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Abstract

In this paper a slightly stronger version of the Second Hardy-Littlewood
Conjecture, namely the inequality π(x) + π(y) > π(x + y) is examined,
where π(x) denotes the number of primes not exceeding x. It is shown
that there the inequalty holds for all sufficiently large x and y.

1 Introduction

The original version of the conjecture is π(x) + π(y) ≥ π(x+ y) for all x,y ≥ 2.
It had been suggested by E. Landau that π(2x) < 2π(x) for all x ≥ 3 and
this eas subsequently proved by Rosser and Schoenfeld. There are some known
inequalities that are similar in spirit of the Hardy-Littlewood Conjecture. For
example, C. Karanikolov showed that if a ≥ e 1

4 and x ≥ 364 then we have,

π(ax) < aπ(x)

V. Udrescu proved that if 0 < ε ≤ 1 and εx ≤ y ≤ x then π(x)+π(y) > π(x+y)
for x and y sufficiently large. L. Panaitopol made these two results sharper by
proveing that if a > 1 and x > e4(ln a)

−2

then π(ax) < aπ(x) and If a ∈ (0, 1] and

x ≥ y ≥ ax, x ≥ e9a−2

, then π(x) +π(y) > π(x+ y). However, as may be noted
that the inequality has been proved under the hypothesis that x ≥ y ≥ ax. In
the same paper Panaitopol deduced an unconditional inequality which states
that for all positive integer x and y such that x, y ≥ 4 we have,

1

2
π(x+ y) ≤ π

(x
2

)
+ π

(y
2

)
In this paper we prove that for all sufficienly large x and y the Hardy-

Littlewood Ineqaulity holds. For this purpose we will examine the inequality
π(ky)+π(y) > π((k+1)y) and try to find out the range of valued of y for which
for all k > we the inequality.

∗For any suggestion regarding this paper please mail me at sayantan.roy95@gmail.com
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2 The Theorem

In this section we present the only theorem of our paper. But before that we
agree to call the following inequality as Poussin’s Inequality which arises quite
naturally from de la Vallée-Poussin’s proof of Prime Number Theorem, namely
the result that for all ε > 0 and for all sufficiently large x we have,

x

lnx− (1− ε)
< π(x) <

x

lnx− (1 + ε)

Now let us state the theorem.

• Theorem

For all k > 1 and for all y such that,

y

ln y − (1− ε)
< π(y) <

y

ln y − (1 + ε)

we have π(ky) + π(y) > π((k + 1)y) for all ε satisfying 0 < ε ≤ ln
√

2.

Proof

We strat by noing that,

π(ky) + π(y) >
ky

ln ky − (1− ε)
+

y

ln y − (1− ε)

and,
(k + 1)y

ln(k + 1)y − (1 + ε)
> π ((k + 1)y)

Hence proving,

ky

ln ky − (1− ε)
+

y

ln y − (1− ε)
≥ (k + 1)y

ln(k + 1)y − (1 + ε)

Or equivalently,

k

ln ky − (1− ε)
+

1

ln y − (1− ε)
≥ k + 1

ln(k + 1)y − (1 + ε)

will imply our inequality with some condition(s) imposed on k and y.

Notice that the above inequality is satisfied if and only if,

k

(
1

ln ky − (1− ε)
− 1

ln(k + 1)y − (1 + ε)

)
≥
(

1

ln(k + 1)y − (1 + ε)
− 1

ln y − (1− ε)

)
Which holds if and only if,

k

 ln

(
1 +

1

k

)
− 2ε

ln ky − (1− ε)

 ≥ (2ε− ln(k + 1)

ln y − (1− ε)

)
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Or equivalently,

k

(
ln y − (1− ε)
ln ky − (1− ε)

)
≥

 2ε− ln(k + 1)

ln

(
1 +

1

k

)
− 2ε



Now we note that the two inequalities 2ε− ln(k+1) > 0 and ln

(
1 +

1

k

)
−

2ε > 0 can’t hold simultaneously for all k > 1.

In anticipation of a contradiction, let us suppose that they do. Then

2ε − ln(k + 1) > 0 and ln

(
1 +

1

k

)
− 2ε > 0. Now the first inequality

implies k < e2ε − 1 while the second implies
1

k
> e2ε − 1. Combining we

get,
1

k
> e2ε − 1 > k which is impossible for all k > 1.

Thus we can either have 2ε − ln(k + 1) < 0 and ln

(
1 +

1

k

)
− 2ε < 0 or

2ε − ln(k + 1) > 0 and ln

(
1 +

1

k

)
− 2ε < 0. In the first case we get,

k > e2ε − 1 while in the second we get k < e2ε − 1. Notice that for all
0 < ε ≤ ln

√
2 we would have only the first inequality.

We conclude that for all x > y and for all y such that
y

ln y − (1− ε)
<

π(y) <
y

ln y − (1 + ε)
for all 0 < ε ≤ ln

√
2 the inequality, π(x) + π(y) >

π(x+ y), is true.

3 Conclusion and Remarks

It can be easily deduced from what we have proved that for the above con-
ditions as stated in the theorem just discussed satisfied by every x and y
Hardy-Littlwood Inequality holds. However, the problem is that the inequal-
ity may fail infinitely often. For there may exist an y which doesn’t satisfy
the Poussin’s Inequality for any 0 < ε ln

√
2 but the x satisfies Poussin’s In-

equality for 0 < ε ≤ ln
√

2 and for that y and for such x the inequality may
fail infinitely often. But there is a theoretical procedure to settle this matter

completely. For from the limit lim
n→∞

π(n)

n
we conclude that there exists a M

such that for all n ≥ M we have

∣∣∣∣π(n)

n

∣∣∣∣ < ε for each ε > 0. Now from the

assumption x > y , V. Udrescu’s result that if 0 < ε ≤ 1 and εx ≤ y ≤ x then
π(x) + π(y) > π(x+ y) for x and y sufficiently large and L. Panaitopol’s result

that if a > 1 and x > e4(ln a)
−2

then π(ax) < aπ(x) we notice that,

π(x+ y) <
(

1 +
y

x

)
π(x) = π(x) +

y

x
π(x) < π(x) + π(y)
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for all x > e4(ln a)
−2

.Now if it can be shown that for each a > 1 and for all y ≥ 2
we have and π(x) + π(y) ≥ π(x+ y) for all sufficiently large x then in principle
the conjecture can be settled to rest once and for all.
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