The sum of the digits of a number
 Primality testing

Ounas Meriam

oualaumoureh@yahoo.com

Abstract :

In this paper, I will try to explain my idea about the world of the digits of numbers which is somewhat circumvented by mathematicians.

Introduction:

Through some research I've done, I noticed that the field of digits is considered by many as the sights of calculation. So; in my study I will concentrate the light on some corners of the world of digits that I think are unexplored especially on the sum of the digits of a number.

Sum of the digits of a number:

$$
\sum 21=3 \quad \sum 71=8
$$

In my study; the sum of the digits of a number is recursive reduction of the sum of digits of a number

Exple:

$$
\begin{aligned}
& \sum 39=\sum 12=3 \\
& \sum 259328=\sum 29=\sum 11=2
\end{aligned}
$$

After several checks; I noticed that the recursive reduction of the digits of a number belongs to the set .

$$
S=\{1,2,3,4,5,6,7,8,9\}
$$

Here is the evolution of the multiple of numbers according to the recursive sum of their digits:

Table I:

$\mathrm{m} \boldsymbol{s}$	1	2	3	4	5	6	7	8	9
S	1	2	3	4	5	6	7	8	9
2S	2	4	6	8	1	3	5	7	9
3 S	3	6	9	3	6	9	3	6	9
4 S	4	8	3	7	2	6	1	5	9
5S	5	1	6	2	7	3	8	4	9
6 S	6	3	9	6	3	9	6	3	9
7 S	7	5	3	1	8	6	4	2	9
8 S	8	7	6	5	4	3	2	1	9
9 S	9	9	9	9	9	9	9	9	9

m : Multiple
s : sum of the digits of even a number
NB:
$1=\Sigma 19=\Sigma 28=\Sigma 37=\Sigma 46=\Sigma 55$ \qquad
$2=\Sigma 11=\sum 20=\sum 29=\sum 38=\sum 47$ \qquad
$3=\sum 12=\sum 21=\sum 30=\sum 39=\sum 48$ \qquad
$4=\sum 13=\sum 22=\sum 31=\sum 40=\sum 49$ \qquad
$5=\Sigma 14=\sum 23=\sum 32=\sum 41=\Sigma 50$ \qquad
$6=\Sigma 15=\sum 24=\sum 33=\Sigma 42=\Sigma 51$ \qquad
$7=\sum 16=\sum 25=\sum 34=\sum 43=\sum 52$ \qquad
$8=\sum 17=\sum 26=\sum 35=\sum 44=\sum 53$ \qquad
$9=\sum 18=\sum 27=\sum 36=\sum 45=\sum 54$ \qquad
In other hand; in the sum of the digits of a number it seems that with "multiplication, division, addition and subtraction" the result is stored on both sides of equality in the set of natural integers.

Exples:

1/ addition:
$25+31=56$
$\sum 25+\sum 31=\Sigma 56=7+4=11$
$\Sigma 11=2=\Sigma 56$

2/ sustraction
48-19=29
$\Sigma 48-\sum 19=\Sigma 12-\sum 10=3-1=2$
$\Sigma 29=\Sigma 11=2$
3/multiplication:
17X24=408
$\Sigma 17 \times \Sigma 24=8 \mathrm{X} 6=48$
$\sum 48=\Sigma 12=3$
$\Sigma 408=\Sigma 12=3$
4/division:

- $84 / 12=7 \quad \Sigma 84=\Sigma 21$

SO $\quad \Sigma 84 / \Sigma 12=21 / 3=7$

- $35 / 12=2$ remainder=11 SO $35 \equiv 11[12]$
$\sum 35 / \sum 12=8 / 3=2$ remainder=2
$\Sigma 11=2$
Neutral element and absorber:
Exple:
- $\Sigma 385219=\Sigma 38521=\Sigma 19=1$

9+8=17 $\quad \sum 17=8$
$5+9=14 \quad \Sigma 14=5$
So the neutral element in the sum of the digits of a number is 9

- 9X1=9

9X2=18 $\quad \Sigma 18=9$
9X3=27 $\quad \Sigma 27=9$
:.:.:......:.:
For the multiple of 9 , the role of 9 is the absorber

Primality testing:

In the set of primes we can use also the sum of the digits of a number in order to verify their primality.

So even a number; when the recursive sum of its digits is equal to 3,6 or 9 the number is not prime

In this way, we do a sieve of natural integers ,so after eliminating those kind of numbers, the numbers which stay and susceptible to be prime are in the form:
$30 \mathrm{n}+7$ in position $4 \rightarrow \mathrm{P} 4$
$30 n+11$ in position $5 \rightarrow$ P5
$30 \mathrm{n}+11$ in position $6 \rightarrow \mathrm{P} 6$
$30 \mathrm{n}+17$ in position $7 \rightarrow \mathrm{P} 7$
$30 \mathrm{n}+19$ in position $8 \rightarrow \mathrm{P} 8$
$30 \mathrm{n}+23$ in position $9 \rightarrow \mathrm{P} 9$
$30 \mathrm{n}+29$ in position $10 \rightarrow \mathrm{P} 10$
$30 \mathrm{n}+31$ in position $11 \rightarrow \mathrm{P} 11$

