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Abstract

We recently improved the famous result of Parikh and Wilczek, who
found a probability of emission of Hawking radiation which is compatible
with a non-strictly thermal spectrum, showing that such a probability of
emission is really associated to two non-strictly thermal distributions for
boson and fermions. Here we �nalize the model by �nding the correct
value of the pre-factor of the Parikh and Wilczek probability of emission.
In fact, that expression has the ∼ sign instead of the equality. In general,
in this kind of leading order tunnelling calculations, the exponent arises
indeed from the classical action and the pre-factor is an order Planck con-
stant correction. But in the case of emissions of Hawking quanta, the vari-
ation of the Bekenstein-Hawking entropy is order 1 for an emitted particle
having energy of order the Hawking temperature. As a consequence, the
exponent in the Parikh and Wilczek probability of emission is order unity
and one asks what is the real signi�cance of that scaling if the pre-factor is
unknown. Here we solve the problem assuming the unitarity of the black
hole (BH) quantum evaporation and considering the natural correspon-
dence between Hawking radiation and quasi-normal modes (QNMs) of
excited BHs , in a �Bohr-like model� that we recently discussed in a series
of papers. In that papers, QNMs are interpreted as natural BH quantum
levels (the �electron states� in the �Bohr-like model�). Here we �nd the
intriguing result that, although in general it is well approximated by 1,
the pre-factor of the Parikh and Wilczek probability of emission depends
on the BH quantum level n. We also write down an elegant expression of
the probability of emission in terms of the BH quantum levels.
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Hawking radiation [1] is today studied in an elegant and largely used way
through the tunnelling mechanism, see [2, 3, 4, 5, 6, 7, 8] and refs. within.
Let us see how that mechanism works. One considers an object which is classi-
cally stable. If it becomes unstable from a quantum-mechanically point of view,
one naturally suspects tunnelling. Hawking's famous mechanism of particles
creation by BH [1] is, in turn, described in terms of tunnelling arising from
vacuum �uctuations near the BH horizon [2, 3, 4, 5, 6, 7, 8]. When a virtual
particle pair is created just inside the BH horizon, the virtual particle having
positive energy can tunnel out. Thus, it materializes outside the BH as a real
particle. In analogous way, when a virtual particle pair is created just outside
the horizon, the particle having negative energy can tunnel inwards. In both
cases, the particle having negative energy is absorbed by the BH. The result is
that the BH mass decreases and the particle having positive energy propagates
towards in�nity. Thus, subsequent emissions of Hawking quanta appear.
Working with G = c = kB = ~ = 1

4πε0
= 1 (Planck units), in strictly thermal

approximation the probability of emission of Hawking quanta is [1, 2, 3, 9]

Γ ∼ exp(− ω

TH
), (1)

where ω is the energy-frequency of the emitted particle and TH ≡ 1
8πM is the

Hawking temperature. Taking into account the energy conservation, i.e. the BH
contraction enabling a varying BH geometry, one gets the remarkable correction
of Parikh and Wilczek [2, 3]

Γ ∼ exp[− ω

TH
(1− ω

2M
)] = α exp[− ω

TH
(1− ω

2M
)], (2)

where α ∼ 1 and the additional term ω
2M is present. We have recently im-

proved the Parikh and Wilczek tunnelling picture showing that the probability
of emission (2) is, indeed, associated to the two distributions [8]

< N >boson= 1
exp[4π(2M−ω)ω]−1

< N >fermion= 1
exp[4π(2M−ω)ω]+1 ,

(3)

for bosons and fermions respectively, which are non strictly thermal.
We note that eq. (2) has the ∼ sign instead of the equality. In fact, in

this kind of leading order tunnelling calculations the exponent arises from the
classical action and the pre-factor is an order Planck constant correction. But in
the case of emissions of Hawking quanta the variation of the Bekenstein-Hawking
entropy [2, 3]

Γ = α exp ∆SBH = α exp[− ω

TH
(1− ω

2M
)], (4)

is order 1 for an emitted particle having energy of order the Hawking temper-
ature. As a consequence, the exponent in the right hand side of eqs. (2) and
(4) is order unity and we ask what is the real signi�cance of that scaling if
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pre-factor is unknown. Here we solve the problem considering the natural cor-
respondence between Hawking radiation and BH QNMs, in a �Bohr-like model�
that we recently discussed in a series of papers [9, 10, 11, 12], also together with
collaborators [13, 14].

We consider Dirac delta perturbations [9, 10, 11, 12], which represent subse-
quent absorptions of particles having negative energies. Such perturbations are
associated to emissions of Hawking quanta in the above discussed mechanism of
particle pair creation. BH response to perturbations are QNMs [9, 10, 11, 12, 13,
14, 15, 16], which are frequencies of radial spin-j perturbations obeying a time in-
dependent Schröedinger-like equation [9, 10, 11, 12, 16]. They are the BH modes
of energy dissipation which frequency is allowed to be complex[9, 10, 11, 12, 16].
The intriguing idea to model the quantum BH in terms of BH QNMs arises from
a remarkable paper by York [17]. For large values of the quantum �overtone�
number n, where n = 1, 2, ..., QNMs become independent of both the spin and
the angular momentum quantum numbers [9, 10, 11, 12, 15, 16], in perfect agree-
ment with Bohr's Correspondence Principle [18], which states that �transition
frequencies at large quantum numbers should equal classical oscillation frequen-
cies�. Thus, Bohr's Correspondence Principle enables an accurate semi-classical
analysis for large values of the principal quantum number n, i.e, for excited BHs.
By using that principle, Hod has shown that QNMs release information about
the area quantization as QNMs are associated to absorption of particles [19, 20].
Hod's work was re�ned by Maggiore [15] who solved some important problems.
On the other hand, as QNMs are countable frequencies, ideas on the contin-

uous character of Hawking radiation did not agree with attempts to interpret
QNMs in terms of emitted quanta, preventing to associate QNMs to Hawking
radiation [16]. Recently, the authors of [21, 22, 23, 24] and ourselves and collab-
orators [10, 11, 12, 13, 14] observed that the non-thermal spectrum of Parikh
and Wilczek [2, 3] also implies the countable character of subsequent emissions
of Hawking quanta. This issue enables a natural correspondence between QNMs
and Hawking radiation, permitting to interpret QNMs also in terms of emitted
energies [10, 11, 12, 13, 14]. Dirac delta perturbations due to discrete subse-
quent absorptions of particles having negative energies, which are associated
to emissions of Hawking quanta in the mechanism of particle pair creation by
quantum �uctuations, generates indeed BH QNMs [10, 11, 12, 13, 14]. In other
words, the BH contraction due to the energy conservation is not a �one shot
process�. It generates oscillations of the horizon instead, which are the QNMs.
We also stress that the correspondence between emitted radiation and proper
oscillation of the emitting body is a fundamental behavior of every radiation
process in science. Based on such a natural correspondence between Hawking
radiation and BH QNMs, one can consider QNMs in terms of quantum levels
also for emitted energies [10, 11, 12, 13, 14].

Let us see how the model works. By introducing the e�ective temperature

[8, 10, 11, 12]

TE(ω) ≡ 2M

2M − ω
TH =

1

4π(2M − ω)
, (5)
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one rewrites eq. (5) in a Boltzmann-like form similar to eq. (1)

Γ = α exp[−βE(ω)ω] = α exp(− ω

TE(ω)
), (6)

where exp[−βE(ω)ω] is the e�ective Boltzmann factor, with βE(ω) ≡ 1
TE(ω) .

Thus, the e�ective temperature replaces the Hawking temperature in the equa-
tion of the probability of emission [8, 10, 11, 12]. We emphasize that there are
various �elds of science where one takes into account the deviation from the
thermal spectrum of an emitting body by introducing an e�ective temperature
which represents the temperature of a black body that would emit the same
total amount of radiation. We introduced the concept of e�ective temperature
in BH physics in [10, 11] and used it in [8, 10, 11, 12] and, together with collab-
orators, in [13, 14]. The e�ective temperature depends on the energy-frequency

of the emitted radiation and the ratio TE(ω)
TH

= 2M
2M−ω represents the deviation of

the BH radiation spectrum from the strictly thermal feature [8, 10, 11, 12]. The
introduction of the e�ective temperature permits the introduction of other ef-
fective quantities. Considering the initial BH mass before the emission, M , and
the �nal BH mass after the emission, M − ω, one introduces the BH e�ective

mass and the BH e�ective horizon [8, 10, 11, 12] as

ME ≡M −
ω

2
, rE ≡ 2ME , (7)

during the BH contraction, i.e. during the emission of the particle [10]-[12].
Such e�ective quantities are average quantities [8, 10, 11, 12]. In fact, rE is the
average of the initial and �nal horizons while ME is the average of the initial
and �nal masses [8, 10, 11, 12]. The e�ective temperature TE is the inverse of
the average value of the inverses of the initial and �nal Hawking temperatures
(before the emission TH initial = 1

8πM , after the emission TH �nal = 1
8π(M−ω) )

[8, 10, 11, 12].
For large values of the principal quantum number n, i.e, for excited BHs, and

independently of the angular momentum quantum number, the QNMs expres-
sion of the Schwarzschild BH which takes into account the non-strictly thermal
behavior of the radiation spectrum is obtained replacing the Hawking temper-
ature with the e�ective temperature in the standard, strictly thermal, equation
for the quasi-normal frequencies as [8, 10, 11, 12]

ωn = a+ ib+ 2πin× TE(|ωn|)

w 2πin× TE(|ωn|) = in
4M−2|ωn| ,

(8)

where a and b are real numbers with a = (ln 3)×TE(|ωn|), b = π×TE(|ωn|) for
j = 0, 2 (scalar and gravitational perturbations), a = 0, b = 0 for j = 1 (vector
perturbations) and a = 0, b = π × TE(|ωn|) for half-integer values of j. On the
other hand, as a, b � |2πinTE(|ωn|)|, a fundamental consequence is that the
quantum of area obtained from the asymptotics of |ωn| is an intrinsic property
of Schwarzschild BHs because for large n the leading asymptotic behavior of |ωn|
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is given by the leading term in the imaginary part of the complex frequencies,
and it does not depend on the spin content of the perturbation [10, 11, 12, 15].
An intuitive derivation of eq. (8) can be found in [10, 11]. We rigorously derived
such an equation in the Appendix of [12].
Eq. (8) has the following elegant interpretation [10, 11]. The quasi-normal
frequencies determine the position of poles of a Green's function on the given
background, and the Euclidean BH solution converges to a non-strictly thermal
circle at in�nity with the inverse temperature βE(ωn) = 1

TE(|ωn|) [10, 11]. Thus,

the spacing of the poles in eq. (8) coincides with the spacing 2πiTE(|ωn|) =
2πiTH( 2M

2M−|ωn| ), expected for a non-strictly thermal Green's function [10, 11].

We found the physical solution for the absolute values of the frequencies (8) in
[10, 11, 12]. Considering the leading asymptotic behavior one gets [10, 11, 12]

En ≡ |ωn| = M −
√
M2 − n

2
. (9)

En is interpreted like the total energy emitted by the BH at that time, i.e.
when the BH is excited at a level n [10, 11, 12]. Considering an emission from
the ground state (i.e. a BH which is not excited) to a state with large n = n1

and using eq. (9), the BH mass changes from M to [10, 11, 12]

Mn1 ≡M − En1 =

√
M2 − n1

2
. (10)

In the transition from the state with n = n1 to a state with n = n2 where
n2 > n1 the BH mass changes again from Mn1

to

Mn2
≡Mn1

−∆En1→n2
= M − En2

=
√
M2 − n2

2 ,
(11)

where

∆En1→n2
≡ En2

− En1
= Mn1

−Mn2
=

√
M2 − n1

2
−
√
M2 − n2

2
, (12)

is the jump between the two levels due to the emission of a particle having
frequency ∆En1→n2 . Thus, in our BH model [12], during a quantum jump
a discrete amount of energy is radiated and, for large values of the principal
quantum number n, the analysis becomes independent of the other quantum
numbers. In a certain sense, QNMs represent the "electron" which jumps from
a level to another one and the absolute values of the QNMs frequencies represent
the energy "shells" [2]. In Bohr model of the hydrogen atom [25, 26] electrons
can only gain and lose energy by jumping from one allowed energy shell to
another, absorbing or emitting radiation with an energy di�erence of the levels
according to the Planck relation (in standard units) E = hf , where h is the
Planck constant and f the transition frequency. In our BH model [10, 11, 12],
QNMs can only gain and lose energy by jumping from one allowed energy shell to
another, absorbing or emitting radiation (emitted radiation is given by Hawking
quanta) with an energy di�erence of the levels according to eq. (12). The
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similarity is completed if one notes that the interpretation of eq. (9) is of a
particle, the �electron�, quantized on a circle of length [10, 11]

L =
1

TE(En)
= 4π

(
M +

√
M2 − n

2

)
, (13)

which is the analogous of the electron travelling in circular orbits around the
hydrogen nucleus, similar in structure to the solar system, of Bohr model [25,
26]. On the other hand, Bohr model is an approximated model of the hydrogen
atom with respect to the valence shell atom model of full quantum mechanics.
In the same way, our BH model [12] should be an approximated model with
respect to the de�nitive, but at the present time unknown, BH model arising
from a full quantum gravity theory.
As En is interpreted like the total energy emitted at level n [12], considering
the expressions (10) and (11) for the residual BH mass one needs also [12]

M2 − n

2
≥ 0. (14)

In fact, BHs cannot emit more energy than their total mass and the total energy
emitted by the BH cannot be imaginary. The expression (14) gives a maximum
value for the overtone number n

n ≤ nmax = 2M2, (15)

which corresponds to Enmax = M. On the other hand, we recall that, by us-
ing the Generalized Uncertainty Principle, Adler, Chen and Santiago [27] have
shown that the total BH evaporation is prevented in exactly the same way that
the Uncertainty Principle prevents the hydrogen atom from total collapse. In
fact, the collapse is prevented, not by symmetry, but by dynamics, as the Planck
distance and the Planck mass are approached [27]. That important result im-
plies that eq. (14) has to be slightly modi�ed, becoming (the Planck mass is
equal to 1 in Planck units) [12]

M2 − n

2
≥ 1. (16)

Thus, one gets a slightly di�erent value of the maximum value of the overtone
number n

n ≤ nmax = 2(M2 − 1). (17)

Then, the countable sequence of QNMs for emitted energies cannot be in�nity
although n can be extremely large [12]. In fact, restoring ordinary units and con-
sidering a BH mass of the order of 10 solar masses, one easily gets nmax ∼ 1076.
On the other hand, we expect further corrections to our semi-classical analy-
sis when the Planck scale is approached, as we need a full theory of quantum
gravity to obtain a correct description of the Planck scale's physics.

Our Bohr-like model of BH in [10, 11, 12] is in full agreement with previous
literature of BH thermodynamics, like references [15, 28, 29]. More, it is also in
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full agreement with the famous result of Bekenstein on the area quantization [30].
In fact, we found an area quantum arising from a jump among two neighbouring
quantum levels n−1 and n having a value |4An| = |4An−1| ' 8π, see eq. (37)
in [12], which is totally consistent with Bekenstein's result [30]. Clearly, all
these similarities with the Bohr semi-classical model of the hydrogen atom and
all these consistences with well known results in the literature of BHs, starting by
the universal Bekenstein's result, cannot be coincidences, but are con�rmations
of the correctness of the analysis in [10, 11, 12] instead.

Now, let us proceed in calculating the correct value of the pre-factor of eqs.
(2) and (4). We recall that, today, the majority of researchers thinks that BH
quantum evaporation is an unitary process and that Hawking's original claim
on the information loss in BH evaporation [9] was wrong. Various approaches
are indeed proposed by various researchers in order to solve the BH information
paradox and to recover unitarity in BH evaporation. Here we recall: i) the
approach of [21, 22, 23, 24] where the authors found the existence of correlations
among Hawking radiation which are elegantly described as hidden messengers in
BH evaporation permitting to restore unitarity in gravitational collapse; ii) the
famous ADS/CFT correspondence [31], which was endorsed by both Susskind
[32] and Hawking [33], who reversed his opinion in 2004 and recently claimed
that BH evaporation is unitary [34]; iii) the approach of the so called �fuzzballs�
[35]. Thus, hereafter we will assume the unitarity of BH quantum evaporation.
Let us show that, �xed two quantum levels m and n, the energy emitted in
an arbitrary transition m → n, with n > m, is proportional to the e�ective
temperature associated to the transition and that the constant of proportionality
depends only on the di�erence m− n. Setting

∆Em→n ≡ En − Em = Mm −Mn = K [TE ]m→n , (18)

where Mm and Mn are given by eqs. (10) and (11), let us see if there are values
of the constant K for which eq. (18) is satis�ed. We recall that

[TE ]m→n =
1

4π (Mm +Mn)
, (19)

because the e�ective temperature is the inverse of the average value of the
inverses of the initial and �nal Hawking temperatures, see the above discussion
. Thus, eq. (18) can be rewritten as

∆Em→n = M2
m −M2

n =
K

4π
. (20)

By using eqs. (10) and (11), eq. (20) becomes

1

2
(n−m) =

K

4π
, (21)

which implies that eq. (18) is satis�ed for K = 2π (n−m) . Hence, one �nds

∆Em→n = En − Em = 2π (n−m) [TE(ω)]m→n . (22)
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Using eq. (6), the probability of emission between the two levels n and m can
be written in the intriguing form

Γm→n = α exp−
{

∆Em→n
[TE(ω)]m→n

}
= α exp [−2π (n−m)] . (23)

Thus, the probability of emission between two arbitrary levels characterized by
the two �overtone� quantum numbers m and n scales like exp [−2π (n−m)] . In
particular, for n = m + 1 the probability of emission has its maximum value
∼ exp(−2π), i.e. the probability is maximum for two adjacent levels, as one can
intuitively expect. If one �xesm, the assumption of unitarity in BH evaporation
permits the probabilities (23) to be normalized to the unity as

nmax∑
n=m

Γm→n =

nmax∑
n=m

α exp [−2π (n−m)] = 1, (24)

where nmax is the maximum value for the �overtone� number n given by eq. (17)
and n = m corresponds to the probability that the BH does not emit. Putting
k = n−m and exp [−2π] = X eq. (24) becomes

kmax∑
k=0

Γ0→k = α

kmax∑
k=0

Xk = 1. (25)

The sum in eq. (25) is the kth partial sum of the geometric series and can be
solved as [36]

kmax∑
k=0

Xk = α
1−X(kmax+1)

1−X
. (26)

Thus, one gets

α
1−X(kmax+1)

1−X
= 1, (27)

which permits to solve for α

α ≡ αm =
1−X

1−X(kmax+1)
=

1− exp− [2π]

1− exp [−2π (nmax −m+ 1)]
. (28)

Hence, we �nd that the pre-factor α depends on the BH quantum levelm. Notice
that for nmax � m one �nds that such a dependence can be neglected

α ' 1− exp− [2π] ' 1− 1.87 ∗ 10−3 ∼ 1. (29)

This is not surprising as for ∆Em→n � Mm, i.e. when the emitted energy is
much minor than mass of the black hole and the condition nmax � m, n is
guaranteed, the thermal approximation is excellent as the back reaction due to
the energy conservation can be neglected. The dependence of the constant of
proportionality α on the BH quantum level m becomes very important when
m, n ∼ nmax, i.e. near the �nal stages of the BH evaporation (but before the
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Planck scale is approached). In that case, in which we label the constant of
proportionality αm, the thermal approximation breaks down as the condition
∆Em→n �Mm is no more guaranteed and one needs to use the correct formula
(28). An intermediate case can be considered too, i.e. when it is nmax ∼ n� m.
In that case, eq. (29) can be used even if the condition ∆Em→n � Mm is not
guaranteed and the thermal approximation breaks down. On the other hand, eq.
(23) shows that transitions in which n � m are highly improbable. Inserting
the result (28) in eq. (23) we �x the probability of emission between the two
levels m and n as

Γm→n = αm exp−
{

∆Em→n

[TE(ω)]m→n

}
= αm exp [−2π (n−m)] =

=
{

1−exp−[2π]
1−exp[−2π(nmax−m+1)]

}
exp [−2π (n−m)] .

(30)

From the quantum mechanical point of view, one can physically interpret Hawk-
ing radiation like energies of quantum jumps among the unperturbed levels (9)
[8, 10, 11, 12, 13].

It might be a bene�t for the reader to rewrite eq. (30) in terms of ω and M
using nmax = 2M2 and 2M2 −m = 2(M − ωm)2. One gets:

Γm→n =

{
1− exp− [2π]

1− exp [−4π(M − ωm)2 + 2π]

}
exp [−2π (n−m)] . (31)

Eq. (31) can be useful when exploring n = m + 1 expressions throughout the
spectrum as a function of ωm/2M .

The analysis in this work is strictly correct only for n � 1, i.e. only for
excited BHs. This is the reason because we assumed an emission from the
ground state to a state with large n in the discussion. On the other hand,
a state with large n is always reached at late times, maybe not through a
sole emission from the ground state, but, indeed, through various subsequent
emissions of Hawking quanta.

Conclusion remarks

Assuming the unitarity of BH quantum evaporation [21, 22, 23, 24, 31, 32, 33,
34, 35] and considering the natural correspondence between Hawking radiation
and BH QNMs, in a �Bohr-like model� for excited BHs that we recently discussed
in a series of papers [10, 11, 12, 13], we have found the intriguing result that
the pre-factor of the Parikh and Wilczek probability of emission, although if in
general well approximated by 1, depends on the BH quantum level n. Then,
one gets that the emission of Hawking radiation, in the tunneling framework, is
completely determined by eqs. (3) and (30).
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