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Abstract Let U (n) denote the maximal length arithmetic progression in a non-uniform ran-

dom subset of {0, 1}n, where 1 appears with probability pn. By using dependency graph

and Stein-Chen method, we show that U (n) − cn ln n converges in law to an extreme type

distribution with ln pn = −2/cn. Similar result holds for W (n), the maximal length aperiodic

arithmetic progression (mod n).
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§1. Introduction

An arithmetic progression is a sequence of numbers such that the difference of any two
successive members of the sequence is a constant. A celebrated result of Szemerédi [5] says that
any subset of integers of positive upper density contains arbitrarily long arithmetic progressions.
The recent work [6] reviews some extremal problems closely related with arithmetic progressions
and prime sequences, under the name of the Erdös-Turán conjectures, which are known to be
notoriously difficult to solve.

Let ξ1, ξ2, · · · , ξn be a uniformly chosen random word in {0, 1}n and Ξn be the random
set consisting elements i such that ξi = 1. Benjamini et al. [3] studies the length of maximal
arithmetic progressions in Ξn. Denote by U (n) the maximal length arithmetic progression in
Ξn and W (n) the maximal length aperiodic arithmetic progression (mod n) in Ξn. They show,
among others, that the expectation of U (n) and W (n) is roughly 2 lnn/ ln 2.

In view of the random graph theory [4], a natural extension of [3] is to consider non-uniform
random subset of {0, 1}n, which is the main interest of this note. Let ξi = 1 with probability
pn and ξi = 0 with probability 1 − pn, where pn ∈ [0, 1] is a function of n. Following [3], the
key to our work is to construct proper dependency graph and apply the Stein-Chen method of
Poisson approximation (see e.g. [1,4]). Our result implies that, in the non-uniform scenarios,
the expectation of U (n) and W (n) is roughly cn lnn, with ln pn = −2/cn. Obviously, taking
pn ≡ 1/2 and cn ≡ 2/ ln 2, we then recover the main result of Benjamini et al.

The rest of the note is organized as follows. We present the main results in Section 2.
Section 3 is devoted to the proofs.



2 Yilun Shang No. 4

§2. Results

Let ξ1, ξ2, · · · be i.i.d. random variables with P (ξi = 1) = pn and P (ξi = 0) = 1 − pn. For
integers 1 ≤ s, t ≤ n, define

W
(n)
s,t := max

{
1 ≤ k ≤ n : ξs = 0,

k∏
i=1

ξs+it( mod n) = 1

}
. (1)

Therefore, W
(n)
s,t is the length of the longest arithmetic progression ( mod n) in {1, 2, · · · , n}

starting at s with difference t. Moreover, set W (n) = max1≤s,t≤n W
(n)
s,t . Similarly, define

U
(n)
s,t := max

{
1 ≤ k ≤

⌊
n − s

t

⌋
: ξs = 0,

k∏
i=1

ξs+it = 1

}
, (2)

and U (n) = max1≤s,t≤n U
(n)
s,t , where bac is the integer part of a.

Theorem 2.1. Suppose that ln pn = −2/cn and α < cn = o(lnn) for some α > 0. Let
{xn} be a sequence such that cn lnn + xn ∈ Z for all n, and infn xn ≥ β for some β ∈ R. We
have

lim
n→∞

eλ(xn)P (W (n) ≤ cn lnn + xn) = 1, (3)

where λ(x) = px+2
n . In particular, W (n)/cn lnn converges to 1 in probability, as n → ∞.

Theorem 2.2. Suppose that ln pn = −2/cn and α < cn = o(lnn) for some α > 0. Let
{yn} be a sequence such that cn lnn− ln(2cn lnn) + yn ∈ Z for all n, and infn yn ≥ β for some
β ∈ R. We have

lim
n→∞

eλ(yn)P (U (n) ≤ cn lnn − ln(2cn lnn) + yn) = 1, (4)

where λ(x) = px+2
n . In particular, U (n)/cn lnn converges to 1 in probability, as n → ∞.

The relationship between pn and cn is depicted in Fig. 1. We observe that the probability
pn, by our assumptions, should within the regime e−2/α < pn = e−2/o(ln n) for α > 0. For
the case pn = o(1) (i.e., cn = o(1)), by letting α → 0, we can infer that W (n) ¿ lnn and
U (n) ¿ lnn whp.

§3. Proofs

In this section, we will only consider Theorem 2.1 since the proofs are very similar. Theorem
2.1 will be proved through a series of lemmas by similar reasoning to [3] with some modifications.

For a collection of random variables {Xi}n
i=1, a graph G of order n is called a dependency

graph [4] of {Xi}n
i=1 if for any vertex i, Xi is independent of the set {Xj : vertices i and j are

not adjacent}. The following is a result of Arratia et al. [2], which is a instrumental version of
the Stein-Chen method in numerous probabilistic combinatorial problems [1].

Lemma 3.1.([2]) Let {Xi}n
i=1 be n Bernoulli random variables with EXi = pi > 0. Let

G be a dependency graph of {Xi}n
i=1. Set Sn =

∑n
i=1 Xi and λ = ESn =

∑n
i=1 pi. Define

B1(G) =
n∑

i=1

∑
j:j∼i

EXiEXj (5)



Vol. 8 A note on the length of maximal arithmetic progressions in random subsets 3

0  20 40 60 80 100
0  

0.5

1  
p n

c
n

Figure 1: The probability pn versus cn.

and

B2(G) =
n∑

i=1

∑
j 6=i:j∼i

E(XiXj). (6)

Let Z be a Poisson random variable with EZ = λ. For any A ⊂ N, we have

|P (Sn ∈ A) − P (Z ∈ A)| ≤ B1(G) + B2(G). (7)

Fix ε > 0 and set m = b(cn + ε) ln nc. Define the truncated version

W
′(n)
s,t := max

{
1 ≤ k ≤ m : ξs = 0,

k∏
i=1

ξs+it( mod n) = 1

}
(8)

and W ′(n) = max1≤s,t≤n W
′(n)
s,t . For x ∈ R define the indicator variable

Is,t(x) = 1{W
′(n)
s,t >cn ln n+x} and S(x) =

∑
1≤s,t≤n

Is,t(x). (9)

By definition, it is clear that W ′(n) > cn lnn+x if and only if S(x) > 0. Set A(s, t) = {s+it}m
i=0.

Fix x ∈ R such that x < ε lnn. Hence, as in [3], we can construct a dependency graph G of
random variables {Is,t(x)}n

s,t=1 by setting the vertex set {(s, t)}n
s,t=1 and edges (s1, t1) ∼ (s2, t2)

if and only if A(s1, t1) ∩ A(s2, t2) 6= ∅.
The following combinatorial lemma is useful.

Lemma 3.2.([3]) Let Ds,t(k) be the number of pairs (s1, t1) such that t 6= t1 and |A(s, t)∩
A(s1, t1)| = k. Then we have

Ds,t(k) ≤


(m + 1)2n, k = 1

(m + 1)2m2, 2 ≤ k ≤ m
2 + 1

0, k > m
2 + 1

(10)
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Recall the definitions (5) and (6). Let

B1(x,G) =
∑
s1,t1

∑
s2,t2

(s1,t1)∼(s2,t2)

EIs1,t1(x)EIs2,t2(x) (11)

and
B1(x,G) =

∑
s1,t1

∑
(s1,t1)6=(s2,t2)
(s1,t1)∼(s2,t2)

E[Is1,t1(x)Is2,t2(x)]. (12)

Lemma 3.3. For all x < ε lnn and δ > 0, we have

B1(x,G) + B2(x,G) = O(p2(x+1)
n nδ−1). (13)

Proof. From (9), we have EIs,t(x) = P (W ′(n)
s,t > cn lnn+x) ≤ pcn ln n+x+1

n . Since for fixed
s and t, the number of pairs (s1, t1) such that |A(s, t) ∩ A(s1, t1)| = k is at most Ds,t(k) + 1,
we obtain by Lemma 3.2

B1(x,G) ≤
∑
s,t

m+1∑
k=1

(Ds,t(k) + 1)p2(cn ln n+x+1)
n

≤ p2(x+1)
n · 1

n4

∑
s,t

(m + 1)2n + 1 +
m/2+1∑

k=2

((m + 1)2m2 + 1)


= p2(x+1)

n · O
(

m2n + m6

n2

)
= O(p2(x+1)

n nδ−1), (14)

for all δ > 0, where the last equality holds using the assumption cn = o(lnn).
Next, we have E(Is,t(x)Is1,t1(x)) ≤ p

2(cn ln n+x+1)−k
n when |A(s, t) ∩ A(s1, t1)| = k. There-

fore, by Lemma 3.2

B2(x,G) ≤
∑
s,t

m∑
k=1

Ds,t(k)p2(cn ln n+x+1)−k
n

≤ p2(x+1)
n · 1

n4

∑
s,t

2(m + 1)2n + (m + 1)2m2

m/2+1∑
k=2

p−k
n

 . (15)

Since cn > α > 0, we obtain

m/2+1∑
k=2

p−k
n = O

(
p
−m

2
n

)
= O

(
n

cn+ε
cn

)
. (16)

Combining (15), (16) and the assumption cn = o(lnn), we derive

B2(x,G) = p2(x+1)
n · O

(
m2n + m4n

cn+ε
cn

n2

)
= O(p2(x+1)

n nδ−1) (17)
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for all δ > 0. ¤
The following lemma is a simplified version of Theorem 2.1.

Lemma 3.4. W (n)/cn lnn converges to 1 in probability, as n → ∞; i.e., for any δ > 0,

lim
n→∞

P

(∣∣∣∣ W (n)

cn lnn
− 1

∣∣∣∣ > δ

)
= 0. (18)

Proof. Fix ε > 0, we have

P (W (n)
s,t > (cn + ε) ln n) ≤ p(cn+ε) ln n+1

n . (19)

Since cn = o(lnn), it follows that

P (W (n) > (cn + ε) ln n) ≤ n2p(cn+ε) ln n+1
n ≤ e−

2ε ln n
cn → 0 (20)

as n → ∞.
Next, let x = −ε lnn and Z(x) be a Poisson random variable with

EZ(x) = λ(x) = ES(x) = n2pbcn ln n+x+2c
n ≥ e

2ε ln n−4
cn . (21)

Note that {W (n) ≤ (cn − ε) ln n} implies that {W ′(n) ≤ (cn − ε) ln n}. By Lemma 3.1 and
Lemma 3.3,

P (W (n) ≤ (cn − ε) ln n) ≤ P (S(x) = 0)

≤ B1(x,G) + B2(x,G) + P (Z(x) = 0)

= O(p2(x+1)
n nδ−1 + e−e

2ε ln n−4
cn ) → 0, (22)

as n → ∞, for δ > 0 and ε < α/5. Thus, by (20) and (22), it follows that

lim
n→∞

P

(∣∣∣∣ W (n)

cn lnn
− 1

∣∣∣∣ > δ

)
= 0. (23)

for any 0 < δ < 1/5. ¤
To prove of Theorem 2.1, we need to further refine the proof of Lemma 3.4.

Proof of Theorem 2.1. As in the proof of Lemma 3.4, let Z(x) be a Poisson random
variable with

EZ(x) = λ(x) = ES(x) = n2pbcn ln n+x+2c
n . (24)

If cn lnn + x ∈ Z, then λ(x) = px+2
n . Recall that W ′(n) > cn lnn + x if and only if S(x) > 0.

Thus, by Lemma 3.1 and Lemma 3.3

|P (W ′(n) > cn lnn + x) − P (Z(x) 6= 0)| = |P (S(x) > 0) − P (Z(x) > 0)|

≤ B1(x,G) + B2(x,G)

= O(p2(x+1)
n nδ−1). (25)

Note that x < ε lnn, and then we have

{W (n) > cn lnn + x} = {W (n) > (c + ε) ln n} ∪ {W ′(n) > cn lnn + x}. (26)



Hence, by (20), (25) and (26), we obtain

|P (W (n) ≤ cn lnn + x) − e−λ(x)| = |P (W (n) > cn lnn + x) − P (Z(x) 6= 0)|

≤ P (W (n) > (cn + ε) ln n)

+|P (W ′(n) > cn lnn + x) − P (Z(x) 6= 0)|

≤ e−
2ε ln n

cn + O(p2(x+1)
n nδ−1), (27)

for 0 < δ < 1, where the first item on the right-hand side of (27) tends to 0 as n → ∞.
Let {xn} be a sequence such that cn lnn + xn ∈ Z for all n. If infn xn ≥ β ∈ R, then

p
2(xn+1)
n nδ−1 → 0 and eλ(xn) is a bounded sequence. Thus, from (27) it follows that∣∣eλ(xn)P (W (n) ≤ cn lnn + xn) − 1

∣∣ = O
(
e−

2ε ln n
cn + p2(xn+1)

n nδ−1
)
→ 0, (28)

as n → ∞. ¤
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