are similarities with the amplitude and wavelength constants with other well-known constants in physics.  
Although it may be coincidental, it is possible that this is an indication that the Longitudinal Energy Equation is 
slightly incorrect.  The equation assumes a perfect sphere for volume, neglecting an irregular sphere that may be due 
to the spin of particles.  The effect may be very slight given the closeness of these constants.  Consider: 

• Wavelength is 2.7866 vs 2.81794 for classical electron radius (ignoring magnitude)12. 

• Amplitude is 3.63947 vs 3.64868 for fine structure divided by 2 (ignoring magnitude).13 

Other observations about these constants: 

• A wavelength of 2.7866 x 10-17 meters puts the electron radius at 2.7866 x 10-16 meters (n=10 
wavelengths), or one-third the radius of a proton.14 

• An aether density of 9.45943 x 10-30 kg / m3 is slightly less dense than the critical density of the universe 
(although it is not certain that aether density is consistent across the universe).   

 

 

E
l 10 10,( )

4π!K5A
l
6c2

3λ
l
3

n3 n 1−( ) 3−

n4
n 1=

K

∑ 8.1871 10 14−·= =

4π!K5A
l
6c2

3λ
l
3

2.13874( ) 8.1871 10 14−·=

! 24.54 10 14− 2.78661 10 17−·( )
3

·

4π 2.13874( ) 105 3.63947 10 10−·( )
6
c2

=

! 9.45943 10 30−·=



 

 39 

4. Deriving Classical Equations from the Wave Equation 

Introducing a new wave equation that describes the energies of particles and their interactions must also fit known 
classical and quantum equations, as these equations have been rigorously tested and proven.  In this section, the 
wave equation is used to derive these equations as the base from which they form.  Further, by looking at these 
equations in a new way, based on waves of energy, they can also be explained.  Section 4.1 attempts to explain the 
equations, with further details and derivations about each of the energy equations and relativity in Sections 4.2 to 
4.5. 

 

4.1.  Energy Relationship 

The fundamental energy equations are mass-energy (E=mc2), energy-momentum (E=pc) and Planck relation 
(E=hf).  Long ago, Einstein proposed the relationship for rest mass and momentum in a simple equation 
(E2=(mc2)2+(pc)2), but the tie to quantum energies and the Planck relation is not well understood.  Furthermore, 
there remain mysteries like annihilation and pair production, where electrons and positrons appear from a vacuum, 
which is not tied to any of these equations.  For the latter, it is well understood that energy is conserved, i.e. that 
annihilation produces photons equal to the energy of the particles, but the mechanism for how it works is not 
covered by classical equations. 

The following sections will derive the classical equations, including relativity, but this section starts first with a 
simple explanation of why these energy equations work and how they are related, including the annihilation and 
creation of particles. 

A single particle, in Fig 4.1.1, consists of spherical, longitudinal waves.  In the figure, this has been simplified to a 
simple sine wave to illustrate frequency and amplitude difference.  At rest, the particle resonates at the same 
frequency as its in-waves and has minimized its amplitude difference to maintain a stable position.  At rest, there is 
no frequency or amplitude difference relative to the waves that travel the aether. 

When a single particle is in motion, its frequency changes similar to waves experiencing the Doppler effect.  Its 
leading edge will have a higher frequency than its trailing edge, shown in Fig 4.1.1.  It experiences a change in 
frequency and wavelength relative to the in-waves of its surroundings.     

 

Fig 4.1.1 –Energy Relationship – Single Particle 
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Fig 4.1.2 –Energy Relationship –Particle Interaction 

In Figure 4.1.2, two particles interact and may create constructive or destructive wave interference that causes a 
difference in amplitude.  In an electron and positron interaction, the phase difference of their waves are destructive 
between the particles causing attraction; two like particles (e.g. electron and electron) are constructive causing the 
particles to repel.  When particles like the electron and positron are attracted, they will move to the point of 
amplitude minimization unless otherwise repelled by additional particle(s).   

Annihilation is the point where two particles converge such that there is complete amplitude cancellation.  The 
particles have minimized their amplitude.  However, if an electron is attracted by a positron in an atom, it maintains 
an orbit due to a gap in wave cancellation from opposing forces, as described in Section 1.3.  In this case, there is 
an amplitude difference and the change in its position and longitudinal amplitude creates a transverse wave with a 
frequency proportional to amplitude difference.  This becomes the Planck relation described in further detail in 
Section 4.4.  

To summarize, the energy equations are simply a difference in amplitude or frequency relative to the universal 
waves that travel the aether. 

 

4.2.  Mass-Energy Equivalence (E=mc2) 

As described in Section 2.2, mass is the sum of standing waves within the particle’s boundaries before standing 
waves convert to traveling waves.  Mass is apparent in the Longitudinal Energy Equation, as it is energy divided by 
the square of the wave speed (c2).  

Further proof of the equation is demonstrated by validating the mass of the electron, using Eq. 4.2.2 for mass, with 
the known rest mass of the electron (Eq. 4.2.5, in kilograms).  Finally, the rest energy of the electron is validated 
(Eq. 4.2.7, in joules).   
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Mass is the 
equation without c2 

 

(4.2.2) 

Subtitute mass back 
into equation for 
E=mc2  

 (4.2.3) 

Validation: electron 
mass at K=10, 
n=10 

 

(4.2.4) 

Electron mass (kg) 
 

(4.2.5) 

Validation: electron 
rest energy at 
K=10, n=10 

 (4.2.6) 

Electron energy (J) 
 

(4.2.7) 

 

4.3.   Energy-Momentum Equivalence (E=pc) 

Particle motion results in a frequency change, which was illustrated in Figure 4.1.1.  A particle sees a higher 
frequency on its leading edge (direction of motion) than the trailing edge.  The change in frequency and thus 
wavelength is only in the direction of motion (labeled in the following equations as the X axis).     

To an observer, the particle experiences the Doppler effect and thus Doppler equations are used to find the leading 
edge and trailing (lag) frequencies.  The particle’s frequency while in motion is the geometric mean of the lead and 
lag frequencies, shown in Eq. 4.3.3.  The Lorentz Factor then becomes apparent upon taking the mean of this 
frequency (Eq. 4.3.7), and will be used later to describe Relativity in Section 4.5. 

The following derives the Energy-Momentum relation: 
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Energy equation 
when moving in 
direction X 

 (4.3.2) 

fx is the geometric 
mean of lead and 
lag frequency 

 (4.3.3) 

Doppler equation. 
Frequency of 
leading edge. 

 

(4.3.4) 

Doppler equation. 
Frequency of 
trailing (lag) edge. 

 

(4.3.5) 

Combine Eqs 4.3.3 
– 4.3.5. fx as 
function of initial 
frequency.  

 

(4.3.6) 

Lorentz factor is 
seen in Eq. 4.3.6. 

 

(4.3.7) 

Subtitute Eq. 4.3.6 
back into Eq. 4.3.2. 
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Substitute 
wavelength for 
frequency. 
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Rest mass is energy 
divide c2 

 

(4.3.10) 

Subtitute Eq. 4.3.10 
into 4.3.9 

 

(4.3.11) 

Square both sides 

 

(4.3.12) 

Replace E2 with 
m2c4 (square of E) 

 

(4.3.13) 

 

 
(4.3.14) 

 

 
(4.3.15) 

Rearrange to isolate 
“mv”  

(4.3.16) 

Momentum (p) is 
mass times velocity  (4.3.17) 

Subtitute Eq. 4.3.17 
into 4.3.16  

(4.3.18) 
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(4.3.19) 

Einstein’s energy-
momentum 
equation 

 (4.3.20) 

 

4.4.   Planck Relation (E=hf) 

Planck’s relation is a result of a transverse wave, from the vibration of a particle due to a difference in amplitude, as 
described in Section 2.3.  This may happen during annihilation of a particle, or when a particle transitions between 
orbitals in an atom.  The derivation of this relation thus starts with the transverse wave energy equation, starting at 
Equation 2.3.10 before transverse wavelength has been substituted.  In this equation, shown again in Eq. 4.4.1, 
Planck’s constant (h) is apparent.  After showing the derivation of Planck’s relation in Eq. 4.4.4, the constant (h) is 
then validated as a final step in Eq. 4.4.6. 

Equation 2.3.10 
with transverse 
wavelength  

(4.4.1) 

Planck’s constant 
(w/out wavelength)  

(4.4.2) 

Subtitute Eq. 4.4.2 
into 4.4.1 

 
(4.4.3) 

Replace wavelength 
with frequency. 
E=hf. 

 (4.4.4) 

Validation: Planck’s 
constant.  

(4.4.5) 

Planck’s Constant 
(m2 kg /s)  

(4.4.6) 
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4.5.  Relativity 

Einstein’s work on Special Relativity and General Relativity laid the foundation of physics over the past century, 
but has left as many questions as to why these equations work.  For example, why does the length of an object 
contract with motion?  Why does mass increase in size?   

In this section, the major theories suggested by Einstein are derived and explained with a wave equation. 

 

Relative Mass and Energy 

In section 4.3, the energy-momentum relation was explained and velocity is introduced into the equation to 
calculate the frequency difference when a particle is in motion.  To recap, because of motion, the wave experiences 
the Doppler effect and the new frequency is the geometric mean of the leading and trailing frequencies in the 
direction of motion.   

At low velocities, the frequency difference is negligible.  However, at relativistic speeds closer to the speed of light, 
this difference needs to be considered in calculations.  This is the Lorentz factor as derived in Eq. 4.3.7 as the 
geometric mean of frequencies, relative to the initial frequency.  In 4.5.5 and 4.5.6, this factor is apparent in the 
relativistic mass and energy derivations respectively.  

From Eq. 4.3.8 

 

(4.5.1) 

Subtitute Lorentz 
Factor Eq. 4.3.7 
into Eq. 4.5.1 

 

 
(4.5.2) 

E
!Vf

0
f
0
A2

1
Δv2

c2
−

=

E ! "Vf
0
f
0
A2·=

Note: Electron-based interactions have the correct value of Planck’s constant at K=10 (electron).  This would apply to 
the electron and likely the proton (refer to earlier suggestions it is based on a positron in the core).  However, a 
different value of h is calculated for a muon electron and tau electron.  The photon energy from annihilation of these 
particles matches results, but the calculation of h and Compton wavelength is different than expected calculations.  
This needs confirmation from wavelength measurement tests of muon and tau photons (if possible).   
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Change frequency 
for wavelength 

 

(4.5.3) 

Mass – same as Eq. 
4.3.10 

 

(4.5.4) 

Substitute Eq. 4.5.4 
into 4.5.3 and 
divide c2 for mass 

 (4.5.5) 

Subtitute 4.5.5 into 
E=mc2 equation. 
Relative energy. 

 (4.5.6) 

 

Time Dilation  

Time may be thought of as the frequency of the universal waves that travel the aether, responsible for in-waves 
within particles.  Note that frequency is measured in Hertz, or cycles per second.  This reintroduces the concept of 
a universal time, but time is relative to an observer (consistent with Einstein’s view) based on a particle’s 
movement.  Time is relative due to a change in frequency of a particle or collection of particles, as seen by an 
observer.  As the particle moves, it affects its frequency and how an instrument can measure the frequency cycle of 
a moving object.   

The following starts with the frequency change of a particle from Eq. 4.3.6, in which the Lorentz factor is 
introduced again.  Assuming that our measurement of time is based on this frequency, then Eq. 4.5.9 matches the 
time dilation equation.15 

From Eq. 4.3.6 

 

(4.5.7) 

Substitute Eq. 4.3.7 
into 4.5.7.    (4.5.8) 

Time is frequency.  
Replace frequency  (4.5.9) 
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with time (t). 

Time dilation. 

 

Length Contraction 

When an object is in motion, it contracts in the direction of travel.  As with other relativity equations, it is negligible 
at low velocities but the size of an object will shrink considerably in the axis of motion at relativistic speeds.  Why?   

The object that contracts is a collection of atoms, bound together by sharing electrons.  When atoms that make up 
the structure are in motion, its frequency changes (Doppler effect), and wavelength becomes shorter.  For a single 
atom, this means its electrons in its orbitals are drawn in closer.  Orbitals are gaps created by wave cancellation, and 
with shorter wavelengths, these orbitals are closer to the nucleus.  For example, the hydrogen 1s orbital was 
calculated in Table 1.3.2 as 187,789 wavelengths from the particle core.  When in motion, its electron will still be 
187,789 wavelengths from the particle core, but with shorter wavelengths, it will be closer to the nucleus as 
illustrated in Fig 4.5.1.   

Since atoms share electrons, each atom in the direction of motion equally contracts such that the length is shorter 
relative to its initial length at the standard frequency/wavelength seen when the atom is at rest.  Eq. 4.1.2 describes 
the length of the object as being the sum of the atoms and their wavelengths to its orbitals.  The derivation of 
length contraction starts with the frequency change from time dilation, Eq. 4.5.8, and the following derivation 
concludes with a length contraction equation that matches Einstein’s relativity. 16 

 

Fig 4.5.1 –Length Contraction 
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Replace Equation 
4.5.8 frequency 
with wavelength  

(4.5.10) 

Solve for 
wavelength 

 
(4.5.11) 

Length is the sum 
of the distances 
between atoms 

 (4.5.12) 

Length changes 
because wavelength 
contracts in X 
direction 

 (4.5.13) 

Subtitute Eq 4.5.11 
into 4.5.13 

 
(4.5.14) 

Subtitute Eq. 4.5.12 
into 4.5.14.  
Length 
Contraction. 

 
(4.5.15) 
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5. Conclusion 

Today’s classical and quantum equations are undoubtedly correct.  Countless experiments have verified the accuracy 
of these equations from the energies of various atoms and molecules to the specific energy of a photon at various 
wavelengths.  However, there remains a separation of equations for the subatomic (quantum mechanics) and for the 
world larger than the size of these atoms (classical mechanics).   

The conclusion of this paper is that there is indeed one fundamental set of rules and equations that govern 
everything in the universe, regardless of size.  In this view of the universe, all energy comes in the form of waves, 
with the neutrino being the fundamental particle that resonates to these waves as a sink/source, creating standing 
waves that are responsible for mass.  Further, that various particles seen both in nature and in experiments are a 
result of a combination of neutrinos, combining to form a particle, whose stability is dependent on the ability to 
have a core structure in which neutrinos can reside at the nodes of a three-dimensional wave to maintain stability.   

Since this view of particle physics is very different from currently accepted models, this paper had the challenge of 
not only matching existing known data, but to provide an explanation and derivation of existing energy equations.   

The following evidence was presented in support of the new, proposed wave equations: 

• Calculated energy and mass of all lepton particles in a longitudinal wave equation, which coincides with 
magic numbers also seen in atomic elements.  The same magic numbers for these particles were also derived 
a second time in a transverse wave equation.   

• The same transverse wave equation was used to calculate the annihilation properties of an electron and 
positron. 

• The transverse wave equation was also used to calculate the ionization properties from the first orbital of 
the first twenty elements. 

• Finally, the transverse wave equation was used to calculate the energies and photon wavelengths of 
hydrogen orbital transitions, an exact match against data seen in the hydrogen spectral series. 

Following the presentation of this data in Section 1, a derivation and explanation of the equations were presented, 
concluding with a tie of these equations to current quantum and classical equations.  This paper concludes that all 
energy comes from a wave equation, in longitudinal and transverse forms, and that classical and quantum energy 
equations are one - simply a difference of frequency or amplitude experienced by particles.  Quantum jumps were 
further explained as the electron’s movement between orbitals as it is both attracted and repelled by the nucleus, 
where its orbit is a gap in the repelling force because of wave cancellation.   

There is sufficient data, with reasonable explanation, that these wave equations should be seriously considered.  The 
fact that the neutrino may be the building block of other particles should also be considered.  An equivalent of the 
Periodic Table of Elements may be created for subatomic particles, where the neutrino count is what proton count 
is to the Periodic Table.  These findings provide the basis of a new, encouraging way to explain subatomic particles 
and their interactions but the work is incomplete. 

There is potential work that may prove or expand upon the theory presented in this paper, such as: 

• If all of the magic numbers from the Periodic Table of Elements hold true for leptons, there may be a 
neutrino at K=2 (1.10x10-7 joules).  Locating this neutrino, perhaps in sterile neutrino experiments, may 
provide additional proof.  
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• The Compton wavelength calculation for the muon electron and tau electron in this paper is different than 
currently accepted values.  Evidence of the gamma ray wavelengths from annihilations of these particles 
(wavelengths, not energies), would be proof of these equations. 

• Determining the structure of the proton with both attracting and repelling forces would be further proof.  It 
is assumed that there is a positron in the core and that repelling forces, perhaps electrons in the core of the 
proton, cancel at distances which become the atomic orbitals.  Once the basic proton structure is validated 
for hydrogen, it can be expanded upon for all other elements to determine their orbitals. 

• This paper has calculated all of the orbital energies for hydrogen, and ionization of the first twenty elements 
for the first orbital.  Once the above proton structure and orbitals are determined for elements larger than 
hydrogen, further proof could be in work to build out the models beyond the first orbital and also for 
remaining elements beyond calcium. 

• Lastly, an ambitious proof may be in the calculation of gravity into the wave equations.  It’s possible that 
gravity is the result of a slight amplitude difference, appearing in the amplitude factor in these equations.  If 
the universe is filled with longitudinal waves, and large bodies of mass convert some of these waves to 
transverse, then there will be a difference in amplitude (i.e. shading effect of large bodies).  The equations 
for the positron and electron would work very much the same way for the Earth and Moon, except with a 
different amplitude factor.  
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Appendix  

Other Particle Rest Energies (non-Leptons) 

It is not expected that the Longitudinal Energy Equation can be used for all particles in its current form, as it 
assumes amplitude is perfectly constructive, the resulting amplitude being K times Al.  This means that neutrinos (or 
wave centers) must be located at exact wavelengths apart from all other neutrinos.  Leptons, covered earlier, may fit 
into this criterion, as magic numbers may reflect geometrically stable shapes.  However, not all particles can be 
expected to meet the same criteria and thus the calculations in Table A.1 have been put into this appendix.   

The remaining particles, many of which are created in particle accelerator labs, have been mapped to the closest 
value of K, if its standing waves are perfectly constructive.  This is shown in the table below comparing the 
calculated rest energy (red) against the particle’s CODATA rest energy (italics).  What is interesting about the energy 
of the Higgs boson is that it falls into a range near the end of known elements of the Periodic Table (K=117), i.e. 
there are limits to the types of particles that can be created. 

 

 

Table A.1 –Particle Mass as Function of K 

 

Electron Wavelength Count 

In 2008, scientists at Lund University in Sweden captured a video of the electron, very much resembling the 
standing wave structure suggested in this paper.17  Counting wavelengths from this video may not be scientifically 
accurate, so this evidence is placed here into the appendix as noteworthy.  What makes this interesting is that the 
electron wavelength counts in Fig. A.1 matches the expected value of standing waves from the Longitudinal Energy 
Equation.  It is a ten wavelength radius from the particle core, otherwise referred to in earlier equations as K=10. 

Fig. A.1 shows a still image of electron captured on video.  On the left is the original picture; on the right is an 
attempt to measure wavelengths of the standing waves.  At the edge of the particle, standing waves break down to 
traveling waves.  The original video is available at: https://www.youtube.com/watch?v=zKwcWZ1z6J0. 

K
Particle*Name

30
Pion

39
Kaons

44 45
Proton Neutron

51
Strange*D

55 56
Ds3*(2860) Eta*Charmed

62
Charmed*D

107
W*Boson

110
Z*Boson

117
Higgs*Boson

Calculated*Rest*Energy*(GeV)
CODATA&Rest&Energy&(GeV)

0.1342
0.1349

0.5031
0.4970

0.9229 1.033
0.9382 0.9396

1.938
1.970

2.832 3.101
2.860 2.980

5.169
5.366

79.79
80.39

91.65
91.18

124.85
125.00
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Fig A.1 –Electron as Captured by Lund University (wave l eng ths  counted on image  on r ight) 
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