When $\pi(n)$ does not divide n

Germán Andrés Paz*

September 13, 2014

Abstract

Let $\pi(n)$ denote the prime-counting function. In this paper we work with explicit formulas for $\pi(n)$ that are valid for infinitely many positive integers n, and we prove that if $n \geq 60184$ and $\ln n-\lfloor\ln n\rfloor>0.1$, then $\pi(n)$ does not divide n. Based on this result, we show that if e is the base of the natural logarithm, a is a fixed integer ≥ 11 and n is any integer in the interval $\left[e^{a+0.1}, e^{a+1}\right]$, then $\pi(n) \nmid n$. In addition, we prove that if $n \geq 60184$ and $\pi(n)$ divides n, then n is a multiple of $\lfloor\ln n-1\rfloor$ located in the interval $\left[e^{\lfloor\ln n-1\rfloor+1}, e^{\lfloor\ln n-1\rfloor+1.1}\right]$.

Keywords: bounds on the prime-counting function, explicit formulas for the prime-counting function, intervals, prime numbers

2010 Mathematics Subject Classification: 00-XX • 00A05 • 11-XX . 11A41

0 Notation

Throughout this paper the number n is always a positive integer. Moreover, we use the following symbols:

- \rfloor (floor function)
- 「 \rceil (ceiling function)
- \dagger (does not divide)
- frac() (fractional part)

[^0]
1 Introduction

Determining how prime numbers are distributed among natural numbers is one of the most difficult mathematical problems. This explains why the prime-counting function $\pi(n)$, which counts the number of primes less than or equal to a given number n, has been one of the main objects of study in Mathematics for centuries.

In [2] Gaitanas obtains an explicit formula for $\pi(n)$ that holds infinitely often. His proof is based on the fact that the function $f(n)=n / \pi(n)$ takes on every integer value greater than 1 (as proved by Golomb [3]) and on the fact that $x /(\ln x-0.5)<\pi(x)<x /(\ln x-1.5)$ for $x \geq 67$ (as shown by Rosser and Schoenfeld [4]). In this paper we find alternative expressions that are valid for infinitely many positive integers n, and we also prove that for $n \geq 60184$ if $\ln n-\lfloor\ln n\rfloor>0.1$, then $n / \pi(n)$ is not an integer.

We will place emphasis on the following three theorems, which were proved by Golomb, Dusart, and Gaitanas respectively:

Theorem 1.1 [3]. The function $f(n)=n / \pi(n)$ takes on every integer value greater than 1.
Theorem 1.2 [1]. If n is an integer ≥ 60184, then

$$
\frac{n}{\ln n-1}<\pi(n)<\frac{n}{\ln n-1.1} .
$$

Remark 1.3. Dusart's paper states that for $x \geq 60184$ we have $x /(\ln x-$ $1) \leq \pi(x) \leq x /(\ln x-1.1)$, but since $\ln n$ is always irrational when n is an integer >1, we can state his theorem the way we did.
Theorem 1.4 [2]. The formula

$$
\pi(n)=\frac{n}{\lfloor\ln n-0.5\rfloor}
$$

is valid for infinitely many positive integers n.

2 Main theorems

We are now ready to prove our main theorems:
Theorem 2.1. The formula

$$
\pi(n)=\frac{n}{\lfloor\ln n-1\rfloor}
$$

holds for infinitely many positive integers n.

Proof. According to Theorem 1.2, for $n \geq 60184$ we have

$$
\frac{n}{\ln n-1}<\pi(n)<\frac{n}{\ln n-1.1} \Rightarrow \frac{\ln n-1.1}{n}<\frac{1}{\pi(n)}<\frac{\ln n-1}{n} .
$$

If we multiply by n, we get

$$
\begin{equation*}
\ln n-1.1<\frac{n}{\pi(n)}<\ln n-1 \tag{1}
\end{equation*}
$$

Since $\ln n-1.1$ and $\ln n-1$ are both irrational (for $n>1$), inequality (1) implies that when $n / \pi(n)$ is an integer we must have

$$
\begin{equation*}
\frac{n}{\pi(n)}=\lfloor\ln n-1\rfloor=\lfloor\ln n-1.1\rfloor+1=\lceil\ln n-1.1\rceil=\lceil\ln n-1\rceil-1 . \tag{2}
\end{equation*}
$$

Taking Theorem 1.2 and equality (2) into account, we can say that for every $n \geq 60184$ when $n / \pi(n)$ is an integer we must have

$$
\frac{n}{\pi(n)}=\lfloor\ln n-1\rfloor \Rightarrow \pi(n)=\frac{n}{\lfloor\ln n-1\rfloor} .
$$

Since Theorem 1.1 implies that $n / \pi(n)$ is an integer infinitely often, it follows that there are infinitely many positive integers n such that $\pi(n)=n /\lfloor\ln n-$ 1 .

In fact, the following theorem follows from Theorems 1.1, from Gaitana's proof of Theorem 1.4, and from the proof of Theorem 2.1.

Theorem 2.2. For every $n \geq 60184$ when $n / \pi(n)$ is an integer we must have

$$
\begin{gather*}
\frac{n}{\pi(n)}=\lceil\ln n-1.5\rceil=\lfloor\ln n-0.5\rfloor=\lfloor\ln n-1\rfloor=\lfloor\ln n-1.1\rfloor+1= \tag{3}\\
=\lceil\ln n-1.1\rceil=\lceil\ln n-1\rceil-1 .
\end{gather*}
$$

In other words, for $n \geq 60184$ when $n / \pi(n)$ is an integer we must have

$$
\begin{gathered}
\pi(n)=\frac{n}{\lceil\ln n-1.5\rceil}=\frac{n}{\lfloor\ln n-0.5\rfloor}=\frac{n}{\lfloor\ln n-1\rfloor}=\frac{n}{\lfloor\ln n-1.1\rfloor+1}= \\
=\frac{n}{\lceil\ln n-1.1\rceil}=\frac{n}{\lceil\ln n-1\rceil-1} .
\end{gathered}
$$

Theorem 2.3. Let n be an integer ≥ 60184. If $\operatorname{frac}(\ln n)=\ln n-\lfloor\ln n\rfloor>$ 0.1 , then $\pi(n) \nmid n$ (that is to say, $n / \pi(n)$ is not an integer).

Proof. According to Theorem 2.2, for $n \geq 60184$ if $n / \pi(n)$ is an integer, then

$$
\frac{n}{\pi(n)}=\lfloor\ln n-1\rfloor=\lceil\ln n-1.1\rceil
$$

In other words, for $n \geq 60184$ when $n / \pi(n)$ is an integer we have

$$
\begin{aligned}
\lfloor\ln n-1\rfloor & =\lceil\ln n-1.1\rceil \\
\lfloor\ln n-1\rfloor & =\lceil\ln n-1-0.1\rceil \\
\mathrm{frac}(\ln n-1) & \leq 0.1 \\
\ln n-1-\lfloor\ln n-1\rfloor & \leq 0.1 \\
\ln n-\lfloor\ln n-1\rfloor & \leq 1.1 \\
\operatorname{frac}(\ln n) & \leq 0.1 \\
\ln n-\lfloor\ln n\rfloor & \leq 0.1 .
\end{aligned}
$$

Suppose that P is the statement ' $n / \pi(n)$ is an integer' and Q is the statement ${ }^{\prime} \ln n-\lfloor\ln n\rfloor \leq 0.1$ '. According to propositional logic, the fact that $P \rightarrow Q$ implies that $\neg Q \rightarrow \neg P$.

Similar theorems can be proved by using Theorem 2.2 and equality (3).
Remark 2.4. We can also say that if $n \geq 60184$ and

$$
n>e^{0.1+\lfloor\ln n\rfloor}
$$

then $\pi(n) \nmid n$.
Remark 2.5. Because $\ln n$ is irrational for $n>1$, another way of stating Theorem 2.3 is by saying that if $n \geq 60184$ and the first digit to the right of the decimal point of $\ln n$ is $1,2,3,4,5,6,7,8$, or 9 , then $\pi(n) \nmid n$. Example:

$$
\ln 10^{31}=71.38 \ldots
$$

The first digit to the right of the decimal point of $\ln 10^{31}$ (in red) is 3 . This implies that $\pi\left(10^{31}\right)$ does not divide 10^{31}. We can also say that if $n \geq 60184$ and $\pi(n)$ divides n, then the first digit to the right of the decimal point of $\ln n$ can only be 0 .

Now, if y is a positive noninteger, then the first digit to the right of the decimal point of y is equal to

$$
\lfloor 10 \operatorname{frac}(y)\rfloor=\lfloor 10 y-10\lfloor y\rfloor\rfloor .
$$

So, we can say that if $n \geq 60184$ and $\pi(n)$ divides n, then

$$
\lfloor 10 \ln n-10\lfloor\ln n\rfloor\rfloor=0 .
$$

On the other hand, if $n \geq 60184$ and

$$
\lfloor 10 \ln n-10\lfloor\ln n\rfloor\rfloor \neq 0,
$$

then $\pi(n) \nmid n$.
The following theorem follows from Theorem 2.3 .
Theorem 2.6. Let e be the base of the natural logarithm. If a is any integer ≥ 11 and n is any integer contained in the interval $\left[e^{a+0.1}, e^{a+1}\right]$, then $\pi(n) \nmid n$. (The number e^{r} is irrational when r is a rational number $\neq 0$.)

Example 2.7. Take $a=18$. If n is any integer in the interval $\left[e^{18.1}, e^{19}\right]$, then $\pi(n) \nmid n$.

Theorem 2.8. If $n \geq 60184$ and $n / \pi(n)$ is an integer, then n is a multiple of $\lfloor\ln n-1\rfloor$ located in the interval $\left[e^{\lfloor\ln n-1\rfloor+1}, e^{\lfloor\ln n-1\rfloor+1.1}\right]$.

Proof. According to the proof of Theorem 2.3, if $n \geq 60184$ and $n / \pi(n)$ is an integer, then

$$
\frac{n}{\pi(n)}=\lfloor\ln n-1\rfloor \Rightarrow n=\pi(n)\lfloor\ln n-1\rfloor
$$

and

$$
\operatorname{frac}(\ln n)=\ln n-\lfloor\ln n\rfloor \leq 0.1
$$

The fact that $\operatorname{frac}(\ln n) \leq 0.1$ implies that n is located in the interval

$$
\left[e^{k}, e^{k+0.1}\right]
$$

for some positive integer k. In other words, we have

$$
e^{k}<n<e^{k+0.1} \Rightarrow k<\ln n<k+0.1 \Rightarrow k-1<\ln n-1<k-0.9 .
$$

This means that

$$
\begin{aligned}
k-1 & =\lfloor\ln n-1\rfloor \\
k & =\lfloor\ln n-1\rfloor+1,
\end{aligned}
$$

which proves the theorem.

If we consider our previous results, we can state the following theorem:
Theorem 2.9. Suppose that b is any fixed integer ≥ 12. If n is an integer in the interval $\left[e^{b}, e^{b+0.1}\right]$ and at the same time n is not a multiple of $b-1$, then $\pi(n) \nmid n$. This means that if $n \geq 60184$ and $\pi(n)$ divides n, then n is located in the interval $\left[e^{b}, e^{b+0.1}\right]$ for some positive integer b and n is a multiple of $b-1$.

Remark 2.10. Note how Theorems 2.6 and 2.9 complement each other.
Question 2.11. Let c_{0} be a sufficiently large positive integer and let c be any integer $\geq c_{0}$. In the interval $\left[e^{c}, e^{c+0.1}\right]$, is there always an integer n that is divisible by $\pi(n)$?

References

[1] Dusart, P. "Estimates of Some Functions Over Primes without R.H." arXiv:1002.0442 [math.NT], 2010.
[2] Gaitanas, K. N. "An explicit formula for the prime counting function." arXiv:1311.1398 [math.NT], 2013.
[3] Golomb, S. W. "On the Ratio of N to $\pi(N)$." The American Mathematical Monthly. Vol. 69, No. 1, pp. 36-37, 1962.
[4] Rosser, J. B.; Schoenfeld, L. "Approximate formulas for some functions of prime numbers." Illinois Journal of Mathematics. Vol. 6, No. 1, pp. 64-94, 1962.

[^0]: *(2000) Rosario, Santa Fe, Argentina; E-mail: germanpaz_ar@hotmail.com

