infinity prime proof

T.Nakashima

November 2, 2014

I think the next cllasically well known proof.
Theorem
Prime numbers are infinitelly exists.
Proof)
I supose prime numbers are finite.
p_{1}, \cdots, p_{n} are these prime numbers.
Then $p_{1} \times p_{2} \times \cdots p_{n}+1$ is not divided by all prime numbers p_{1}, \cdots, p_{n}. The numbers of Prime numbers are $n+1$. This is the contradiction. Prime numbers are infinitly main.

So,if $2,3,5,7,11,13$ is the limited prime numbers, then $2 \times 3 \times 5 \times 7 \times 11 \times$ $13+1=30031$ is Prime?
30031 is the conbolution number.

