Elementary Differences between Energy and Mass (Draft)

Rodolfo A. Frino – September 2014

Electronics Engineer

Degree from the National University of Mar del Plata

Abstract

In this paper I explain the elementary differences between energy and mass. When we consider the famous Einstein's formula $E=mc^2$ these two concepts might look the same with the only differnce of a proportionalyty constant, c^2 , between them. However when we explore these two concepts more meticouslosly we discover that they differ in several aspects.

Table of Differences between Energy and Matter

The following table shows the main differences between energy and mass.

	Energy	Mass
Maximum velocity (v _{max})	С	< c
Observers in relative motion will measure a velocity equal to	c (One of Einstein's postulates of SR)	0 < v < c
Time	does not elapse (photons do not "feel" time)	elapses
There is a fundamental relationship with	time $\Delta E \Delta t \ge \frac{\hbar}{2}$ (Temporal Heisenberg uncertainty principle)	space $\Delta p_x \Delta x \ge \frac{\hbar}{2}$ (Spatial Heisenberg uncertainty principle)

Origin	The Meta-Universe (always existed)	The Big Bang (had a beginning)
"Ingredients"	None. (Energy is primordial) $E = mc^{2}$	Energy, space and time $m = \frac{E}{c^2}$
	(Causes are on both sides of the equation)	(Causes are on the second side of the equation only)

REFERENCES

[1] R. A. Frino, Scale Factors and the Scale Principle, viXra: 1405.0270, (2014).