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ABSTRACT

Markov Chain Monte Carlo (MCMC) methods are well-known Monte Carlo methodologies, widely used in different
fields for statistical inference and stochastic optimization. The Multiple Try Metropolis (MTM) algorithm is an
extension of the standard Metropolis-Hastings (MH) algorithm in which the next state of the chain is chosen among
a set of candidates, according to certain weights. The Particle MH (PMH) algorithm is other advanced MCMC
technique specifically designed for scenarios where the multidimensional target density can be easily factorized
as multiplication of (lower - dimensional) conditional densities. Both have been widely studied and applied in
literature. In this note, we investigate similarities and differences among the MTM schemes and the PMH method.
Furthermore, novel schemes are also designed.
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1. INTRODUCTION

Monte Carlo statistical methods are powerful tools for numerical inference and stochastic optimization [19]. Markov
chain Monte Carlo (MCMC) methods are classical Monte Carlo techniques that generate samples from a target
probability density function (pdf) by drawing from a simpler proposed pdf, usually to approximate an otherwise-
incalculable (analytically) integral [10, 9]. MCMC algorithms produce a Markov chain with a stationary distribution
that coincides with the target pdf.

The Metropolis-Hastings (MH) algorithm [15, 7] is the most famous MCMC technique. It can be applied to
almost any target distribution but, in practice, the performance dependence crucially on the choice of the proposal
pdf. In some cases, the Markov chain generated by the MH algorithm can remain trapped almost indefinitely in a
local mode meaning that, in practice, convergence can be very slow.

The Multiple-Try Metropolis (MTM) method of [11], [10, Chapter 5] is an extension of the MH algorithm in
which the next state of the chain is selected among a set of independent and identically distributed (i.i.d.) samples.
This enables the MCMC sampler to make large step-size jumps without a lowering the acceptance rate; and thus
MTM is can explore a larger portion of the sample space in fewer iterations. A famous special case of MTM,
well-known in molecular simulation field, is the orientational bias Monte Carlo technique [6].

Several generalizations of the basic MTM scheme [11] can be found in literature: with correlated candidates
[13, 18], more general form of the weights and different frameworks [8, 14, 16, 22], with adaptive and interacting
proposal pdfs [2, 12]. Interesting and related considerations about the use of multiple auxiliary variables for building
acceptance probabilities within a MH approach can be found in [21].
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Independently from the MTM schemes, Particle MCMC methods have been proposed [1] in literature. They are
specially designed to solve inference problem in state space model applications. Here, we focus on the so-called
Particle (Independent) Metropolis-Hastings (PMH) algorithm.

The authors in [1] also provide a short description of the relationships with other existing techniques. They
mention and describe precisely the relationship with the so-called configurational bias Monte Carlo method [20],[10,
Chapter 5], technique that is also strictly connected to the MTM scheme. They also allude quickly to the MTM
method [11].

The relationship between MTM and PMH deserves a more careful look. This the aim of this work. We introduce
a slight variant of a MTM technique with an independent proposal density. The structure of this algorithm coincides
exactly with the PMH method although the mechanism of generation of the candidates is different, as discussed in
the sequel. Clarifying this strong connection allows us to design new efficient schemes.

[? ? ]

2. IMPORTANCE SAMPLING

Many applications can be described a system characterized by a vector of unknown parameters, x ∈ RD×ζ , and a
set of observed data, y ∈ RdY . In these cases, one is interested in approximating the posterior density π̄(x|y) that,
hereafter, we simply denote as π̄(x). More specifically, in this work, we denote the variable of interest as

x = x1:D = [x1, x2, . . . , xD] ∈ D = XD ⊆ RD×ζ ,

where xd ∈ X ⊆ Rζ for all d = 1, . . . , D. The target density is indicated as π̄(x) = 1
ZD
π(x), where

ZD =
∫
D
π(x)dx. (1)

Monte Carlo techniques employ a proposal density, denoted as q(x), with support X ⊆ RD×ζ ,1 for generating
possible candidates. Then, these candidates are filtered using some suitable procedure, in order to produce a particle
approximation of π̄(x) and provide an estimation of ZD.

2.1. Batch and Sequential Importance Sampling

A well-known Monte Carlo algorithm is the importance sampling (IS) method. IS provides an approximation with
weighted samples of the measure of π. More specifically, N samples x(1), ...,x(N) are drawn from a proposal pdf
q(x) and then they are weighted as

w
(n)
D =

π(x(n))
q(x(n))

, n = 1, . . . , N, (2)

where the super-index n in w(n)
D denotes the corresponding particle and the subindex D refers to x = x1:D =

[x1, ..., xD]. Thus, the particle approximation is

π̂D(x) =
N∑
n=1

w̄
(n)
D δ(x− x(n)), (3)

with w̄(n)
D = w

(n)
DPN

i=1 w
(i)
D

. An estimation of Z is given by

ẐD =
1
N

N∑
n=1

w
(n)
D . (4)

1For the sake of simplicity, in the observations of the rest of the work, we consider the proposal function q(x) be normalized, i.e.,R
X q(x)dx = 1.



In high dimensional spacesD, an equivalent sequential procedure is preferred to the previous batch approach. Recall
that x = x1:D = [x1, ..., xD], we can observe that a target pdf π̄(x) can always be expressed as

π̄(x) ∝ π(x) = γ1(x1)
D∏
d=2

γd(xd|x1:d−1) (5)

using the chain rule [17] where γ1(x1)is a marginal pdf and γd(xd|x1:d−1) are conditional pdfs. We also consider
the joint probability of [x1, . . . , xd],

π̄d(x1:d) =
1
Zd
πd(x1:d) ∝ πd(x1:d) = γ1(x1)

d∏
j=2

γj(xj |x1:j−1), (6)

so that, clearly, π̄D(x1:D) = π̄(x). In many applications, the target appears directly decomposed as in Eq. (5), e.g.,
as in state-space models. However, in general, one needs to marginalize several times the target π̄(x) for obtaining
analytically the conditional pdfs γd(xd|x1:d−1), d = 1, . . . , D. Given the target in Eq. (5), we can also consider a
proposal pdf decomposed in the same fashion

q(x) = q1(x1)q2(x2|x1) · · · qD−1(xD−1|x1:D−2)qD(xD|x1:D−1).

In a batch IS scheme, given an n-th sample x(n) = x
(n)
1:D ∼ q(x), we assign the importance weight

w
(n)
D =

π(x(n))
q(x(n))

=
γ1(x(n)

1 )γ2(x(n)
2 |x

(n)
1 ) · · · γD(x(n)

D |x
(n)
1:D−1)

q1(x(n)
1 )q2(x(n)

2 |x
(n)
1 ) · · · qD(x(n)

D |x
(n)
1:D−1)

.

The previous expression suggests a recursive procedure for computing the importance weights: starting with

w
(n)
1 = π(x

(n)
1 )

q(x
(n)
1 )

and then

w
(n)
d = w

(n)
d−1β

(n)
d ,

=
d∏
j=1

β
(n)
j , d = 1, . . . , D,

(7)

where we have set

β
(n)
1 = w

(n)
1 and β

(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

, (8)

for d = 2, . . . , D. Thus, given N samples x(1),. . ., x(N), finally we obtain the particle approximation

π̂d(x1:d) =
N∑
n=1

w̄
(n)
d δ(x1:d − x(n)

1:d ), d = 1, . . . , D, (9)

and an estimator of the normalizing constant Zd is

Ẑd =
1
N

N∑
n=1

w
(n)
d =

1
N

N∑
n=1

 d∏
j=1

β
(n)
j

 . (10)



However, an alternative formulation is often used

Z̃d =
d∏
j=1

[
N∑
n=1

w̄
(n)
j−1β

(n)
j

]
, (11)

=
d∏
j=1

[ ∑N
n=1w

(n)
j∑N

n=1w
(n)
j−1

]
, (12)

=
d∏
j=1

[
Ẑj

Ẑj−1

]
=
Ẑ1

Ẑ0

Ẑ2

Ẑ1

× . . .× Ẑd

Ẑd−1

= Ẑd, (13)

where, for simplicity, we have set Ẑ0 = 1. A alternative derivation of the (final) estimator Z̃D is given in Appendix
A.

Remark 1. In SIS, there are two equivalent formulations, Ẑd in Eq. (4) and Z̃d in Eq. (11) of estimator of Zd.
In the rest of the work, sometimes we denote the final estimators ẐD or Z̃D simply as Ẑ or Ẑ, as well.

2.2. Sequential Importance Resampling (SIR)

Sequential Importance Resampling (SIR) [10, 19] combines the sequential construction of the importance weights
with the application of resampling steps [4, 5]. Namely, when some pre-established criterion is fulfilled, N
independent particles are drawn according to the probability mass π̂d(x1:d). Then, the resampled particles are
propagated for providing the next approximation π̂d+1(x1:d+1). More specifically, let us consider that a resampling
step is performed at the d-th iteration. Hence, N samples x(j)

1:d are drawn from π̂d(x1:d), and then the corresponding
weights are set to the same value [4, 5]. A proper choice 2 is to set the unnormalized importance weights

w
(n)
d = Ẑd, ∀j = 1, . . . , N. (14)

i.e., w(1)
d = w

(2)
d = . . . = w

(N)
d , equal for each resampled particle x(n)

1:d . Hence, after a resampling step, we have
that w̄d(x

(n)
1:d ) = 1

N , for all j = 1, . . . , N . One reason why this is a good choice, for instance, is that defining the
following weights

ξ
(n)
d ) =

{
w

(n)
d , without resampling at d-th iteration,

Ẑd, with resampling at d-th iteration.
(15)

then, in any case, 1
N

∑N
n=1 ξ

(n)
d = Ẑd, as expected. Therefore, the weight recursion for SIR becomes

ξ
(n)
d = ξ

(n)
d−1β

(n)
d , where ξ

(n)
d−1 =

{
ξ
(n)
d−1, without res. at (d− 1)-th iter.,

Ẑd−1, with res. at (d− 1)-th iter.
(16)

See Appendix A for further details.

Remark 2. With the recursive definition of the weights ξ(n)
d in Eq. (16), the two estimators

Ẑd =
1
N

N∑
n=1

ξ
(n)
d−1β

(n)
d , Z̃d =

d∏
j=1

[
N∑
n=1

ξ̄
(n)
j−1β

(n)
j

]
(17)

2This is a proper choice, but it is not unique; see “Concept of weighted sample” in [10, Chapter 2] or similarly [19, Section 14.2].



where ξ̄(n)
j−1 =

ξ
(n)
j−1PN

i=1 ξ
(i)
j−1

, are both valid and equivalent estimators of Zd. Furthermore, if the resampling is applied

at each iteration, observe that they become

Z̃d =
d∏
j=1

[
1
N

N∑
n=1

β
(n)
j

]
, (18)

and

Ẑd = Ẑd−1

[
1
N

N∑
n=1

β
(n)
d

]
=

d∏
j=1

[
1
N

N∑
n=1

β
(n)
j

]
, (19)

and clearly coincide. Note that, w.r.t. the estimator in Eq. (10) (for SIS, i.e., without resampling), the operations of
product and sum are inverted.
Figure 2 depicts different examples of generation of weighted samples x(n) with or without employing resampling
steps. More specifically, Figure 2 shows the components x1,

(n) . . . , x
(n)
D of each sample, with D = 10.

3. MULTIPLE TRY METROPOLIS (MTM) SCHEMES

The Multiple Try Metropolis (MTM) algorithm [11] is an MCMC technique, where N candidates are generated
each iterations. According to some suitable weights, one candidate is chosen and accepted as new state with a
certain probability α. The MTM steps with a generic proposal q(x|xk−1), depending on the previous state, are
summarized in Table 1. For N = 1, the MTM algorithm becomes the standard Metropolis-Hastings (MH) method.
We consider importance weights for faciliting the comparison with the other techniques. However, different kind
of weights could be applied [11, 14].We have denoted a ∧ b = min[a, b]. The MTM method generates a reversible
chain that converges to π̄(x) [11, 14].

If the proposal pdf is independent from the previous state of the chain, i.e., q(x), the algorithm can be simplified.
indeed, the steps 2c and 2d can be removed in the MTM scheme. Namely, one does not need to generate the reference
samples at step 2c. Indeed, in this case, we could directly set z(j) = x(j), j = 1, . . . , N−1. The simplified algorithm
(I-MTM) is given in Table 1. A graphical representation of a MTM scheme is provided in Figure 1, with D = 1 and
N = 2.

x(1) x(2)

w
(2)
1

w
(1)
1

q(x|xk�1)

xk�1 z(1)z(2) = xk�1

q(z|x⇤)

x⇤ = x(2)

⇢
(2)
1

⇢
(1)
1

↵ = 1 ^ w
(1)
1 + w

(2)
1

⇢
(1)
1 + ⇢

(2)
1

Forward Backward Test
xk = x⇤

xk = xk�1

or

Fig. 1. Sketch of a generic MTM method with D = 1 and N = 2 tries. In this example, the second candidate

is selected as x∗ = x(2). It has been selected with probability w̄
(1)
1 = w

(1)
1

w
(1)
1 +w

(2)
1

. The reference points are

z(1) ∼ q(z|x∗) and z(2) = xk−1.



Table 1. General MTM algorithm.

1. Choose a initial state x0 and the total number of iterations K.

2. For k = 1, . . . ,K:

(a) Draw N samples from x(i) ∼ q(x|xk−1), i = 1, . . . , N .

(b) Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w
(i)
D =

π(x(i))

q(x(i)|xk−1)
, i = 1, . . . , N.

Namely, draw a sample x∗ from

bπD(x) =

NX
n=1

w̄
(n)
D δ(x− x(n)).

(c) Draw N − 1 “reference” samples z(j) ∼ q(x|x∗), j = 1, . . . , N − 1, and set z(N) = xk−1.

(d) Compute the importance weights also for the reference points,

ρ
(i)
D =

π(z(i))

q(z(i)|x∗)
, i = 1, . . . , N.

(e) Set xk = x∗ with probability

α = 1 ∧
PN
i=1 w

(i)
DPN

i=1 ρ
(i)
D

,

otherwise, with probability 1− α, set xk = xk−1.

Table 2. MTM with independent proposal (I-MTM).

1. Choose a initial state x0 and the total number of iterations K.

2. For k = 1, . . . ,K:

(a) Draw N samples from x(i) ∼ q(x), i = 1, . . . , N .

(b) Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w
(i)
D =

π(x(i))

q(x(i))
, i = 1, . . . , N.

Moreover, we denote as w∗D and wD,k−1 are the weights corresponding to x∗ and xk−1, respectively.

(c) Set xk = x∗ with probability

α = 1 ∧
PN
i=1 w

(i)
DPN

i=1 w
(i)
D − w∗ + wD,k−1

= 1 ∧
PN
i=1 w

(i)
DPN

i=1 ρ
(i)
D

, (20)

where the values ρ(i)
D denote the importance weights of {z(1), . . . , z(N)} = {x(1), . . . ,x(N)} \ {x∗} ∪ {xk−1}.

Otherwise, set xk = xk−1.

Alternative version of the I-MTM method (I-MTM2). In this work, we highlight that the I-MTM method can
be designed in an alternative way. With a proposal pdf independent from the previous state, we have seen that we
can set z(j) = x(j), j = 1, . . . , N−1, because each x(j) is itself drawn from q(x). With the same arguments, we can
also use the samples generated in the previous iteration of the algorithm as reference points, since all the samples are
generated independently from the same proposal pdf. Namely, the alternative version of the I-MTM is summarized



Table 3. Alternative I-MTM algorithm (I-MTM2).

1. Choose a initial state x0, the total number of iterations K and obtain an estimation bZ(0) ≈ Z .

2. For k = 1, . . . ,K:

(a) Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w
(i)
D =

π(x(i))

q(x(i))
, i = 1, . . . , N.

(b) Set xk = x∗ and bZ(k) = bZ∗ = 1
N

PN
i=1 w

(i)
D with probability

α = 1 ∧
1
N

PN
i=1 w

(i)
DbZ(k−1)

= 1 ∧
bZ∗DbZ(k−1)
D

otherwise, with probability 1− α, set xk = xk−1 and bZ(k) = bZ(k−1).

in Table 3.

4. PARTICLE MH ALGORITHM AND ITS RELATIONSHIP WITH THE MTM SCHEMES

Consider a target density factorized as

π̄(x) ∝ π(x) = γ1(x1)γ2(x2|x1) · · · γD(xD|x1:D−1).

The Particle Metropolis Hastings (PMH) method [1] is another MCMC technique proposed independently from the
MTM algorithm, specifically designed for being applied in this framework. The complete description is provided in
Table 4. Both estimators Ẑ and Z̃ can be used in PMH (although the original algorithm employed Z̃), if the resampled
particles are properly weighted as shown in Eq. (14). A generalization of PMH for handling both dynamic and fixed
parameters, called Particle Marginal MH algorithm, is described in Appendix B.

4.1. Relationship between MTM and PMH

A simple look at the alternative version of the MTM technique with independent proposal (I-MTM2), introduced in
Section 3, and the PMH method, shows that are strictly related. Indeed, the structure of the two algorithms coincides.
The links and differences are listed below:

• The main difference lies that the candidates in PMH are generated sequentially, using a SMC procedure. If
the resampling steps in the SMC are not applied them I-MTM2 and PMH are exactly the same algorithm,
where the candidates are drawn in a batch setting or sequential way. Namely, I-MTM2 generates directly
x(i) = [x(i)

1 , . . . , x
(i)
D ] from q(x) whereas PMH draws sequentially each component x(i)

d from qd(xd|x(i)
1:d−1).

• Hence, the resampling steps is the real difference between the generation procedures of PMH and I-MTM2.
Owing to the use of the resampling, the candidates {x(1), . . . ,x(N)} proposed by PMH are not independent,
differently from the MTM schemes considered in this work. Without resampling, the generated samples
x(i) = x

(i)
1:D would be independent as in I-MTM2. The generation of correlated samples can be also considered

in MTM methods, as simply shown for instance in [3]), without jeopardizing the ergodicity of the chain. Thus,
more precisely, PMH can be considered as an I-MTM2 scheme using correlated samples (e.g., as in [3]), and
where the candidates are generated sequentially.



Table 4. Particle Metropolis-Hastings (PMH) algorithm.

1. Choose a initial state x0, the total number of iterations K and obtain an estimation bZ(0) ≈ Z.

2. For k = 1, . . . ,K:

(a) Using a proposal pdf of type
q(x) = q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1),

we employ SIR (see Section 2.2) for drawing with N particles and weighting properly them, {x(i), w
(i)
D }

N
i=1. Namely,

we obtain a particle approximation of the measure of target pdf

bπD(x) =

NX
i=1

w̄
(i)
D δ(x− x(i)).

Furthermore, we also obtain bZ∗ in Eq. (10), or eZ∗ in Eq. (11).

(b) Draw x∗ ∼ bπ(x), i.e., choose a particle x∗ = {x(1), . . . ,x(N)} with probability w̄(i)
D , i = 1, ..., N .

(c) Set xk = x∗ and bZ(k) = bZ∗ with probability

α = 1 ∧
bZ∗bZ(k−1)

, (21)

otherwise set xk = xk−1 and bZ(k) = bZ(k−1).

For clarifying this point, in Figure 2 we show different particles weighted with IS weights (the line-width of
each path is proportional to the corresponding normalized weight w̄n). More specifically, we represent each
component of x(n)

d , d = 1, . . . , D = 10 of each particle x(n) = x
(n)
1:10 with n = 1, . . . , N ∈ {5, 40}. The

target density is a multivariate Gaussian pdf, π̄(x) =
∏10
d=1N (xd|2, 1

2), i.e., with expected value µd = 2,
for d = 1, . . . , 10. Figures 2(a)-(b) corresponds to the application of IS with two different proposal pdfs and
without resampling. In Figure 2(a), the components x(n)

d are independent. In Figure 2(b), the components x(n)
d

within each sample x(n) are correlated, but the samples x(n), n = 1, . . . , N , are still independent. In Figure
2(c) two resampling are also applied at the iterations d = 4, 8, generating correlation among the particles x(n),
n = 1, . . . , N , as well. Figure 2(c) corresponds to the sample generation in PMH.

• In their standard formulations, I-MTM2 uses the estimator ẐD in Eq. (4) whereas PMH has been proposed
using Z̃D, given in Eq. (11). However, they are equivalent formulation of an estimator of the normalizing
constant ZD.

• The PMH approach is preferable in high dimension, when the target can be factorized, since the use of the
resampling steps provides a better proposal generation procedure.

4.2. Novel PMH algorithms

The previous considerations allow us to design novel PMH schemes. For instance, we can easily suggest an
alternative proper acceptance probability function,

α = 1 ∧ NẐ∗

NẐ∗ − w∗D + wD,k−1

. (22)

We denote as PMH-2 the PMH technique which uses the probability α above, instead of the probability α in Eq.
(21). Namely, PMH-2 is identical with the PMH method in Table 4, replacing Eq. (21) with Eq. (22). The PMH-2
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(b) Batch-IS or SIS with qd(xd|xd−1) and N =
40.
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(c) SIR using qd(xd|xd−1) and resampling at the
iterations d = 4, 8 (with N = 40).

Fig. 2. Examples of application of the IS technique. We consider as target density a multivariate Gaussian pdf, π̄(x) =
Q10
d=1N (xd|2, 1

2
).

In each figure, every component of different particles are represented, so that each particle x(i) seems to form a path. The normalized weights

w̄n corresponding to each figure are also shown. The line-width of each path is proportional to the corresponding weight w̄n. The particle

corresponding to the greatest weight is always depicted in black. (a) Batch IS or SIS with N = 5 particles and q(x) =
Qd
d=1N (xd|0,

√
2).

(b) Batch IS or SIS with N = 40 particles and q(x) = N (x1|2, 1)
Qd
d=2N (xd|xd−1, 1). (c) SIR with N = 40 particles and

q(x) = N (x1|2, 1)
Qd
d=2N (xd|xd−1, 1) and resampling steps at the iterations d = 4, 8.

structure is equivalent (within a sequential framework) to I-MTM of Table 2, in the same fashion as PMH in Table 4
is equivalent to I-MTM2 of Table 3.

Moreover, we can also extend the standard PMH method employing a state-dependent proposal pdf (dependent
from the previous state), instead of an independent proposal (namely, independent from the previous state) as in
Table 4. This novel scheme, denoted as SD-PMH, is outlined in Table 5 where a SIR. In this case, the generation
of a backward path is required at step 2c. Hence, in SD-PMH, we have this additional computation cost. However,
the generated backward paths could be also recycled for estimating the hidden states (nevertheless, this requires and
deserves more specific analysis). The validity of SD-PMH is ensured since it corresponds to the MTM scheme in
Table 1. In SD-PMH, the approximation π̂D is provided considering with correlated samples due to the resampling,
unlike in MTM. However, it does not jeopardize the ergodicity (as shown, e.g., in [3]). Furthermore, we consider the
use of resampling steps only at certain 0 ≤ R ≤ K pre-established iterations, d1, . . . , dR. If R = 0, no resampling
it is applied so that we obtain a standard MTM scheme. If R = K, the resampling is applied at each iteration, so
that we have a bootstrap filter for generating the samples [? ]. Figure 3 shows a sketch of the different schemes
discussed in this work. The MTM schemes are given on the left side, whereas the corresponding PMH approaches
are provided on the right. The boxes with dashed contours represent the novel schemes introduced in this work.

Random Walk PMH. As an example of SD-PMH scheme, we can consider a PMH employing with a random
walk proposal pdf (RW-PMH). For simplicity, first we consider

qd(sd|s1:d−1, x1:d,k−1) = qd(sd|sd−1, xd,k−1),

so that the complete proposal is q(s|xk−1) = q1(s1|x1,k−1)
∏D
d=2 qd(sd|sd−1, xd,k−1). Secondly, we can set

qd(sd|sd−1, xd,t−1) =
1
2
E1 (sd|sd−1,Σ1) +

1
2
E2 (sd|xd,k−1,Σ2) (24)

where Ei (x|µi,Σi) : X → R, i = 1, 2, represent generic densities with expected values µ1 = sd−1, µ2 = xd,k−1,
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Fig. 3. Graphical representation of the MTM methods and the corresponding PMH schemes. The boxes with dashed
contours contain the novel schemes presented in this work.

Table 5. State Dependent PMH (SD-PMH)

1. Choose a initial state x0, the total number of iterations K.

2. For k = 1, . . . ,K:

(a) Using a proposal pdf of type

q(s|xk−1) = q1(s1|x1,k−1)q2(s2|s1, x1:2,k−1) · · · qD(sD|s1:D−1, x1:D,k−1), (23)

we employ SIR (see Section 2.2) for drawing with N particles, x(i), and weighting properly them, {x(i), w
(i)
D )}Ni=1.

The resampling steps are applied at R fixed and pre-established iterations (0 ≤ R ≤ K),

d1 < d2 < . . . < dR.

Thus, we obtain a particle approximation of the measure of target pdf

bπD(x) =

NX
i=1

w̄
(i)
D δ(x− x(i)).

Furthermore, we also obtain bZX in Eq. (10) or eZX as in Eq. (11).

(b) Draw x∗ ∼ bπ(x), i.e., choose a particle x∗ = {x(1), . . . ,x(N)} with probability w̄(i)
D , i = 1, ..., N .

(c) DrawN−1 particles z(1), . . . , z(N−1) via SIR using q(z|x∗) as in Eq. (23), applying resampling at the same iterations,
d1 < d2 < . . . < dR, used in the generation of x(i)’s. Moreover, set zN = x∗.

(d) Compute

bZZ =
1

N

NX
i=1

ρ
(i)
D .

where ρ(i)
D = π(z(i))

q(z(i)|x∗)
, i = 1, . . . , N .

(e) Set xk = x∗ with probability

α = 1 ∧
bZXbZZ ,

otherwise set xk = xk−1.

and covariance matrices Σ1, Σ2, respectively. Clearly, this is only one possibility and several alternatives could be
explored.



5. NUMERICAL SIMULATIONS

5.1. Comparison among schemes with independent proposal pdfs

In order to the the different techniques, we consider a multidimensional Gaussian target density,

π̄(x) = π̄(x1, . . . , xD) =
D∏
d=1

N (xd|µd, σ2), (25)

with x = x1:D ∈ RD, D = 10, with µ1:3 = 2, µ4:7 = 4, µ8:10 = −1, and σ = 1
2 . We apply I-MTM, I-MTM2, PMH

and Variant-PMH for estimating the vector µ1:10. In each method, we employ Gaussian proposal pdf

q(xd|xd−1) = N (xd|xd−1, σ
2
p),

with σp = 2, for the sequential construction of the N particles. For PMH and Variant-PMH, we consider to perform
resampling at each iteration (in I-MTM and I-MTM2, no resampling is applied).

We test the techniques considering different value of number of particlesN and number of iterations of the chain
K. We compute the MSE in estimating the vector µ1:10, averaging over 500 independent simulations. The starting
particles, d = 1, are chosen randomly x(i)

1 ∼ N (x;−2, 4), for i = 1, . . . , N , at each run and for each method.
Figures 4(a)-(b) show the MSE as function of number of iterations K in semilog scale, keeping fixed the number of
tries N = 3. Figure 4(a) reports the results of the MTM schemes whereas Figure 4(b) reports the results of the PMH
schemes. Figure 4(c) depicts the MSE in the estimation of µ1:10 of function of N , for the PMH methods. These
results show that the use of an acceptance probability of type in Eq. (20)-(22) provide smaller MSE. This is more
evident for small number of candidates N . Namely, the use of acceptance probability in Eq. (22) within a PMH
is preferable since provides better performance. When N grows, the performance of both PMH methods becomes
similar, since the acceptance probability approaches 1, in both cases. The MSE vanishes to zero when N increases,
as expected, confirming the validity of the novel schemes. The results also shows that performing resampling at
each iteration is not optimal and that a smaller rate of resampling steps could improve the performance [? ]. Figure
4(d) depicts 35 different states xk = x1:10,k at different iteration indices k, obtained with var-PMH (N = 1000 and
K = 1000) and the values µ1:10 shown in dashed line.

References

[1] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. J. R. Statist. Soc. B,
72(3):269–342, 2010.

[2] R. Casarin, R. Craiu, and F. Leisen. Interacting multiple try algorithms with different proposal distributions.
Statistics and Computing, 23(2):185–200, 2013.

[3] R. V. Craiu and C. Lemieux. Acceleration of the Multiple-Try Metropolis algorithm using antithetic and
stratified sampling. Statistics and Computing, 17(2):109–120, 2007.
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A. ALTERNATIVE FORMULATION OF THE ESTIMATOR OF Z

In SIS approach, there are two possible formulations of the estimators of Z, the first one Ẑ in Eqs. (4)-(10) and the
second one Z̃ given in Eq. (11). This alternative formulation can be also derived as follows. Consider the following
integrals,

Zd =
∫
X d
πd(x1:d)dx1:d ≈ Ẑd =

1
N

N∑
n=1

w
(n)
d , (26)

and ∫
X d
γd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d =

∫
X d

πd(x1:d)
πd−1(x1:d−1)

π̄d−1(x1:d−1)dx1:d, (27)

=
Zd
Zd−1

. (28)

Clearly, we can write∫
X d
γd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d =

∫
X d

γd(xd|x1:d−1)
qd(xd|x1:d−1)

qd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d,

=
∫
X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̄d−1(x1:d−1)dx1:d, (29)

where we have set βd(xd|x1:d−1) = γd(xd|x1:d−1)
qd(xd|x1:d−1) . Replacing π̄d−1(x1:d−1) with π̂d−1(x1:d−1) given in Eq. (9),∫

X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̂d−1(x1:d−1)dx1:d =

=
N∑
n=1

w̄
(n)
d−1

∫
X d
βd(xd|x1:d−1)qd(xd|x1:d−1)δ(x1:d−1 − x(n)

1:d−1)dx1:d,

=
N∑
n=1

w̄
(n)
d−1

∫
X
βd(xd|x(n)

1:d−1)qd(xd|x(n)
1:d−1)dxd.

Hence, using again Monte Carlo for approximating each integral within the sum, i.e., given N samples x(n)
d ∼

qd(xd|x(n)
1:d−1), n = 1, . . . , N (one sample for each different qd(·|x(n)

1:d−1)), and denoting β(n)
d = βd(x

(n)
d |x

(n)
1:d−1), we

obtain ∫
X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̂d−1(x1:d−1)dx1:d =

N∑
n=1

w̄
(n)
d−1β

(n)
d , (30)

=
1∑N

i=1w
(i)
d−1

N∑
n=1

w
(n)
d−1β

(n)
d ,

=
1∑N

i=1w
(i)
d−1

N∑
n=1

w
(n)
d ,

=
1
N

∑N
n=1w

(n)
d

1
N

∑N
i=1w

(i)
d−1

=
Ẑd

Ẑd−1

≈ Zd
Zd−1

, (31)



where we have used w̄(n)
d−1 =

w
(n)
d−1PN

i=1 w
(i)
d−1

, the recursive expression of the weights, w(n)
d = w

(n)
d−1β

(n)
d , and Ẑd is the

estimator in Eq. (26). Finally, we can obtain, setting Ẑ0 = 1,

Z̃ =
D∏
d=1

Ẑd

Ẑd−1

= Ẑ1
Ẑ2

Ẑ1

· · · ẐD−1

ẐD−2

ẐD

ẐD−1

=
D∏
d=1

[
N∑
i=1

w̄d−1(x(i)
1:d−1)βd(x

(i)
d |x

(i)
1:d−1)

]
≈ Z, (32)

that is exactly the estimator in Eq. (11).

A.1. Application of resampling

Consider to approximate the integral in Eq. (30) via importance sampling assuming in this case to draw N samples,
x

(1)
1:d,. . ., x(N)

1:d , from the pdf qd(xd|x1:d−1)π̂d−1(x1:d−1), so that we can write∫
X d
βd(xd|x1:d−1)qd(xd|x1:d−1)π̂d−1(x1:d−1)dx1:d ≈

1
N

N∑
n=1

β
(n)
d ≈ Zd

Zd−1
, (33)

where we remark x(n)
1:d ∼ qd(xd|x1:d−1)π̂d−1(x1:d−1) for n = 1, . . . , N .

B. PARTICLE MARGINAL METROPOLIS-HASTINGS (PM-MH) ALGORITHM AND
ALTERNATIVES

The Particle Marginal Metropolis-Hastings (PM-MH) algorithm is an extension of the PMH method for the
combined sampling of dynamic and fixed unknown parameters, denoted as x and θ, respectively. Let us consider the
following state space model {

qd(xd|xd−1, θ),
`d(yd|xd, θ)

(34)

where qd represents a transition probability, and `d is the likelihood function. The parameter θ ∈ Θ is considered also
unknown so that the inference problem consists in inferring (x1:D, θ) given the sequence of received measurements
y1:D. With respect to the notation used in Section 2.1, we have γ1(x1|θ) = `1(y1|x1, θ)q1(x1|θ), and

γd(xd|x1:d−1, θ) = `d(yd|xd, θ)qd(xd|xd−1, θ),

with d = 2, . . . , D. Hence, considering also a prior p(θ) over θ, and x = x1:D, y = y1:D, the complete target is

π̄(x, θ|y) = π̄(x|y, θ)p(θ|y), (35)

= π̄(x|y, θ)p(y|θ)p(θ)
p(y)

, (36)

= π̄(x,y|θ) p(θ)
p(y)

, (37)

=

[
`1(y1|x1, θ)q1(x1|θ)

D∏
d=2

`d(yd|xd, θ)qd(xd|xd−1, θ)

]
p(θ)
p(y)

. (38)

We can evaluate π̄(x,y|θ) ∝ π̄(x|y, θ), it is not an issue using a self-normalized IS approach for approximating
π̄(x|y, θ). However, we cannot evaluate p(θ|y), p(y|θ) and p(y). Let us consider to apply a standard MH method
for sampling from π̄(x, θ|y). We assume possible to draw samples [x, θ] as proposal pdf

q(θ∗,x∗|θk−1) = qθ(θ∗|θk−1)π̄(x∗|y, θ∗),



where k = 1, . . . ,K is the iteration of the chain and π̄(x|y, θ) is the posterior of x. Assume hypothetically that it is
possible to draw from q(θk,xk|θk−1), we obtain the following acceptance probability

α = 1 ∧ π̄(x∗, θ∗|y)q(θk−1,xk−1|θ∗)
π̄(xk−1, θk−1|y)q(θ∗,x∗|θk−1)

, (39)

= 1 ∧ π̄(x∗, θ∗|y)qθ(θk−1|θ∗)π̄(xk−1|y, θk−1)
π̄(xk−1, θk−1|y)qθ(θ∗|θk−1)π̄(x∗|y, θ∗) . (40)

Then, since π̄(x, θ|y) = π̄(x|y, θ)p(θ|y), we can replace in the expression above

α = 1 ∧ π̄(x∗|y, θ∗)p(θ∗|y)qθ(θk−1|θ∗)π̄(xk−1|y, θk−1)
π̄(xk−1|y, θk−1)p(θk−1|y)qθ(θ∗|θk−1)π̄(x∗|y, θ∗) , (41)

= 1 ∧ p(θ∗|y)qθ(θk−1|θ∗)
p(θk−1|y)qθ(θ∗|θk−1)

, (42)

= 1 ∧ p(y|θ∗)p(θ∗)qθ(θk−1|θ∗)
p(y|θk−1)p(θk−1)qθ(θ∗|θk−1)

, (43)

The problem is that, in general, we are not able to evaluate the likelihood function

Z(θ) = p(y|θ) =
∫
D
π̄(x,y|θ)dx.

However, we can approximate Z(θ) via importance sampling. Thus, the idea is to use the approximate proposal pdf

q̂(θ∗,x∗|θk−1) = qθ(θ∗|θk−1)π̂(x∗|y, θ∗),

where π̂ is a particle approximation of π̄ obtained by SIR and, at the same, we get the estimation Ẑ(θ∗). Therefore,
the PM-MH algorithm can be summarized as following:

1. For k = 1, . . . ,K :

(a) Draw θ∗ ∼ qθ(θ|θk−1) and then x∗ ∼ π̂(x|y, θ∗) via SIR.

(b) Set [θk,xk] = [θ∗,x∗] with probability

α = 1 ∧ Ẑ(θ∗)p(θ∗)qθ(θk−1|θ∗)
Ẑ(θk−1)p(θk−1)qθ(θ∗|θk−1)

otherwise set [θk,xk] = [θk−1,xk−1].

Given the observations provided in this work, PM-MH can be seen as a combination of a MH method w.r.t. θ and a
MTM-type method w.r.t. x.


