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Abstract Let U™ denote the maximal length arithmetic progression in a non-uniform ran-
dom subset of {0,1}", where 1 appears with probability p,. By using dependency graph
and Stein-Chen method, we show that U™ — ¢, Inn converges in law to an extreme type
distribution with Inp, = —2/c,. Similar result holds for W("), the maximal length aperiodic

arithmetic progression (mod n).
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§1. Introduction

An arithmetic progression is a sequence of numbers such that the difference of any two
successive members of the sequence is a constant. A celebrated result of Szemerédi [5] says that
any subset of integers of positive upper density contains arbitrarily long arithmetic progressions.
The recent work [6] reviews some extremal problems closely related with arithmetic progressions
and prime sequences, under the name of the Erdés-Turdn conjectures, which are known to be
notoriously difficult to solve.

Let &1,&2,- -+ ,&, be a uniformly chosen random word in {0,1}" and =, be the random
set consisting elements ¢ such that & = 1. Benjamini et al. [3] studies the length of maximal
arithmetic progressions in Z,,. Denote by U™ the maximal length arithmetic progression in
2, and W™ the maximal length aperiodic arithmetic progression (mod n) in Z,. They show,
among others, that the expectation of U™ and W™ is roughly 21n n/ln2.

In view of the random graph theory [4], a natural extension of [3] is to consider non-uniform
random subset of {0,1}", which is the main interest of this note. Let & = 1 with probability
pn and & = 0 with probability 1 — p,, where p,, € [0, 1] is a function of n. Following [3], the
key to our work is to construct proper dependency graph and apply the Stein-Chen method of
Poisson approximation (see e.g. [1,4]). Our result implies that, in the non-uniform scenarios,
the expectation of U™ and W™ is roughly ¢, Inn, with Inp, = —2/cy,. Obviously, taking
pn =1/2 and ¢, = 2/1n2, we then recover the main result of Benjamini et al.

The rest of the note is organized as follows. We present the main results in Section 2.
Section 3 is devoted to the proofs.
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§2. Results

Let &,&a,- -+ be i.i.d. random variables with P(§; = 1) = p,, and P(§; =0) =1 — p,,. For
integers 1 < s,t < n, define

k
Wa(,vtl) ::max{lgkgn:§S:O7H€s+it( modn):1}~ (1)

=1

Therefore, Ws(ytl) is the length of the longest arithmetic progression ( mod n) in {1,2,--- ,n}
starting at s with difference t. Moreover, set W (") = max; < ;<p Wf’;) Similarly, define

k
n n—s
Ui,)z—max{lgkg{ . J:gs—o,ili[lﬁm—l}, (2)

and U™ = max;<, 1<y US(Z), where |a| is the integer part of a.

Theorem 2.1. Suppose that Inp, = —2/¢, and a < ¢, = o(lnn) for some o > 0. Let
{z,} be a sequence such that ¢, lnn + x,, € Z for all n, and inf,, x,, > B for some 5 € R. We
have

lim AP < e lnn+x,) =1, (3)

where A(z) = p=*2. In particular, W) /¢, Inn converges to 1 in probability, as n — oco.

Theorem 2.2. Suppose that Inp, = —2/¢, and a < ¢, = o(lnn) for some o > 0. Let
{yn} be a sequence such that ¢, Inn —In(2¢, Inn) + y,, € Z for all n, and inf,, y,, > § for some
£ € R. We have

lim *¥) P(U™ < ¢, Inn —In(2¢, Inn) + y,) = 1, (4)

=00
where A\(z) = p=*2. In particular, U™ /¢, Inn converges to 1 in probability, as n — oc.

The relationship between p,, and ¢, is depicted in Fig. 1. We observe that the probability
Pn, by our assumptions, should within the regime e~2/® < p, = e~2/°"") for o > 0. For
the case p, = o(1) (i.e., ¢, = o(1)), by letting o — 0, we can infer that W) < Inn and
U™ < Inn whp.

83. Proofs

In this section, we will only consider Theorem 2.1 since the proofs are very similar. Theorem
2.1 will be proved through a series of lemmas by similar reasoning to [3] with some modifications.

For a collection of random variables {X;} , a graph G of order n is called a dependency
graph [4] of {X;}7-, if for any vertex i, X; is independent of the set {X : vertices ¢ and j are
not adjacent}. The following is a result of Arratia et al. [2], which is a instrumental version of
the Stein-Chen method in numerous probabilistic combinatorial problems [1].

Lemma 3.1.([2]) Let {X;}? ; be n Bernoulli random variables with EX; = p; > 0. Let
G be a dependency graph of {X;}" . Set S, => """ | X; and A= ES,, =Y. p;. Define

n

Bi(G)=>_ > EX,EX; (5)

i=1 jijri
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Figure 1: The probability p,, versus c,,.

and .
Ba(G) =) Y. BE(X:X)). (6)
i=1 jtizjni
Let Z be a Poisson random variable with EZ = A. For any A C N, we have

|P(S,, € A) — P(Z € A)| < B1(G) + Bz2(G). (7)

Fix e > 0 and set m = | (¢, + €)Inn]. Define the truncated version

k
WS/’ZL) ::max{lgkgmzfs:()?l_[ferit( modn)zl} (8)

i=1

and W' = maxi<si<n WS/(ZL) For z € R define the indicator variable

Lot(®) = 1o ey 20d S() = > L) (9)
1<s,t<n

By definition, it is clear that W' > ¢, Inn+x if and only if S(x) > 0. Set A(s,t) = {s+it},.
Fix z € R such that < elnn. Hence, as in [3], we can construct a dependency graph G of
random variables { I, ¢(7)}% ,—; by setting the vertex set {(s,#)}7,_; and edges (s1,t1) ~ (s2,t2)
if and only if A(sy,t1) N A(se,t2) # 0.

The following combinatorial lemma is useful.

Lemma 3.2.([3]) Let D, (k) be the number of pairs (s1,%1) such that ¢ # t; and |A(s,t)N
A(s1,t1)] = k. Then we have

(m+1)2%n, k=
Der(k) <S8 (m+1)2m?, 2<k<™24+1 (10)
0, k>3 +
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Recall the definitions (5) and (6). Let

Z Z EISl’tl (x)Elsz,b(w) (11)

s1,t1 s2,t2
(s1,t1)~(s2,t2)

and

= Z Z E[Ishtl (x)I$27t2 (1’)] (12)

s1,t1 (s1.t1)#(s2,t2)
(s1,t1)~(s2,t2)

Lemma 3.3. For all x < elnn and § > 0, we have

Bl<xa G) + BQ(xa G) = O(pn(z+1) 671)' (13)

Proof. From (9), we have EI, 4(x) = P(W:(fn) > cp Inn+4x) < pélnntetl Since for fixed
s and t, the number of pairs (s1,¢1) such that |A(s,t) N A(s1,t1)| = k is at most Dg (k) + 1,
we obtain by Lemma 3.2

m—+1

Bl(l‘,G) < Z Z(D&t(k)+1)pi(cnlnn+x+1)
s,;t k=1

1 m/2+1

< pi‘””-ﬁz (m+1)%n+1+ kz (m+1)2m? + 1)
s =2
2 6
_ pg;xm.O(mnj?ﬂ)
n

= owre, (14

for all § > 0, where the last equality holds using the assumption ¢, = o(lnn).
Next, we have E(Iy4(z)1,, 1, (2)) < pa ™" D7 when |A(s, t) N A(sy, t1)| = k. There-

fore, by Lemma 3.2

m
By(z,G) < ZZDS7t Yp2(en Inntat)—k
st k=1
m/2+1
< Pt 1) 1) . 15
- n42 20m+ 1)+ (m + Z Py (15)
Since ¢, > a > 0, we obtain
m/2+1

—m cpte
> pt=0(m") =0, (16)
Combining (15), (16) and the assumption ¢, = o(lnn), we derive

4 c,(,,:»s
Ba(e.G) = gD O(W)

= Ot n*Y) (17)
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forall § > 0. O

The following lemma is a simplified version of Theorem 2.1.

Lemma 3.4. W(")/cn Inn converges to 1 in probability, as n — oo; i.e., for any § > 0,

()
W —1‘>5>_0. (18)

Proof. Fix ¢ > 0, we have
PWS > (¢, +¢)lnn) < plentemntt, (19)

Since ¢, = o(Inn), it follows that

P(W®™ > (¢, + &) Inn) < p2plente)inntl < =250 (20)
as n — oo.
Next, let z = —eInn and Z(z) be a Poisson random variable with
EZ(z) = M=) = ES(z) = n2plennntat2] > 200 (21)

Note that {W() < (¢, —¢)Inn} implies that {W'™ < (¢, —¢)Inn}. By Lemma 3.1 and

Lemma 3.3,

P(W™ < (¢, —e)Inn)

IN

P(S(x) = 0)
Bl(xv G) + BZ(x’ G) + P(Z(l‘) = 0)

IN

2elnn—4

= O@EHpd=t feme ) S0, (22)

as n — oo, for § > 0 and € < /5. Thus, by (20) and (22), it follows that

lim P(

(n)
W —1‘>5>=0. (23)

forany 0 < < 1/5. O
To prove of Theorem 2.1, we need to further refine the proof of Lemma 3.4.

Proof of Theorem 2.1. As in the proof of Lemma 3.4, let Z(z) be a Poisson random
variable with
EZ(z) = Mx) = ES(z) = n?plen mntat2] (24)

If ¢, Inn 4+ € Z, then \(z) = p2+2. Recall that W™ > ¢, Inn + 2 if and only if S(z) > 0.
Thus, by Lemma 3.1 and Lemma 3.3

|P(W'™ > ¢, Inn+ x) — P(Z(z) # 0)

IP(S(z) > 0) — P(Z(z) > 0)|
B1($7 G) + Bz(x, G)
= O n®h). (25)

IA

Note that z < elnn, and then we have

W > e oimn+ 2} ={W™ > (c+e)lnn} U{W'™ > ¢, Inn+z}. (26)



Hence, by (20), (25) and (26), we obtain

IPW™ < ¢, Inn+z)—e | = |P(W™ > ¢, Inn+ ) — P(Z(z) #0)|
< P(W®™ > (¢, +¢)lnn)
+PW'™ > ¢, Inn+ x) — P(Z(x) # 0)|
< e 4 O(pRlE s, (27)

for 0 < § < 1, where the first item on the right-hand side of (27) tends to 0 as n — oo.

Let {z,} be a sequence such that ¢,Ilnn + x, € Z for all n. If inf, 2z, > B € R, then

pi(a”'"ﬂ)n‘s_1 — 0 and e*#n) is a bounded sequence. Thus, from (27) it follows that

|e)\(:cn)P(W(n) S cn Inn + .'L'n) . 1’ _ O(ei 2scl: n +pi(xn+1)n5—1) N 07 (28)

asn — oo.
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