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Summary 

Subatomic particles, their interactions and the wave equation that governs their mass and motion are presented in 
this paper.  There is one base wave equation, in two distinct forms, with four fundamental constants.  The forms are 
longitudinal and transverse, and the four constants are wave speed, wavelength, amplitude and density.  The 
equations are further derived based on wave differences – amplitude and wavelength – that are the cause of particle 
formation and interactions with other particles.   

This challenges a century-old equation in physics, therefore the burden of proof of a newly proposed wave equation 
is to not only calculate and match data from existing experiments, but further to explain and derive other known 
equations as it is suggested that the new wave equations form the basis of energy equations from classical and 
quantum mechanics.   

First, the new wave equations are proposed and used to match known data as proof that these equations work.  In 
Section 1, amongst other calculations, these equations are used to: 

o Calculate the rest energy and mass of subatomic particles that appear in nature 

o Calculate the orbital distances, energies and wavelengths during hydrogen electron transitions   

o Calculate the ionization energies of the first twenty elements 

o Calculate the electron Compton wavelength and Bohr radius constants 

Second, the equations are derived with an explanation of why they work, describing the reason for mass, the 
quantum jumps of the electron in an atomic orbit and what happens to particles in an antimatter collision.  The 
equations give meaning to the way the universe works.   

Third, and most importantly, the newly proposed wave equations are used to derive the current equations used for 
mass-energy, energy-momentum and Planck’s relation.  In addition, a derivation and explanation is given to the 
relativity equations.   

The findings in this paper conclude that particles and their interactions are not only governed by a simple wave 
equation that ties quantum and classical equations together, but further that particles themselves are simply made 
from the building blocks of a wave center that is a reflecting source of energy waves that travel throughout the 
universe.  This building block, possibly the neutrino, forms the basis of particle creation similar to how protons 
assembled in a nucleus give rise to different atomic elements. 

Further experiments and calculations to confirm this hypothesis are suggested in the concluding remarks.		 	
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1.  Wave Energy  
 

This paper introduces longitudinal and transverse wave equations that can be used to calculate particle energy, mass 
and properties of the electromagnetic wave.  These equations derive from a simple wave equation that consists of 
density, wave speed, wavelength and amplitude, which form matter and govern how particles interact and exchange 
energy.   

The equations explained hereafter match experimental data of subatomic particles, including 1) particle mass and 
energy, 2) atomic orbitals, 3) photon energy and wavelengths of hydrogen orbital transitions and 4) ionization 
energies of the first twenty elements.  This was accomplished with new wave equations without requiring the use of 
Planck’s constant or the Rydberg constant.  The results of the data are provided below and the constants and 
equations that they refer to are provided in Sections 1.1 and 1.2 respectively. 

 

Rest Energy of Leptons 

The rest energy of elementary particles, including the lepton family of particles, were calculated using an equation 
that models standing wave energy, otherwise known as the Longitudinal Energy Equation, and shown in Table 1.1.  
It was assumed that particles consist of a fundamental particle as the building block; similar to the way atomic 
elements are constructed from an arrangement of nucleons.  Although the calculated values in Table 1.1 differ up to 
11.9% from the measured values of these particles, it should be noted that atomic weights of elements are not exact 
at integers and also differ from the nearest integer. 

Further, the same Longitudinal Energy Equation that was used to calculate particle energy is also used to derive the 
Force Equation in the Forces paper, in which the particle force calculations for both electromagnetism and gravity 
have no difference from the measured values (0.000%).1  Also, noteworthy is that the calculated values of wave 
center counts (K) of leptons happen at magic numbers that are consistent with atomic elements: 2, 8, 20, 28 and 50.  
Only a particle with a wave center count of 2 is not a known or discovered particle. 

 
 

Table 1.1 – Rest Energy of Leptons2 

 

Hydrogen Orbital Distances 

Beyond its standing wave structure, a particle still has energy but transitions from standing waves to longitudinal 
traveling waves.  However, when particles interact, they may create transverse waves.  The transfer of longitudinal 
traveling waves to transverse waves is captured in the next set of data for photon wavelengths and energies.  First, 
the potential positions of an electron in atomic orbitals must be established to use the equations.   
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Using the Orbital Equation the distances were calculated for each traditional orbital (N).  The distance is measured 
in both wavelengths (renamed n for the shell number) and in meters.  The calculation for the first orbital matches 
the Bohr radius with 0.000% difference at 5.292E-11 meters. Although the remaining orbitals are not compared 
against measured results, they are assumed to be correct distance calculations otherwise Tables 1.3 – 1.5 would not 
have correct calculations for the photon wavelengths and energies at these orbitals.  

 

Table 1.2 – Hydrogen Orbital Distances3 

  

Hydrogen Photon Wavelengths (Ionization) 

Using the Transverse Wavelength Equation and the wavelength shells (n) from Table 1.2, the wavelengths of 
photons absorbed during hydrogen ionization was calculated for each of the traditional orbitals (N).   The 
difference from the calculated values to measured values range from 0.000% to 0.135% for various orbitals 
calculated. 

 

Table 1.3 – Hydrogen Photon Wavelengths (Ionization) 4 

 

Hydrogen Photon Wavelengths (Orbital Transition) 

Using the Transverse Wavelength Equation again, the wavelengths of photons emitted for hydrogen were calculated 
in orbital transition.  For example, as the electron transitions from Orbital 3 to Orbital 2 (3->2) it emits a photon 
calculated to be 6.561E-07 meters, a difference of 0.026% from the measured value.  All other calculations for 
orbitals were 0.025% from the measured value.       

 

Table 1.4 – Hydrogen Photon Wavelengths (Orbital Transition) 5 
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Helium Photon Energy (Ionization) 

Helium shows an example of the Transverse Energy Equation and Amplitude Factor Equation, used to calculate 
photon energies during orbital transition or ionization.  Two examples are provided for helium.  In the first orbital 
(N=1), standard helium (He) is calculated to require a photon with energy of -3.88E-18 joules, a difference of 
1.622% from the measured result. However, ionized helium (He+) yields better results with energy calculations at 
0.000% difference against measured results for the first five orbitals. 

 
 

Table 1.5 – Helium Photon Energy6 7 

 

Elements H to Ca - Photon Energy (Ionization) 

Similar to helium, the ionization energies were calculated for the first twenty elements up to calcium.  The first 
seven elements are shown in Table 1.6 and the remainder are shown later in Section 2.6.  Using the Transverse 
Energy Equation and the Amplitude Factor Equation, the ionization energies of the following were calculated in MJ 
per mole: 

• Ionization Energy of 1s2 Electron – Removal of the 2nd electron in the 1s shell in a standard element.  The 
calculations vary from 0.04% to 2.66% from the measurements, likely due to the complexity of multiple electrons in 
the atoms to factor into the results.8 

• Ionization Energy of 1s2 Electron of an Ionized Element – Removal of the 2nd electron in an element that is 
ionized to have only two electrons in the 1s shell.  Does not apply to hydrogen that has one electron.  The calculations 
vary from 1.22% to 2.14% in difference, also likely due to the complexity of multiple electrons that factor into the 
results.9 

•  Ionization Energy of 1s1 Electron of an Ionized Element – Removal of the 1st and only electron in an element 
that is ionized to only have one electron in the 1s shell.  The calculations vary from 0.00% to 0.06% against 
measurements, better results than above, due to the fact that only one electron exists in each of these elements.10 
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Table 1.6 – Other Elements - Photon Energy 

 

The Aether 

This view of particle formation and their interactions, based on waves, is admittedly very different than the current 
explanation and energy equations used today.  Most importantly, it reintroduces the aether as the medium for 
propagating energy waves and calculates a density for the aether.  In 1887, the Michelson-Morley experiment 
produced a negative result for the calculation of the aether and it has not been accepted since.11   

The calculations in this paper are consistent with a density of a medium for propagating energy waves, thus to 
reintroduce the aether, the Michelson-Morley experiment must also be explained.  One potential explanation for 
the negative result of the experiment is the neglect to consider length contraction in the experiment apparatus.  
Since another author provides this explanation, more information and details have been included in the Appendix 
of this paper.   

 

1.1.   Wave Equation Constants 

Before the wave equations are introduced, the notation, constants and variables that are used in the equations are 
provided.   

Notation 

The wave equations include notation to simplify variations of energies and wavelengths at different particle sizes (K) 
and shells (n), in addition to differentiating longitudinal and transverse waves.  The following notation was used:   

Notation Meaning 

λl l - longitudinal 

λt t - transverse 

Ke e – electron  
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E(K) Energy at particle wave center count (K)  

λt(K,n) Transverse wavelength at particle wave center count (K) and shell (n) 

Table 1.1.1 – Wave Equation Notation 

 

Constants and Variables 

The equations also include new variables and constants not common in current physics equations and are explained 
below in Table 1.1.2.  The methodology to arrive at the values for amplitude, wavelength and density constants is 
detailed later in Section 4.   

Of particular note is that variable n, sometimes used for orbital sequence, was renamed for particle shells at each 
wavelength from the particle core.  Orbitals have been renamed to a capitalized N signifying that they are a subset 
of wavelength shells (n) at certain distances from the particle core. 

Symbol Definition Value (units) 

Wave Constants 

Al Amplitude (longitudinal) 3.662799228 x 10-10  (m) 

λl Wavelength (longitudinal) 2.817940327 x 10-17 (m) 

ρ Density (aether) 9.422329851 x 10-30  (kg/m3) 

c Wave velocity (speed of light) 299,792,458 (m/s) 

Variables 

δ Amplitude factor variable - (m3) 

K Particle wave center count variable - dimensionless 

n Particle shells  variable - dimensionless 

N Particle orbits (formerly n) variable - dimensionless 

Q Particle count in a group variable - dimensionless 

Electron Constants 

δe Amplitude factor – single electron 0.9936344 - (m3) 

δGe Amplitude factor – Gravity of electron 0.9827420 - (m3) 
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Ke Particle wave center count - electron 10 - dimensionless 

Oe Shell energy multiplier – electron 2.138743820 - dimensionless 

Δe Modifier – single electron Same as δe - dimensionless 

Table 1.1.2 – Wave Equation Constants and Variables 

 

1.2. Wave Equations 

There are two forms of the energy wave: longitudinal and transverse.  Detailed calculations using wave equations for 
both of these waveforms are provided in Section 2 and the explanations and derivations are provided in Section 3.   

For the purpose of understanding the wave equations in this section, it is accepted that there is an aether and that it 
consists of two things: 1) granules that are the fabric of space and transmit a wave, and 2) wave centers that reflect a 
wave.  Further, it assumes that particles are created from wave centers in formation that consist of longitudinal in-
waves and out-waves.  Finally particle motion, particularly a vibration, creates a transverse wave.  In wave theory, 
the following laws govern energy waves and particle formation:   

 
Wave Theory Laws 

1. Energy waves travel throughout the aether at a defined wave speed and wavelength as wavelets to form a 
wavefront according to Hyugen’s principle.12 Amplitude is reduced at the square of distance from the source 
and experiences constructive and destructive wave interference.  

2. Aether granules are the medium that can respond to a wave such that it can pass its inertia and momentum to 
the next granule.  It may have a memory to understand its state, which holds a defined amount of energy.     

3. Aether wave centers reflect longitudinal waves and may assemble in formation to create particles via 
constructive and destructive wave interference.  

4. Aether wave centers move to minimize amplitude on the wave, thereby preferring the node position of the 
wave. 

5. Wave energy is proportional to amplitude, wavelength, wave speed and density of a defined volume. 
 

Wave Equations 

  

Longitudinal Energy Equation 

(1.1.1) 

 

El K( )

4π!K5Al
6c2

3λl
3

n3 n 1−( ) 3−

n4n 1=

K
∑=
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Transverse Energy Equation 

(1.1.2) 

 

  

Transverse Wavelength Equation 

(1.1.3) 

 

  

Orbital Equation 

(1.1.4) 

 

  

Amplitude Factor Equation – 1s Orbital Ionization  

 

(1.1.5) 

 

The Amplitude Factor Equation (1s Orbital Ionization) works for the ionization energy up to the first twenty 
elements, calcium (Z=20), of the first orbital.  Z is the number of protons, and N1e, N2e, N3e, and N4e are the 
number of electrons in orbital shell N=1 (1s orbital), N=2 (2s, 2p orbitals), N=3 (3s, 3p orbitals) and N=4 (4s, 4p 
orbitals) respectively.  Note the sequence 2, 8, 8, 8 in the denominators that match the orbital shells.   

Energy calculations are in joules (J) and wavelength in meters (m) unless otherwise specified.   

 

Et K nf ni−,( )
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1
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−
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−
⎝ ⎠
⎜ ⎟
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nN Ke
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⎜ ⎟
⎛ ⎞ 2=
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2. Calculations 

This section details the steps to reproduce the calculations and comparisons against measured results in Section 1, 
using the wave equations and constants also provided in the same section.  Explanations of the wave equations is 
reserved for Section 3.   

 

2.1.   Rest Energy of Leptons 

To calculate the rest energy of particles like leptons, the Longitudinal Energy Equation (Eq. 1.1.1) was used and 
calculated values of each particle with various wave center counts (K).  These results are provided in Table 1.1. 

For example, a particle with one wave center count (K=1) closely resembles the neutrino particle.  Note that the 
neutrino has a difficult mass to measure and a value of 2.2 eV is used from Standard Model Table.13  This is 
compared against a calculated value of 3.8280E-14 joules, or 2.4 eV.   

 

(2.1.1) 

Calculated Value: 3.8280E-14 joules (kg m2/s2) 
Difference from Neutrino Estimate: 8.60% 

The electron was calculated at a wave center count at K=10.  As this value of K appears in many equations related 
to the electron it is given a special electron constant Ke.  At Ke = 10, a value of 8.1871E-14 joules is calculated, 
which is no difference (0.000%) to that level of digits from the CODATA value of the electron in joules.   

 

(2.1.2) 

Calculated Value: 8.1871E-14 joules (kg m2/s2) 
Difference from CODATA Value: 0.000% 

Note:  With the exception of the proton and neutron, which are already known to consist of smaller particles 
(thought to be quarks), the leptons are particles that appear in nature, even if they rapidly oscillate or decay into 
other particles.  Other particles that are created in particle accelerator labs, including the Higgs boson, were 
calculated but placed into the Appendix for reference since these particles have very different characteristics than 
leptons.   

 

El 1( )
4π!K5Al

6c2

3λl
3

n3 n 1−( ) 3−

n4n 1=

K
∑=

Ee El 10( )

4π!Ke
5Al
6c2

3λl
3

n3 n 1−( ) 3−

n4n 1=

Ke
∑= =
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2.2.   Hydrogen Orbital Distances 

The orbital distances for hydrogen in Table 1.2 were calculated with the Orbital Equation (Eq. 1.1.4).  This 
equation matches the results of the Bohr radius (first orbital) with 0.00% difference and furthermore it is assumed 
that the values of the remaining orbitals are also accurate otherwise the photon wavelengths and energies in Tables 
1.3 to 1.5 would not have been accurate.   

The following example calculates the first two orbitals (N) in terms of wavelengths (n) and meters.  The fine 
structure constant (αe ) is derived in terms of wave constants in Fundamental Physical Constants14, but for simplicity of 
this equation, its well-known value is used here.  Eq. 2.2.1 is the solved for the first orbital, N=1. 

 
(2.2.1) 

N=1 
αe = Fine Structure Constant = 7.29735257 x 10-3 
Calculated Value Wavelengths (n): 187,789 

To represent wavelengths in meters, it is converted using the number of wavelengths above (187,789) multiplied by 
the electron wavelength value (K λ).  Units are in meters.  The calculation for the first orbital matches the 
CODATA value for the Bohr radius with no difference (0.000%). 

 (2.2.2) 

N=1 
Calculated Value Meters (m): 5.2918E-11 
Difference from CODATA (Bohr Radius): 0.000% 

The same equations (Eq. 2.2.1 and 2.2.2) are now used to solve N=2 for the second orbital.  Represented in both 
wavelengths and meters by replacing N with the value 2.  This can be repeated for each of the orbitals for 
hydrogen.   

N=2 
Calculated Value Wavelengths (n): 751,155 
Calculated Value Meters (m): 2.1167E-10 
 

 

2.3.   Hydrogen Photon Wavelength (Ionization) 

In Table 1.3, the wavelengths of absorbed photons for hydrogen were calculated at differing orbitals when the 
atom is ionized (electron leaves the atom from orbital N).  The traditional orbitals are represented as integers in the 
variable N, and the wavelengths, or subshells, are represented by the variable n.  Using Table 1.2, the wavelengths 

nN Ke
N
αe⎝ ⎠
⎜ ⎟
⎛ ⎞ 2=

rN nNKeλl=
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(n) are found for each orbital (N).  For example, the first orbital (N=1) will be calculated below.  In N=1, there are  
n=187,789 wavelengths.   

To find photon wavelengths, the Transverse Wavelength Equation is used (Eq. 1.1.3).  In the case of ionization, 
this equation can be simplified.  The electron is ejected from the atom so the final position (nf) can be replaced by 
infinity in the equation.  This is represented in Eq. 2.3.1.  Since the value of K is solving for the electron, it is 
K=10, or simply Ke.  

Eq. 2.3.1 is simplified to become a variation of the Transverse Wavelength Equation for ionization in Eq. 2.3.3.  
When a single electron is calculated there is a slight deviation in the calculations that is corrected by the modifier 
(Δe).  The modifier is the same value as the amplitude factor for the electron (δe), but it is a dimensionless version.  
It was also used in many of the constants calculated in Fundamental Physical Constants so it is believed to correct 
assumptions in the equations related to volume, in which volumes for particles assumed perfect spheres and 
photons assumed perfect cylindrical volumes. 

In the first orbital, N=1 or n=187,789, a value of 9.113E-8 meters is calculated for the wavelength of hydrogen 
ionization, a difference of 0.003% from measured results.  

 

(2.3.1) 

 

(2.3.2) 

 

Transverse Wavelength Equation – Electron Ionization 

(2.3.3) 

 

ni = 187,789 
Calculated Value: -9.113E-8 meters (m) 
Difference from Measured Result: 0.003% 
 

 

λt Ke ∞ ni−,( )

4Al

3Ke
3

1
1
∞

1
ni

−
⎝ ⎠
⎜ ⎟
⎛ ⎞

Δe( )=

λt Ke ∞ ni−,( )

4Al

3Ke
3

1

0 1
ni

−
⎝ ⎠
⎜ ⎟
⎛ ⎞

Δe( )=

λt Ke ni,( )

4−( ) niAl

3Ke
3

Δe( )=
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2.4.   Hydrogen Photon Wavelength (Orbital Transition) 

Similar to Section 2.3, the wavelengths of photons emitted or absorbed can be calculated using the Transverse 
Wavelength Equation (Eq. 1.1.3).  In this example, an electron changes orbitals but does not leave the atom in the 
case of ionization.  When the electron transitions to a lower shell, it emits a photon.  The calculation in this case 
yields a positive result, noting that a photon is emitted.  When a photon is absorbed and the electron transitions to 
a higher shell or is ejected from the atom (ionization), the calculation yields a negative result, as seen in Section 2.3.   

Table 1.4 contains calculations of electron transitions from various orbitals to the second orbital (N=2).  An 
example calculation is provided below, as an example of transitioning from the third orbital (N=3) to the second 
orbital (N=2).  This is represented by: 3->2. 

Using Table 1.2, the third orbital (N=3) has 1,690,098 wavelengths and the second orbital (N=2) has 751,155 
wavelengths.  These are used as the values ni and nf respectively.  The resulting calculation is 6.561E-7 meters, or a 
difference of 0.026% from the measured result.  

 

(2.4.1) 

 

(2.4.2) 

3->2  
ni = 1,690,098 
nf = 751,155 
Calculated Value: 6.561E-7 meters (m) 
Difference from Measured Result: 0.026% 

 

2.5.   Helium Photon Energy (Ionization) 

Energy levels of photons are calculated using the Transverse Energy Equation (Eq. 1.1.2).  In Table 1.5, two 
calculations are provided for helium (He) and ionized helium (He+).  Although the same equation is used to 
calculate photon energy, amplitude factor is variable.  Thus the Amplitude Factor Equation (Eq. 1.1.5) is also used 
in these calculations to determine the amplitude factor (works for the first orbital – 1s).  The amplitude factor is the 
constructive and destructive wave interference from multiple protons in the nucleus (Z) and surrounding electrons 
in the atom that affect wave amplitude. 

First, these amplitude factors are calculated for He and He+ using the Amplitude Factor Equation (Eq. 1.1.5), 
shown again in Eq. 2.5.1.  Z is the number of protons, N1e is the number of electrons in the first orbital (N=1), 

λt Ke 751155 1690098−,( )

4Al

3Ke
3

1
1
nf

1
ni

−
⎝ ⎠
⎜ ⎟
⎛ ⎞

Δe( )=

λt Ke 751155 1690098−,( )

4Al

3Ke
3

1
1

751155
1

1690098
−⎝ ⎠

⎛ ⎞
Δe( )=
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N2e is the number of electrons in the second orbital (N=2), etc.  Standard helium has 2 protons and 2 electrons.  It 
is calculated in Eq. 2.5.2. 

 
(2.5.1) 

 
(2.5.2) 

Helium (He) 
Z = 2 (protons) 
N1e = 2 (electrons) 
δHe = 1.77778 
 

Similarly, for ionized helium (He+) with two protons and one electron: 

 
(2.5.3) 

Ionized Helium (He+) 
Z = 2 (protons) 
N1e = 1 (electrons) 
δHe+ = 4.0 

Photon ionization energy is similar to the calculation for wavelength ionization.  As the electron is ejected, the final 
position is set to infinity as shown in Eq. 2.5.4.  It is simplified to the Transverse Energy Equation for Electron 
Ionization in Eq. 2.5.6. 

 

(2.5.4) 

 

(2.5.5) 
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Transverse Energy Equation – Electron Ionization 

(2.5.6) 

Now that the amplitude factors are known, photon energies can be calculated using Eq. 2.5.6.  Two example 
calculations are provided for the first orbital, since the Orbital Equation works only for the 1s shell.  N=1 has 
187,179 wavelengths according to Table 1.2.  This value is used along with the amplitude factors below. 

 

(2.5.7) 

Helium (He) 
ni = 187,789 
δHe = 1.77778 
Calculated Value: -3.88E-18 joules 
Difference from Measured Result: 1.622% 

Similarly, ionized helium is calculated at the first orbital for ionization energy, but using the amplitude factor for 
ionized helium.  The amplitude factor is higher and the energy is greater because there are two protons, but no 
other electrons that affect wave construction. 

 

(2.5.8) 

Helium (He) 
ni = 187,789 
δHe+ = 4.0 
Calculated Value: -8.72E-18 joules 
Difference from Measured Result: 0.000% 

 

2.6.   Elements H to Ca – Photon Energy (Ionization) 

In Table 1.6, other elements beyond hydrogen and helium were calculated for the ionization photon energy in the 
first orbital.  This section goes beyond the results displayed in Table 1.6 to calculate the first twenty elements, from 
hydrogen to calcium.  Beyond calcium, the Amplitude Factor Equation does not work within a reasonable accuracy 
as electrons begin to fill the 3d subshell.   

Et Ke ni,( )

2−( ) π!Ke
6λlc

2δ

niAl
=

Et Ke ni,( )

2−( ) π!Ke
6λlc

2δHe
niAl

=

Et Ke ni,( )

2−( ) π!Ke
6λlc

2δHe“+”
niAl

=



 

 18 

Table 1.6 shows three types of calculations.  Because the Amplitude Factor Equation is designed for the first 
orbital, 1s, there are three types of calculations provided for different arrangements of atoms: 

• Ionization Energy of 1s2 Electron – Removal of the 2nd electron in the 1s shell in a standard element.   
• Ionization Energy of 1s2 Electron of an Ionized Element – Removal of the 2nd electron in an element that is 

ionized to only have two electrons in the 1s shell.  
• Ionization Energy of 1s1 Electron of an Ionized Element – Removal of the 1st and only electron in an element 

that is ionized to only have one electron in the 1s shell.   
 

An illustration of these three types is as follows: 

 

Fig. 2.6.1 – Electron Ionization and Amplitude Factors 

 

Ionization Energy of 1s2 Electron 

The process is identical to Section 2.5 that describes the calculation of helium ionization energy.  Helium is seen 
again in Table 2.6.1, with the calculation in joules (third to last column) and in megajoules per mole (MJ/Mol in the 
second to last column).  The calculation in MJ/Mol is compared to the measured results in MJ/Mol in the last 
column. 
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Table 2.6.1 – Ionization Energies – 1s2 Electron – Standard Elements H through Ca 

An example calculation is calcium with 20 protons and 20 electrons.  The electrons are distributed to 2 electrons in 
N=1, 8 electrons in N=2, 8 electrons in N=3 and 2 electrons in N=4.  The amplitude factor is calculated as 
follows: 

 
(2.6.1) 

Calcium (Ca) 
Z = 20 (protons) 
N1e = 2 (electrons) 
N2e = 8 (electrons) 
N3e = 8 (electrons) 
N4e = 2 (electrons) 
δCa = 296.6 

The value 296.6 can be found in Table 2.6.1 as the amplitude factor for calcium.  Also found in the table is the 
energy calculation using the Transverse Energy Equation – Electron Ionization form, using the first orbital where 
ni=187,1789 wavelengths. 

 

(2.6.2) 
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δCa = 296.6 
Calculated Value: -6.47E-16 joules 

Since the measured results are in megajoules per mole (MJ/mol), the calculated value in joules needs to be 
converted using Avogadro’s constant (6.022 x 1023) and by converting joules to megajoules by dividing by 1 x 106.  
After the conversion, the resulting calculation is 389.4 MJ/mol, which is a difference of 0.163% from the measured 
value. 

 

(2.6.3) 

Calcium (Ca) 
Calculated Value: (-) 389.4 MJ/mol 
Difference from Measured Result: 0.163% 

 

Ionization Energy of 1s2 Electron – Ionized Element 

Proof that the difference between ionization energies is simply a difference in amplitude is further expressed by 
calculating the amplitude factors for the first twenty elements without electrons in the outer orbitals, beyond the 
first orbital (1s).  In table 2.6.2, elements from hydrogen to calcium have been calculated, but many of these 
elements (beyond helium) are ionized such that they only have two electrons.  The same process is used, calculating 
the amplitude factor and then the energy calculation using the Transverse Energy Equation.  But the affect of fewer 
electrons is apparent in the amplitude factor.  The ionization energy associated with the photon that is required to 
be absorbed is calculated in joules, then converted to MJ/Mol (second to last column) and finally compared to the 
measured results in MJ/Mol (last column).   

 

Table 2.6.2 – Ionization Energies – 1s2 Electron – Ionized Elements H through Ca 

Et 10 187789,( )
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An example calculation is heavily ionized neon (Ne) with 10 protons and 2 electrons.  The electrons are distributed 
to 2 electrons in N=1.  The amplitude factor is calculated as follows: 

 
(2.6.4) 

Neon (Ne8+) 
Z = 10 (protons) 
N1e = 2 (electrons) 
δNe8+ = 87.111 

The value 87.111 can be found in Table 2.6.2 as the amplitude factor for heavily ionized neon with only two 
electrons.  Also found in the table is the energy calculation using the Transverse Energy Equation – Electron 
Ionization form, using the first orbital where ni=187,1789 wavelengths.  The conversion from joules to MJ/Mol is 
identical to the calcium example above and is not illustrated again. 

 

(2.6.5) 

Neon (Ne8+) 
ni = 187,789 
δNe8+ = 87.111 
Calculated Value (joules): -1.90E-16 joules 
Calculated Value (MJ/Mol): (-) 114.4 MJ/mol 
Difference from Measured Result: 0.564% 

 

Ionization Energy of 1s1 Electron – Ionized Element 

Lastly, the first orbital can also be calculated with only one single electron.  Ionized helium (He+) was already 
calculated as an example in Section 2.5.  The value of -8.72E-18 joules is shown again in Table 2.6.3 along with 
ionization energies of other heavily ionized elements.  In all of these calculations, elements have only one electron 
that is then removed.  The ionization energy associated with the photon that is required to be absorbed is 
calculated in joules, converted to MJ/Mol (second to last column) and then finally compared to the measured 
results in MJ/Mol (last column).   
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Table 2.6.3 – Ionization Energies – 1s1 Electron – Ionized Elements H through Ca 

An example calculation is doubly ionized lithium with 3 protons and 1 electron.  The electron is distributed to one 
electron in N=1.  The amplitude factor is calculated as follows: 

 
(2.6.6) 

Lithium (Li2+) 
Z = 3 (protons) 
N1e = 1 (electrons) 
δLi2+ = 9.0 

The value 9.0 can be found in Table 2.6.3 as the amplitude factor for doubly ionized lithium with only one electron.  
Also found in the table is the energy calculation using the Transverse Energy Equation – Electron Ionization form, 
using the first orbital where ni=187,1789 wavelengths.  The conversion from joules to MJ/Mol is identical to the 
calcium example above and is not illustrated again. 

 

(2.6.7) 

Lithium (Li2+) 
ni = 187,789 
δLi2+ = 9.0 
Calculated Value (joules): -1.96E-17 joules 
Calculated Value (MJ/Mol): (-) 11.8 MJ/mol 
Difference from Measured Result: 0.003% 
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2.7.   Electron Annihilation Energy 

A very similar process can be used to determine the energy shell during particle annihilation.  Rather than eject a 
particle, the particle (e.g. electron) is attracted to the point where it settles in a position near its attracting anti-matter 
counterpart (e.g. positron) where waves cancel and amplitude reaches zero.  Eq. 2.7.1 is very similar to Eq. 2.5.2, 
with the exception of the initial and final starting positions of the particle.  This difference leads to positive sign 
instead of negative sign in the equation, indicating that it creates a photon instead of requiring energy to be 
absorbed. 

  

(2.7.1) 

  

(2.7.2) 

  

Transverse Energy Equation - Annihilation  

(2.7.3) 

 

For example, annihilation of the electron and positron sits at five wavelengths (n=4.97), where standing waves 
exactly cancel.  This was calculated using the energy of the known photon when an electron and positron annihilate, 
or 8.1871 x 10-14 joules.   Using Eq. 2.7.3, energy is set to the photon energy and nf is isolated to obtain the final 
position of the electron, relative to the positron, after annihilation.  The particles remain but due to destructive wave 
interference, they are not detected. 

  

(2.7.4) 

 

(2.7.5) 
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nf = 4.97 wavelengths 

 

2.8.   Electron Compton Wavelength 

The Compton wavelength of the electron (2.43 x 10-12 m) can be calculated using the Transverse Wavelength 
Equation (Eq. 1.1.3).  Similar to the annihilation energy in Section 2.7, the wavelength can be calculated using the 
wavelength shell (n) where the electron sits relative to the positron after annihilation. This is because the Compton 
wavelength is the photon energy equal to the rest energy of a particle.  However, upon annihilation, there are two 
particles and two photons generated, such that one photon is equal to the rest energy of one of the particles.  A 
value of 5 wavelengths is used for nf instead of 4.97 as calculated above (see note below calculation).    

This indicates that the particles settle in a position where their longitudinal amplitudes completely cancel.  There is 
no mass that can be measured because their standing waves have collapsed and have transferred energy to 
transverse energy (photons).  However, the particles remain and their wave centers are still resonating at the same 
frequency – it is just that amplitude is zero or negligible.  These particles may eventually be separated again with 
sufficient energy in the pair production process, which explains why an electron and positron can be created in a 
vacuum with a photon equal to or greater than the sum of its two masses.15 

 

(2.8.1) 

nf = 5 wavelengths 
Calculated Value: 2.4263E-12 meters 
Difference from Measured Result: 0.000% 

Note: A value of 5 wavelengths is used, instead of 4.97 wavelengths calculated in Section 2.7, as its position is 
expected to be at an integer such that the electron and positron are both placed at nodes.  This is one of the 
reasons the modifier (Δe) is introduced.  However, the wave constants cannot be simply adjusted to account for the 
modifier without affecting other equations and values, thus its expected that the modifier is adjusting for 
imperfections in volume assumptions. 
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3. Deriving and Explaining the Wave Equations 

 

In the previous sections, the wave equations were introduced, including their use and calculation of particle 
properties including rest energies, photon energies and transverse wavelengths.  This section describes the 
derivation of these equations, and more importantly, explains why they work and how particles interact.   

To begin, it is assumed that the energy in the universe, including particles, comes from a base wave energy equation 
in the following form.  Frequency (f) is otherwise expressed as c / λ, which leads to Eq. 3.2. 

 
(3.1) 

 

 
 

Base Wave Energy Equation 

(3.2) 

 

 

Before deriving the equations, it is important to understand the assumptions that were used to create the equations.  
Energy flows in waves, but there are two major forms of waves: longitudinal and transverse.  Further, longitudinal 
waves may be standing or traveling.  As particles are governed by these types of waveforms, an analogy may be 
helpful to understand how it works. 

Imagine a balloon, under water in the middle of a pool, which is rapidly inflated and deflated repeatedly.  The 
balloon will send spherical, longitudinal waves throughout the pool, losing energy proportional to the inverse square 
of the distance from the balloon.  Now, imagine the balloon, while still being rapidly inflated and deflated, is also 
traveling up-and-down, from the bottom of the pool to the top and back again.  This will create a secondary, 
transverse wave perpendicular to the motion – towards the sides of the pool.   

Next, consider the balloon as the fundamental particle.  There is nothing that is smaller than the balloon.  It is the 
wave center and responsible for creating waves that travel through the pool.  However, there may be a number of 
balloons arranged in geometric shapes that keep them together in a stable formation within the pool.  Their 
collective energies are amplified and the waves in the pool become much larger.  Although a simple analogy, this 
may paint a picture of how particles are formed. 

Fig 3.1 is an example of wave centers reflecting longitudinal in-waves that are traveling throughout the universe (i.e. 
traveling waves), similar to the example of the balloon in the pool.  When in-waves are reflected, they become out-
waves.  This produces spherical, standing waves to a defined radius from the wave center (noted in blue color in Fig 
3.1).  The energy is contained within this radius and may be thought of as stored or potential energy.   
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Fig 3.1 – Longitudinal Waves 

The base wave energy equation is reflected by the fact that there is a frequency and amplitude for both the in-waves 
and out-waves, within a defined spherical volume that contains a medium (density property).  This becomes the 
root of the longitudinal energy equation (Eq. 3.3) that will be further derived in Section 3.1. 

 

(3.3) 

 
 

In the balloon example, it is moving up-and-down in the pool, creating a secondary wave.  A particle that is 
vibrating will create a similar wave that is transverse.  It is still generating a longitudinal wave, but now has a 
secondary, transverse wave with a poynting vector in the direction of propagation.  It is traveling and no longer 
stored energy in the particle – it is kinetic energy.    

 

Fig 3.2 – Transverse Waves 

The energy of this wave is very different than Eq 3.3.  It no longer has an in-wave.  It is a traveling, longitudinal (l) 
wave with a transverse component (t).  It is no longer spherical, but collapses to a volume that is cylindrical.  This is 
the base of the transverse equation that will be further derived in Section 3.2. 
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(3.4) 

 
 

 

3.1.  Longitudinal Energy Equation  

The Longitudinal Wave Equation was shown in Section 1 to calculate a particle’s rest energy.  In this section, the 
equation is derived from the base wave equation.  First, the following assumptions were required in the derivation, 
expanding on the wave theory laws also found in Section 1. 

 

Particle Formation Assumptions 

• The wave center is the fundamental particle, which is possibly the neutrino.  Longitudinal in-waves are 
reflected to become out-waves.  The amplitude of these waves decrease with the square of distance, with 
each wavelength, or shell (n).   

• Lepton particles are created from a combination of wave centers.  A number of wave centers (K) form 
the core of the particle, resulting in a standing wave formation from the combination of in-waves and 
out-waves. 

• Wave centers prefer to reside at the node of the wave, minimizing amplitude.  They will move to 
minimize amplitude if not at the node. 

• With sufficient energy, wave centers may be pushed together in arrangement to create a new particle (i.e. 
neutrino oscillation), but will decay (break apart) if the structure does not lend itself to a geometric shape 
where each wave center resides at the node in a wave. 

• When wave centers are spaced in the nodes, at even wavelengths in the core, waves are constructive.  A 
particle’s amplitude is the sum of its individual wave center amplitudes in the particle core. 

• If two wave centers are pi-shifted from each other on the wave (1/2 wavelength) it will result in 
destructive waves.  This is an anti-particle.  For example, if the neutrino is the fundamental wave center, 
then the anti-neutrino is a wave center pi-shifted from the neutrino. 

• Particle radius is proportional to the total wave amplitude, and is the edge of where standing waves 
convert to traveling, longitudinal waves. 

• Mass is the energy of standing waves within the particle’s radius. 

A visual of the wave, its amplitude, wavelength and nodes is shown in Fig 3.1.1 – neutrinos are assumed in the 
figure to be the fundamental wave center.  Neutrinos and anti-neutrinos reside in the node of the wave to minimize 
amplitude and will move towards the node.  Neutrinos at wavelengths create constructive waves; a neutrino and 
anti-neutrino will be destructive due to wave phase difference. 
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Fig 3.1.1 – Nodes and Neutrino Placement 

Figure 3.1.2 illustrates a particle, such as an electron, that is formed from standing waves (in-waves and out-waves).  
Eventually, standing waves transition to traveling waves, as they cannot keep this form for infinity.  This defines 
the particle radius, at the edge of where the transition occurs.  The mass of the particle is then the energy captured 
within this radius, i.e. standing waves as shown below. 

 

Fig 3.1.2 – Particle Radius and Mass 

 

Fig. 3.1.3 describes spherical, longitudinal waves that have amplitude that decrease with the square of distance.  As 
described in the assumptions in this section, the particle is assumed to consist of standing waves as a result of in-
waves and out-waves.  Also assumed is that the core of the particle may be made of one or more wave centers (K).  
Various combinations of wave centers (K) lead to different particles. 
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Fig 3.1.3 –Spherical Longitudinal Waves Originating from Particle 

 

From Eq. 3.3, spherical amplitude is noted by Ax, Ay and Az (or simply Al
3 since they are equal) that decreases with 

the square of distance (r).  This forms Eq. 3.1.1.  At rest, the in-wave frequency and amplitude are the same so it 
can be simplified to Eq. 3.1.2, which also includes a spherical volume to replace V.   

The number of wave centers in the particle affects the core distance (rcore).  It is a measurement of wavelengths 
proportional to the number of wave centers (K) as shown in Eq. 3.1.3. 

 

(3.1.1) 

 

(3.1.2) 

 
(3.1.3) 

 
Amplitude is also affected by the wave center count (K), similar to the particle’s core.  One assumption is that wave 
centers reside at wavelengths such that their amplitudes constructively combine, resulting in increased amplitude as 
described in Fig 3.1.4.  Although not every geometric relationship makes this possible for all particles, which leads 
to decay as wave centers are forced out of a stable position on a wave node, certain structures (especially at magic 
numbers) make it possible to combine.  The resultant wave is the sum of the amplitudes.   

El !V c
λl⎝ ⎠
⎜ ⎟
⎛ ⎞

in

Al
3

r2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

in

c
λl⎝ ⎠
⎜ ⎟
⎛ ⎞

out

Al
3

r2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

out

=

El ! 4
3
πr3⎝ ⎠

⎛ ⎞ c
2

λl
2

Al
3

r2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

=

rcore Kλl=



 

 30 

 

Fig 3.1.4 –Constructive Waves 

The core of the particle contains a large amount of energy, based on constructive wave interference that adds 
amplitude based on the number of wave centers (K).  Both amplitude (A) and the particle core radius (now replaced 
by Kλ in Eq. 3.1.4) are affected by K.  The core energy at n=1 is: 

	  

(3.1.4) 

The core contains the greatest amount of energy per wavelength as amplitude declines with the square of the 
distance from the center of the particle.  However, the total energy or mass of the particle is contained within its 
standing waves as illustrated in Fig 3.1.2.  Beyond the core, particles lose energy with each wavelength.  The energy 
for each shell can be determined, based on the energy at the particle core, and further reduced as amplitude 
decreases.  A particle’s rest energy is the energy in each of these shells until standing waves transition to traveling 
waves.   

Each particle’s standing wave transition and thus particle radius (r) depends on the number of wave centers (K).  It 
is made of (n) shell numbers of standing waves, each with a particle wavelength of Kλ.   This is represented by Eq. 
3.1.5.  The transition to traveling waves occurs when the shell number matches the wave center count.  In other 
words, n=K.  The radius of a particle (r) is therefore K2λ as captured in Eq. 3.1.6.    

 
(3.1.5) 

 
(3.1.6) 

 
The entire stored energy of a particle becomes the sum of each of these shells (n) until it reaches the radius at n=K.  
Eq. 3.1.7 is the sum of each of these shells and becomes the energy equation - the sum of each shell (n) until K 
wave centers using the radius in Eq. 3.1.5.  This value of r is substituted into the Eq. 3.1.2.  However, when doing a 
summation of volume, it is for spherical shells, not the entire sphere, so it should be noted that volume is adjusted 
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accordingly (n – (n-1)) for radius.  This becomes the longitudinal energy equation to calculate stored energy from 
standing waves of a particle in Eq. 3.1.7. 

Lastly, Eq. 3.1.7 can be simplified in Eq. 3.1.8 to become the Longitudinal Energy Equation. 

	  

(3.1.7) 

 

Longitudinal Energy Equation 

(3.1.8) 

 

Note:  Standing waves complete at radius K2λl, but longitudinal energy continues on beyond it as traveling waves.     

 
 

3.2.  Transverse Wavelength Equation  

This section derives and explains the Transverse Wavelength Equation.  It is derived prior to the energy equation in 
Section 3.3, as it will be required in the next section for the derivation of the Transverse Energy Equation.  In 
Tables 1.3 through 1.6, photon wavelengths and energies were calculated using these two equations.  Similar to the 
Longitudinal Energy Equation, the derivations started with assumptions for the transverse wave. 

 

Transverse Wave Assumptions  

The following assumptions were made when understanding particle interaction, including atomic orbitals: 

• Particle vibration creates a transverse wave.  A particle may vibrate upon annihilation, when transitioning 
between orbitals in an atom, or when an entire atom vibrates due to kinetic energy.   

• Longitudinal amplitude difference creates particle motion as particles seek to minimize amplitude.  

• The difference in longitudinal energy is transferred to transverse energy in a wave packet known as the 
photon. 

• Particles and their anti-matter counterparts attract because of destructive waves between the particles; 
like particles (e.g. electron-electron) repel due to constructive waves, seeking to minimize amplitude. 
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• Electrons in an atomic orbital are both attracted and repelled by the nucleus.  A positron is assumed to 
be at its core to attract the orbital electron; opposing forces in the nucleus repel the orbital electron.  A 
potential model of the proton with this structure is explained in Fundamental Physical Constants.  

A transverse wave is created from a vibrating particle, perpendicular to the direction of motion as illustrated in Fig. 
3.2.1.  A faster vibrating particle results in a transverse wave with a shorter wavelength than a particle that vibrates 
slower.  The greater the longitudinal amplitude differences in a particle’s interaction with surrounding particles, the 
faster the particle’s vibration.   

The outgoing, spherical longitudinal wave (out-wave) has an amplitude of (K Al)
3 / (K λl)

2. In motion, the particle’s 
vibration creates a secondary, transverse wave that takes on new characteristics as it transforms, including a new 
transverse amplitude and wavelength.   

  

Fig 3.2.1 –Transverse Wave Created by Particle 

During vibration, shell energy (based on wavelengths Kλ) is transferred to a transverse wave in a volume (shape) 
that resembles a cylinder.  The characteristic of this transition has an impact on the volume in which energy is 
stored.  Figure 3.2.2 shows this volume transition from a spherical particle (Vl) to a cylindrical photon (Vt).  The 
photon maintains the particle radius that becomes the photon length at K2λ.  But the particle is also vibrating at K 
times the existing particle radius, creating a photon radius of K3λ.   
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Fig 3.2.2 –Volume Change – Longitudinal to Transverse 

 

The ratio of these two volumes (Vlt) is derived in the following: 

 
(3.2.1) 

 

(3.2.2) 

 
(3.2.3) 

 
As the wave transitions from spherical to the cylindrical shape of the photon, the new, transverse wavelength is 
related to the original longitudinal amplitude (Al) and volume transformation (Vlt) for a single shell as described in 
Eq. 3.2.4.   

 
(3.2.4) 

 

The wavelengths and energies will be calculated over a difference between shells (n) with a starting position (ni) and 
ending position (nf) so the wavelength calculation is described as a function of wave centers (K) and shells (n) in Eq. 
3.2.5.  An illustration is provided to understand the initial and final starting positions of the electron in an orbital in 
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Fig. 3.3.3.  It starts at initial position ni wavelengths from the nucleus core and ends at position nf.  Also pictured in 
the figure is a difference in amplitude as a result of constructive or destructive wave interference, amplitude factor δ. 

 

 

Fig 3.3.3 – Energy Transition 

 

(3.2.5) 

 
Vlt is known and can be added to the equation and then simplified.  This is the transverse wavelength associated 
with a shell (n).   

 

(3.2.6) 

 

Transverse Wavelength Equation (without  modi f i e r) 

 

(3.2.7) 

Although it was not expected in the equation, a modifier (Δe) is needed for the Transverse Wavelength Equation 
that is equal to the amplitude factor for the single electron (δe).  The value for the modifier is nearly 1.0, which was 
the expected result.  Instead, its value is 0.9936344.  Refer to Fig 3.2.2 where it was assumed that particle volume is 
perfectly spherical and photon volume is perfectly cylindrical.  This may not be the case – perhaps due to particle 
spin - and could be the cause of the modifier. 
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After adding the modifier, it becomes the equation for computing transverse wavelengths in the wave equations. 

 

Transverse Wavelength Equation  

 

(3.2.8) 

 

3.3.  Transverse Energy Equation 

In Fig. 3.2, shown earlier, a particle was shown to create two photons with a transverse wave along with its 
longitudinal, traveling wave.  This illustration is now updated to show the base wave energy equation expanded to 
have these wave components.   The energy equation for this wave will have both a transverse frequency and 
longitudinal frequency, described in Eq. 3.3.1, where Vt is the volume of the cylindrical photon.  It can also be 
thought of as the electrical and magnetic components of the electromagnetic wave.  

 

Fig 3.3.1 – Transverse Waves 

 

The origin of this equation is again the base wave equation (Eq. 3.1), substituting the aforementioned volume, 
frequencies and amplitudes.  Note that the traveling wave is no longer spherical and the longitudinal amplitude is 
modified with the volume change.  It is Alt

2 and its amplitude is reduced proportional to each wavelength.  Its value 
is not known, nor is the amplitude for the transverse wave (At), however transverse wavelength was derived in 
Section 3.2.  The energy equation takes the form: 
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(3.3.1) 

 

Although the amplitudes are not known, transverse amplitude is related to the inverse of the transformed 
longitudinal amplitude, which goes through a volume change from spherical to cylindrical (photon) as described in 
the volume ratio (Vlt).  It is also affected by the amplitude factor (δ), which is the measure of constructive and 
destructive wave interference.  This is described in Eq. 3.3.2. 

 

(3.3.2) 

 
(3.3.3) 

The relation of these amplitudes in Eq. 3.3.3 can be substituted into Eq. 3.3.1 as shown below.  Next, Vt and Vlt 
from previous equations are used to expand the equation into Eq. 3.3.5 and simplified in Eq. 3.3.6. 

 

(3.3.4) 

 

(3.3.5) 

 
(3.3.6) 

 

At this point, Planck’s constant (h) is apparent in the equation.  The Planck relation (E=hf) is further described in 
Section 5.4.   
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The energy of one particle shell (n) can be calculated, knowing the transverse wavelength from Section 3.2.  Using 
the Transverse Wavelength Equation (without the modifier), one subshell simplifies to Eq. 3.3.7.  This value 
replaces the transverse wavelength in Eq. 3.3.6.   

 
(3.3.7) 

 

(3.3.8) 

 

The above is now simplified to become the transverse energy equation for a given particle shell (n). 

 

(3.3.9) 

 

Photon energies are calculated using the difference in energy as particles annihilate or electrons change orbits, so the 
above equation is represented as a change in energy difference in the following equations.  Similar to the Transverse 
Wave Equation, ni is the initial position of the particle in subshells (n) relative to a particle it is interacting with, and 
nf is the final position. 

 
(3.3.10) 

 

(3.3.11) 

 
The above is simplified to become the Transverse Energy Equation. 
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Transverse Energy Equation 

(3.3.12) 

 
 

3.4.  Orbital Equation 

While modeling transverse energies for hydrogen it was noticed that the first orbital and the fine structure constant 
had a relationship, which is the Bohr radius.  The calculation of the Bohr radius was explained in Section 2.2.  After 
determining the relationship, a pattern was noticed for the remaining orbitals that matched existing data.  Thus the 
orbital equation was not derived specifically from assumptions, but from patterns in the data.  The Orbital Equation 
is shown again in Eq. 3.4.1. 

  

Orbital Equation 

(3.4.1) 

 

An attempt to explain the Orbital Equation is illustrated in Fig. 3.4.1.  The nucleus of an atom contains both 
constructive and destructive wave interference.  It is assumed that there is a force that pushes outward on an 
electron in the orbital, but it is attracted by the positive charge that creates destructive waves.  In essence, the 
electron is being pushed and pulled.  Orbitals are based on the geometric arrangement of protons and neutrons in a 
nucleus that cause wave interference.  At the point of wave cancellation, the electron finds minimal amplitude and 
has a resting position.     

 

Fig 3.4.1 – Orbitals at Wave Cancellation Points 
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This paper does not propose a proton structure, but further work on the structure is found in Fundamental Physical 
Constants and Forces.  In particular, the Forces paper shows an interesting similarity between the electromagnetic force, 
holding the electron in orbit, and the strong force.  The strong force is related to the inverse of the fine structure 
constant, while the electromagnetic force is related to the inverse of the fine structure constant squared.    

 

3.5.  Amplitude Factor Equation 

Eq. 3.5.1 is another equation that was created to match patterns in data, rather than derived.  However, the beauty 
of the equation became apparent after factoring electrons from the second orbital (2s, 2p) as the pattern began to 
emerge.  The pattern held true until element number 20 in the Periodic Table (calcium), which is when electrons 
begin filling out the 3d subshell after completing the 4s subshell.  Thus the Amplitude Factor Equation only works 
for the first twenty elements and only calculates the ionization of electrons from the first orbital (1s).   

  

Amplitude Factor Equation – 1s Orbital Ionization 

(3.5.1) 

 

In Fig. 3.5.1, note the order in which electrons fill the subshells in an atom.  The first orbital (1s) has two electrons.  
The next orbitals have eight electrons each in the s and p subshells (e.g. 2s + 2p = 8 electrons).  Note the 
denominator in the Amplitude Factor Equation.  The equation stops working at calcium because electrons begin to 
fill subshell 3d before they fill subshell 4p.    

 

Fig 3.5.1 – Orbitals at Wave Cancellation Points 

 

Electron orbitals are simply a difference in amplitude and can be modeled by various amplification factors.  With 
additional modeling, it is expected that the remaining orbitals can be calculated for all elements.    
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3.6.  Oscillation and Decay Explained  

The three neutrinos (neutrino, muon neutrino and tau neutrino) are known to oscillate, meaning they can change 
into each other, becoming larger in mass or smaller in mass.16  Meanwhile, the electron family, like many other 
particles, are known to decay into particles of smaller mass.  This implies that there may be a fundamental particle 
that is the basic building block of energy that causes the formation of these particles.  In the wave equation 
solution, this fundamental building block is a wave center (K), which was shown to have properties matching the 
neutrino.   

In Table 1.1, the three neutrinos were calculated with a wave center count of K=1, K=8 and K=20 for the 
neutrino, muon neutrino and tau neutrino respectively.  The numbers 2, 8 and 20 are the first three magic numbers 
for atomic elements where there is more stability noted in elements.  At these lower values of K, the energy levels 
required to force wave centers together in these stable arrangements is quite possible to happen in nature – on 
Earth.  Solar neutrinos (K=1) generated by the Sun may combine on their way to Earth.  According to Table 1.1, it 
would require 8 neutrinos to combine to create the muon neutrino (K=8).   

Larger particles would experience decay – the opposite of wave centers combining to create new particles.  With 
decay, particles with wave centers that are not in stable formation would break apart into smaller particles.  For 
example, the tau electron at K=50 wave centers would have multiple possibilities to decay as it has a large number 
of wave centers.  Particles may not be stable due to each wave center attempting to be on the node of the wave. 

Included in the Appendix are wave center calculations of composite particles such as pions and kaons, and also the 
W, Z and Higgs bosons to help explain potential decay methods.   

 

3.7.    Photoelectric Effect Explained 

In 1887, Heinrich Hertz was the first to observe the photoelectric effect that, amongst other observations of the 
subatomic world, led to the quantum revolution.  Hertz witnessed electrons that were ejected from a metal when 
light was shone on it.17  The interesting find that led to quantum physics, and a separation from classical physics, is 
that the ability to eject the electron is based on the wavelength of the light.  Neither the length of time that the light 
is shone, nor the intensity, determines if the electron is ejected or its kinetic energy once ejected.   

For example, a red light shone on a metal surface might not eject an electron.  A green light, with a shorter 
wavelength, might eject the electron.  Whereas a blue light, with even shorter wavelength, might eject the electron 
with a greater kinetic energy (velocity) than the green light.  The red light could be shone for hours, much brighter 
than the blue light, and the results would be the same.   

In 1905, Albert Einstein recognized that time and intensity were irrelevant in the experiment because light is 
“quantized” into packets.  If light was a wave, it was expected prior to Einstein’s paper that it would be a 
continuous wave.  Einstein proved differently. 

In wave theory, light is a wave.  It does not have mass as mass is defined as stored energy in standing waves.  It is 
not a particle, as particles are defined by a formation of wave centers that create standing waves.  Rather, it is a 
transverse wave that is created by a vibrating particle.  The vibration is finite, leading to a defined volume for the 
wave, otherwise known as a photon.  Fig. 3.7.1 illustrates an electron’s path and the vibrating motion that creates 
the wave. 
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Fig 3.7.1 – Electron Path – Creating a Transverse Wave 

 

The equations for transverse energy and wavelength contain an initial and final position for a particle that 
experiences a change in amplitude, which causes motion.  However, it does not move from point A to point B like a 
man walking from his car into his home.  Instead, a better analogy is a spring with a marble attached to the end.  
Stretch the spring and release it and the marble will move back-and-forth as the spring finds its equilibrium.  As the 
electron changes orbits, it overshoots its final position, returns back (and overshoots again), and continues to repeat 
the process until it reaches equilibrium.  This is the electron’s path in Fig. 3.7.1. 

Light is indeed a wave.  It has a transverse component and a longitudinal traveling wave in a cylindrical shape. 
Einstein was also correct and it is a packet, or photon.  In fact, two photons are generated, traveling in opposite 
directions from the vibrating particle.   

 

3.8.  Double Slit Experiment Explained 

One of the experiments that led to the acceptance of wave-particle duality is the double slit experiment.  Wave-
particle duality is the confusing explanation that particles, including light, can be expressed not only in terms of 
being a particle but also a wave.18  Conveniently, a quantum object can sometimes exhibit particle behavior and 
sometimes wave behavior.   

The double slit experiment first showed this property for light.  In the experiment, light is shone through a slit in 
the first object such that it can proceed through to a second object.  It can be done with a simple flashlight, a piece 
of paper with one hole/slit cut into it, and a wall behind it.  The light captured on the wall will match the slit pattern 
in the paper.  However, if a second slit is cut in the paper, it shows a diffraction pattern, because of wave 
interference from the light passing through both slits.   

The double slit experiment first showed that light had both properties of a wave and a particle.  However, as 
explained in Section 3.7, it has been explained that light does travel in packets, or photons, and is not a continuous 
wave, although it carries transverse and longitudinal traveling wave components described earlier in this section.  It 
is quantized.   

The double slit experiment was also conducted on particles, like the electron, and similar results were obtained.  The 
electron, thought to be a particle, also produced the same diffraction pattern.  The electron and other elementary 
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particles are currently also considered to have wave and particle characteristics - wave-particle duality.  When one 
slit is open, the electron behaves like a particle.  When the second slit is open, the electron produces a diffraction 
pattern, resembling a wave pattern.  And if a measuring device is placed on the second slit to determine if the 
electron passes through the slit, it reverts back to the same result as one slit being open – no diffraction pattern is 
found. 

An illustration to provide this explanation is shown in Fig. 3.8.1.  Particles consist of wave centers that can be 
measured to have a definitive position in space and time.  These same particles, such as the electron, also generate 
standing waves of energy and beyond the particle’s radius, traveling waves.  This was modeled in the Longitudinal 
Energy Equation.  It’s better to think of the electron as a particle, but one that reflects a wave and is affected by 
wave amplitudes of all particles, including itself if it interacts with its own wave that has traveled through a second 
slit.  The path of the electron being affected by its own traveling waves is illustrated in Fig. 3.8.1.  Note the electron 
does not go through both slits.  It is a particle and can only go through one slit.    

 
Fig 3.8.1 – Double Slit Experiment 

If a measuring device is placed on one of the slits, it has the potential to affect the traveling wave generated by the 
electron.  Cancelling or disrupting this wave causes the change in the motion of the electron.  If its traveling waves 
through the second slit are cancelled with destructive wave interference, then the electron would have a motion 
similar to the single slit experiment. 

Light is a wave, but travels in a discrete packet known as the photon.  It is not a particle defined in this theory as 
containing wave centers.    

The electron is a particle as it contains wave centers that reflect in-waves to out-waves, thereby creating standing 
waves of energy.  Beyond the particle’s definition (radius), its out-waves are longitudinal traveling waves. 
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4. Methodology for Determining Wave Equation Constants 

This section describes the methodology that was used to find the constants that are used in the wave equations: 1) 
Longitudinal Amplitude, 2) Longitudinal Wavelength and 3) Density.  The fourth constant that is critical in these 
equations is already well known – the speed of light constant which is the speed at which waves travel through the 
aether.   

 

4.1.   Longitudinal Wavelength Constant 

Longitudinal wavelength is based on the classical radius of the electron (re).  When modeling the electron based on 
standing waves of energy, using the Longitudinal Energy Equation, it was assumed that amplitude and wavelength 
were proportional to the number of particle wave centers (K).  Particles have a core at K times wavelengths and a 
radius at K2 times wavelengths (λl).  With the neutrino assumed as the fundamental particle, the electron fits the 
equation at K=10, or ten particle wave centers.  Knowing the classical radius of the electron, and the value K for 
the electron, wavelength can be solved using the assumption of radius - K2 x λl. 

The following is the calculation of Longitudinal Wavelength (λl) in meters: 

   

(4.1.1) 

  

(4.1.2) 

 

Calculated Value: 2.817940327E-17 (m) 

Note: A wavelength of 2.81794 x 10-17 meters puts the electron’s core radius at 2.81794 x 10-16 meters (n=10 
wavelengths), or one-third the radius of a proton.19 

 

4.2.   Longitudinal Amplitude Constant 

Knowing the longitudinal wavelength constant, the longitudinal amplitude was solved using the derivation of the 
fine structure constant, found in the Fundamental Physical Constants paper.  The derivation for the fine structure 
constant is in Eq. 4.2.1 and its CODATA value in 4.2.2: 
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(4.2.1) 

 (4.2.2) 

 

The value K for the electron (Ke) and longitudinal wavelength are known, but two other constants appear in the 
equation to be explained.  Oe is a constant provided for readability of the Longitudinal Energy Equation.  It can be 
expanded as follows in Eq. 4.2.3 for the electron.  Lastly the amplitude factor for the electron is explained earlier 
and is found in Eq. 4.2.4.   

 

(4.2.3) 

 (4.2.4) 

As all of the constants are known in Eq. 4.2.1 with the exception of longitudinal amplitude, it is isolated from the 
equation and then solved.   

 

(4.2.5) 

 

Calculated Value: 3.662799228E-10 (m) 

 

4.3.   Aether Density Constant 

Aether density was calculated using the well-known value for the Planck constant (6.62607004081E-34) that was 
derived in Fundamental Physical Constants (see Eq. 4.3.1) and provided again in the upcoming section 5.4 in this paper.  
Planck constant is related to constants already solved above, so density (ρ, in kg/m3), can be isolated and solved in 
Eq. 4.3.2. 
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(4.3.1) 

 

(4.3.2) 

 

Calculated Value: 9.422329851E-30 (kg/m3) 

Note: An aether density of 9.422 x 10-30 kg / m3 is slightly less dense than the critical density of the universe 
(although it is not certain that aether density is consistent across the universe).   
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5. Deriving Classical Equations from the Wave Equation 

 

Introducing a new wave equation that describes the energies of particles and their interactions must also fit known 
classical and quantum equations, as these equations have been rigorously tested and proven.  In this section, the 
wave equation is used to derive these equations as the base from which they form.  Further, by looking at these 
equations in a new way, based on waves of energy, they can also be explained.  Section 5.1 attempts to explain the 
equations, with further details and derivations about each of the energy equations and relativity in Sections 5.2 to 
5.5. 

 

5.1.  Energy Relationship 

The fundamental energy equations are mass-energy (E=mc2), energy-momentum (E=pc) and Planck relation 
(E=hf).  Long ago, Einstein proposed the relationship for rest mass and momentum in a simple equation 
(E2=(mc2)2+(pc)2), but the tie to quantum energies and the Planck relation is not well understood.  Furthermore, 
there remain mysteries like annihilation and pair production, where electrons and positrons appear from a vacuum, 
which is not tied to any of these equations.  For the latter, it is well understood that energy is conserved, i.e. that 
annihilation produces photons equal to the energy of the particles, but the mechanism for how it works is not 
covered by classical equations. 

The following sections will derive the classical equations, including relativity, but this section starts first with a 
simple explanation of why these energy equations work and how they are related, including the annihilation and 
creation of particles. 

A single particle, in Fig 5.1.1, consists of spherical, longitudinal waves.  In the figure, this has been simplified to a 
simple sine wave to illustrate frequency and amplitude difference.  At rest, the particle resonates at the same 
frequency as its in-waves and has minimized its amplitude difference to maintain a stable position.  At rest, there is 
no frequency or amplitude difference relative to the waves that travel the aether. 

When a single particle is in motion, its frequency changes similar to waves experiencing the Doppler effect.  Its 
leading edge will have a higher frequency than its trailing edge, shown in Fig 5.1.1.  It experiences a change in 
frequency and wavelength relative to the in-waves of its surroundings.     

 

Fig 5.1.1 –Energy Relationship – Single Particle 
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Fig 5.1.2 –Energy Relationship –Particle Interaction 

In Figure 5.1.2, two particles interact and may create constructive or destructive wave interference that causes a 
difference in amplitude.  In an electron and positron interaction, the phase difference of their waves are destructive 
between the particles causing attraction; two like particles (e.g. electron and electron) are constructive causing the 
particles to repel.  When particles like the electron and positron are attracted, they will move to the point of 
amplitude minimization unless otherwise repelled by additional particle(s).   

Annihilation is the point where two particles converge such that there is complete amplitude cancellation.  The 
particles have minimized their amplitude.  However, if an electron is attracted by a positron in an atom, it maintains 
an orbit due to a gap in wave cancellation from opposing forces, as described in Section 3.4.  In this case, there is 
an amplitude difference and the change in its position and longitudinal amplitude creates a transverse wave with a 
frequency proportional to amplitude difference.  This becomes the Planck relation described in further detail in 
Section 5.4.  

To summarize, the energy equations are simply a difference in amplitude or frequency relative to the universal 
waves that travel the aether. 

 

5.2.  Mass-Energy Equivalence (E=mc2) 

As described in Section 3.1, mass is the sum of standing waves within the particle’s boundaries before standing 
waves convert to traveling waves.  Mass is apparent in the Longitudinal Energy Equation, as it is energy divided by 
the square of the wave speed (c2).  

From the 
Longitudinal 
Energy Equation  
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Mass is the 
equation without c2 

 

(5.2.2) 

Subtitute mass back 
into equation for 
E=mc2  

 (5.2.3) 

 

Proof of this equation was demonstrated in Table 1.1 by calculating the energy of the electron at K=10.  Further 
proof of the equation is demonstrated by validating the mass of the electron, using Eq. 5.2.2 for mass, with the 
known rest mass of the electron (Eq. 5.2.5, in kilograms).  

Solving for mass of 
the electron 

 

(5.2.4) 

Mass of electron 
(units derive to kg)  

(5.2.5) 

 

5.3.   Energy-Momentum Equivalence (E=pc) 

Particle motion results in a frequency change, which was illustrated in Fig. 5.1.1.  A particle sees a higher frequency 
on its leading edge (direction of motion) than the trailing edge.  The change in frequency and thus wavelength is 
only in the direction of motion (labeled in the following equations as the X axis).     

To an observer, the particle experiences the Doppler effect and thus Doppler equations are used to find the leading 
edge and trailing (lag) frequencies.  The particle’s frequency while in motion is the geometric mean of the lead and 
lag frequencies, shown in Eq. 5.3.3.  The Lorentz Factor then becomes apparent upon taking the mean of this 
frequency (Eq. 5.3.7), and will be used later to describe Relativity in Section 5.5. 

The following derives the Energy-Momentum relation: 

Energy at rest 
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direction X 

fx is the geometric 
mean of lead and 
lag frequency 

 (5.3.3) 

Doppler equation. 
Frequency of 
leading edge. 

 

(5.3.4) 

Doppler equation. 
Frequency of 
trailing (lag) edge. 

 

(5.3.5) 

Combine Eqs 5.3.3 
– 5.3.5. fx as 
function of initial 
frequency.  

 

(5.3.6) 

Lorentz factor is 
seen in Eq. 5.3.6. 

 

(5.3.7) 

Subtitute Eq. 5.3.6 
back into Eq. 5.3.2. 

 

(5.3.8) 

Substitute 
wavelength for 
frequency. 

 

(5.3.9) 
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Rest mass is energy 
divide c2 

 

(5.3.10) 

Subtitute Eq. 5.3.10 
into 5.3.9 

 

(5.3.11) 

Square both sides 

 

(5.3.12) 

Replace E2 with 
m2c4 (square of E) 

 

(5.3.13) 

 

 
(5.3.14) 

 

 
(5.3.15) 

Rearrange to isolate 
“mv”  

(5.3.16) 

Momentum (p) is 
mass times velocity  (5.3.17) 

Subtitute Eq. 5.3.17 
into 5.3.16  

(5.3.18) 

m0
!VA2

λ0
2

=

E
m0c

2

1 Δv2

c2
−

=

E2
m0
2c4

1 Δv2

c2
−

=

m2c4
m0
2c4

1 Δv2

c2
−

=

m2c4 1 Δv2

c2
−

! "
# $
% &

m0
2c4=

m2c4 m2v2c4

c2
− m0

2c4=

m2c4 mv( ) 2c2− m0
2c4=

p mv=

m2c4 p2c2− m0
2c4=
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(5.3.19) 

Einstein’s energy-
momentum 
equation 

 (5.3.20) 

 

5.4.   Planck Relation (E=hf) 

Planck’s relation is a result of a transverse wave, from the vibration of a particle due to a difference in amplitude, as 
described in Section 3.2.  This may happen during annihilation of a particle, or when a particle transitions between 
orbitals in an atom.  The derivation of this relation thus starts with the transverse energy equation, starting at Eq. 
3.3.6 before transverse wavelength has been substituted.  In this equation, shown again in Eq. 5.4.1, Planck’s 
constant (h) is apparent.  After showing the derivation of Planck’s relation in Eq. 5.4.4, the constant (h) is then 
validated as a final step in Eq. 5.4.6. 

Equation 3.3.6 with 
transverse 
wavelength  

(5.4.1) 

Planck’s constant 
(w/out wavelength)  

(5.4.2) 

Subtitute Eq. 5.4.2 
into 5.4.1 

 
(5.4.3) 

Replace wavelength 
with frequency. 
E=hf. 

 (5.4.4) 

Validation: Planck’s 
constant when 
K=10 (electron)  

(5.4.5) 

Planck’s Constant 
(m2 kg /s)  (5.4.6) 

 

E2 p2c2− m0
2c4=

E2 m0c
2( ) 2 pc( ) 2+=

Et K n,( )
8
3
π!K3λlc

2δ 1
λt K n,( )

=

h K( )
8
3
π!K3λlcδ=

Et K n,( ) h K( )
c

λt K n,( )

=

Et K n,( ) h K( ) ft K n,( )=

h 10( )
8
3
π!Ke

3λlcδe=

h 10( ) 6.62589 10 34−·=
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5.5.  Relativity 

Einstein’s work on Special Relativity and General Relativity laid the foundation of physics over the past century, 
but has left as many questions as to why these equations work.  For example, why does the length of an object 
contract with motion?  Why does mass increase in size?   

In this section, the major theories suggested by Einstein are derived and explained with a wave equation. 

 

Relative Mass and Energy 

In section 5.3, the energy-momentum relation was explained and velocity is introduced into the equation to 
calculate the frequency difference when a particle is in motion.  To recap, because of motion, the wave experiences 
the Doppler effect and the new frequency is the geometric mean of the leading and trailing frequencies in the 
direction of motion.   

At low velocities, the frequency difference is negligible.  However, at relativistic speeds closer to the speed of light, 
this difference needs to be considered in calculations.  This is the Lorentz factor as derived in Eq. 5.3.7 as the 
geometric mean of frequencies, relative to the initial frequency.  In 5.5.5 and 5.5.6, this factor is apparent in the 
relativistic mass and energy derivations respectively.  

From Eq. 5.3.8 

 

(5.5.1) 

Subtitute Lorentz 
Factor Eq. 5.3.7 
into Eq. 5.5.1 

 

 
(5.5.2) 

Change frequency 
for wavelength 

 

(5.5.3) 

Mass – same as Eq. 
5.3.10 

 

(5.5.4) 

E
!Vf0f0A

2

1 Δv2
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−

=
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=
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!VA2
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2
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Substitute Eq. 5.5.4 
into 5.5.3 and 
divide c2 for mass 

 (5.5.5) 

Subtitute 5.5.5 into 
E=mc2 equation. 
Relative energy. 

 (5.5.6) 

 

Time Dilation  

Time may be thought of as the frequency of the universal waves that travel the aether, responsible for in-waves 
within particles.  Note that frequency is measured in Hertz, or cycles per second.  This reintroduces the concept of 
a universal time, but time is relative to an observer (consistent with Einstein’s view) based on a particle’s 
movement.  Time is relative due to a change in frequency of a particle or collection of particles, as seen by an 
observer.  As the particle moves, it affects its frequency and how an instrument can measure the frequency cycle of 
a moving object.   

The following starts with the frequency change of a particle from Eq. 5.3.6, in which the Lorentz factor is 
introduced again.  Assuming that our measurement of time is based on this frequency, then Eq. 5.5.9 matches the 
time dilation equation.20 

From Eq. 5.3.6 

 

(5.5.7) 

Substitute Eq. 5.3.7 
into 5.5.7.    (5.5.8) 

Time is frequency.  
Replace frequency 
with time (t). 

Time dilation. 

 
(5.5.9) 

 

Length Contraction 

When an object is in motion, it contracts in the direction of travel.  As with other relativity equations, it is negligible 
at low velocities but the size of an object will shrink considerably in the axis of motion at relativistic speeds.  Why?   

m !m0=

E !m0c
2=

Δfx
f0

1 Δv2

c2
−

=

Δfx !f0=

Δtx !t0=
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The object that contracts is a collection of atoms, bound together by sharing electrons.  When atoms that make up 
the structure are in motion, its frequency changes (Doppler effect), and wavelength becomes shorter.  For a single 
atom, this means its electrons in its orbitals are drawn in closer.  Orbitals are gaps created by wave cancellation, and 
with shorter wavelengths, these orbitals are closer to the nucleus.  For example, the hydrogen 1s orbital was 
calculated in Table 1.2 as 187,789 wavelengths from the particle core.  When in motion, its electron will still be 
187,789 wavelengths from the particle core, but with shorter wavelengths, it will be closer to the nucleus as 
illustrated in Fig 5.5.1.   

Since atoms share electrons, each atom in the direction of motion equally contracts such that the length is shorter 
relative to its initial length at the standard frequency/wavelength seen when the atom is at rest.  Eq. 5.5.12 describes 
the length of the object as being the sum of the atoms and their wavelengths to its orbitals.  The derivation of 
length contraction starts with the frequency change from time dilation, Eq. 5.5.8, and the following derivation 
concludes with a length contraction equation that matches Einstein’s relativity. 21 

 

Fig 5.5.1 –Length Contraction 

 

Replace Equation 
5.5.8 frequency 
with wavelength  

(5.5.10) 

Solve for 
wavelength 

 
(5.5.11) 

Length is the sum 
of the distances 
between atoms 

 (5.5.12) 

c
Δλx

! c
λ0

=

Δλx
λ0
!

=

Lo nNλ0∑=
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Length changes 
because wavelength 
contracts in X 
direction 

 (5.5.13) 

Subtitute Eq 5.5.11 
into 5.5.13 

 
(5.5.14) 

Subtitute Eq. 5.5.12 
into 5.5.14.  
Length 
Contraction. 

 
(5.5.15) 

 

 

 

ΔLx nNΔλx∑=
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6. Conclusion 

Today’s classical and quantum equations are undoubtedly correct.  Countless experiments have verified the accuracy 
of these equations from the energies of various atoms and molecules to the specific energy of a photon at various 
wavelengths.  However, there remains a separation of equations for the subatomic (quantum mechanics) and for the 
world larger than the size of these atoms (classical mechanics).   

The conclusion of this paper is that there is indeed one fundamental set of rules and equations that govern 
everything in the universe, regardless of size.  In this view of the universe, all energy comes in the form of waves, 
either longitudinal or transverse forms.  Further, various particles seen both in nature and in experiments are a result 
of a combination of wave centers, combining to form a particle, whose stability is dependent on the ability to have a 
core structure in which wave centers can reside at the nodes of a three-dimensional wave to maintain stability.  It is 
proposed that the neutrino may be the fundamental wave center.   

Since this view of particle physics is very different from currently accepted models, this paper had the challenge of 
not only matching existing data, but to also provide an explanation and derivation of existing energy equations.   

The following evidence was presented in support of the new, proposed wave equations: 

• Calculated the energy and mass of lepton particles using the Longitudinal Energy Equation, which coincides 
with magic numbers also seen in atomic elements.  

• Calculated the wavelengths of hydrogen orbital transitions, both ionization and transitions between shells.  
The same Transverse Wavelength Equation was used to calculate the electron Compton wavelength. 

• Calculated the ionization energies of the first twenty elements using the Transverse Energy Equation, using 
different configurations of electrons in each element to prove that amplitude is the variable in the equation 
that governs transverse energy.   

• Finally, the Orbital Equation was used to calculate the distances to each hydrogen orbit, including the 
correct calculation of the Bohr radius. 

Following the presentation of this data in Section 1, a derivation and explanation of the equations were presented, 
concluding with a tie of these equations to current quantum and classical equations.  Explanations were also 
provided for experiments that led to the quantum revolution, explaining the photoelectric effect and double slit 
experiments.  In short, light is a wave but in packet form.  While light is not particle, as defined in this wave theory 
as a formation of one or more wave centers, the electron is a particle.  The electron contains wave centers that 
reflect waves, which explains its confusing nature as appearing as both a particle and a wave. 

This paper concludes that all energy comes from a wave equation and that classical and quantum energy equations 
are one - simply a difference of frequency or amplitude experienced by particles.  Quantum jumps were further 
explained as the electron’s movement between orbitals as it is both attracted and repelled by the nucleus, where its 
orbit is a gap in the forces because of wave cancellation.   

There is sufficient data, with reasonable explanation, that these wave equations should be seriously considered.  The 
fact that the neutrino may be the building block of other particles should also be considered.  These findings 
provide the basis of a new, encouraging way to explain subatomic particles and their interactions. 

There is potential work that may prove or expand upon the theory presented in this paper, such as: 



 

 57 

• If all of the magic numbers from the Periodic Table of Elements hold true for leptons, there may be a 
neutrino at K=2 (1.76x10-17 joules).  Locating this neutrino, perhaps in sterile neutrino experiments, may 
provide additional proof.  

• Determining the structure of the proton with both attracting and repelling forces would be further proof.  It 
is assumed that there is a positron in the core and that repelling forces, perhaps electrons in the core of the 
proton, cancel at distances which become the atomic orbitals.  Once the basic proton structure is validated 
for hydrogen, it can be expanded upon for all other elements to determine their orbitals. 

• This paper has calculated all of the orbital energies for hydrogen and ionization of the first twenty elements 
for the first orbital.  Further proof could build out models beyond the first orbital and also for elements 
beyond calcium. 
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Appendix  

Aether: Michelson-Morley Experiment 

The aether was commonly accepted in science until the Michelson-Morley experiment failed to detect the aether 
wind in an experiment in 1887.  Numerous experiments following Michelson-Morley, with greater precision 
instruments, have also been unable to detect the aether.  The aether is a critical, missing component of physics that 
must be considered to explain the wave nature of matter.  Wave theory relies on the existence of the aether and 
must explain the results of the Michelson-Morley experiment. 

A few years after the Michelson-Morley experiments were published, Hendrik Lorentz suggested the experiment 
apparatus failed to consider length contraction in the direction of motion.22  Lorentz would later have the Lorentz 
contraction factor named after him, and matter has been proven to contract.  In fact, Albert Einstein used the 
Lorentz factor in relativity.  However, Lorentz’s explanation was disregarded as the reason the aether was not 
detected in the Michelson-Morley experiment. 

Gabriel LaFreniere wrote a computer simulation of the Michelson-Morley experiment with and without the Lorentz 
factor built into the simulation. 23  With the Lorentz factor considered, the results are what Michelson and Morley 
expected, which shows a phase shift in the light wave.  The aether does exist.  Without this factor considered, the 
results are what the Michelson-Morley experiment recorded, and why the aether was disregarded. 

Fig. A.1 shows a still image of the computer simulation written by LaFreniere.  On the left is the expected result of 
a phase shift using the Michelson interferometer, which is the apparatus used to detect the aether.  On the right is 
the actual result, which showed no phase shift, because one of the branches of the interferometer experienced 
length contraction (the branch in the direction of motion).  The details of the experiment, including LaFreniere’s 
explanation and the animated view of the computer simulation are available at: 
http://www.rhythmodynamics.com/Gabriel_LaFreniere/sa_Michelson.htm.  
 

 

Fig A.1 – Michelson Interferometer 
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Other Particle Rest Energies (non-Leptons) 

It is not expected that the Longitudinal Energy Equation can be used for all particles in its current form, as it 
assumes amplitude is perfectly constructive, the resulting amplitude being K times Al.  This means that wave centers 
(possibly neutrinos) must be located at exact wavelengths apart from all other wave centers.  Leptons, covered 
earlier, may fit into this criterion, as magic numbers might reflect geometrically stable shapes.  However, not all 
particles can be expected to meet the same criteria and thus the calculations in Table A.1 have been put into this 
appendix.   

Some of the remaining particles, many of which are created in particle accelerator labs, have been mapped to the 
closest value of K, if its standing waves are perfectly constructive.  This is shown in the table below comparing the 
calculated rest energy (red) against the particle’s CODATA rest energy (italics).  

 

 

 

Table A.1 –Particle Mass as Function of K 
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