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Modular Equations for Ramanujan’'s Cubic Continued Fractio n
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Abstract : In this paper, we establish certain modular equations relat ed to Ramanujan's

cubic continued fraction

g g+q
1+ 1 +

G(q) = jqg < 1

[EnY
+

p—
and obtain many explicit values of G(e "), for certain values of n.
Key Words : Ramanujan cubic continued fraction, theta functions, modu lar equation.

AMS(2010) : 33D90, 11A55

x1: Introduction

Let
9= a+ ¢ ¢+ ¢
G(g) = — ;
@= 3 7 .71 ..
denote the Ramanujan's cubic continued fraction forjgj < 1. This continued fraction was
recorded by Ramanujan in his second letter to Hardy [12]. Cha [11] and Baruah [5] have
proved several elegant theorems foiG(g). Berndt, Chan and Zhang [8] have proved some

general formulas forG(e  ")and H(e ") where

(1:2)

H(:= G( 9
and n is any positive rational, in terms of Ramanujan-Weber classinvariant G, and gx:
Gn:=2 g (g o)

and
1=

‘q P a ) ia=e
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2 B.R.Srivatsa Kumar and G.N.Rajappa

For the wonderful introduction to Ramanujan's continued fr action see [3], [6], [11] and for
some beautiful subsequent work on Ramanujan's cubic contimed fraction [1], [2], [4], [5], [14]
and [15].

In this paper, we establish certain general formulae for evaiating G(g). In section 2 of this
paper, we setup some preliminaries which are required to pre the general formulae. In section
3, we establish certain modular equations related toG(q) and in the nal section, we deduce
the above stated general formulae and obtain many explicit @lues of G(g). We conclude this
introduction by recalling an identity for G(q) stated by Ramanujan.

1 49 |
Y@ AP (1:2)

where . .
— n(n+l) =2 _ (q g )1 . 1:3
(q) - o q (q' q2)l : ( : )

The proof of (1.2) follows from Entry 1 (ii ) and (iii ) of Chapter 20 (6, p.345]).

x2: Some Preliminary Results

As usual, for any complex numbera,
(go:=1
and
Y . .
(@a: = (@ ad); jg< i
n=0
A modular equation of degreen is an equation relating and that is induced by

oF1 3i3L1 _oF1 mm:Lil
n 1.1.4. - 1.1.4. ’
ZFl 212!11 2F1 212111
where 2
2F1(a;b g x) = (@)n (B)n n. xj< 1
no (Onn!
with
(@) :=a(a+l)(a+2)::(a+n 1)
Then, we say that is of n" degree over and call the ratio
Zy
=2
the multiplier, where z; =, F; 3;3;1; andz, =, F1 331,
Theorem 2:1 Let G(q) be as de ned as in (1.1), then
G(9)+ G( @ +2G*( 9G*(q) =0 (2:1)

and
G*(q) +2G*(qP)G(q) G(cf) =0: (2:2)
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For a proof of Theorem 21, see [11].

Theorem 2:2 Let and be of the third and ninth degrees, respectively, with respedo
Let m = z;=z3 and m®= z3=z. Then,

2 1=4

. @ ) * 20 )2 ' 3m .
) Y Toa ) @ a ) me (23)
and
1=4 1=4 1=4
) @ ) @ oy ) me |

For a proof, see [6], Entry 3 ii ) and (xiii ), pp. 352-353.

Theorem 2:3 Let , , and be of the rst, third, fth and fteenth degrees respectively.
Let m denote the multiplier connecting and

and let m° be the multiplier relating and .
Then,
1=8 1=8 1=8 r—
- @ Ha ) @ Ha ) _ m .
X Taa ) @ e T w @9
and
1=8 1=8 1=8 r
. @ Ha ) @ Ha ) _ m . :
W faa ) @ oa )y - om @9

For a proof, see [6], Entry 11 iii ) and (ix), p. 383.

Theorem 2:4 If , and are of degrees 3, 7 and 21 respectivelyn = z;=z3 and m°= z,=z,,

then
0) N € S € N N ¢ S ¢ S
@ Hx ) @ Har )
_( i )
@ H ) **° S D T A e .
2 a )a ) 1+ + a a ) = mm (2:7)
and
iy — e @ e e )
@ Ha ) @ Ha )
_( i )
@ e ) *® S ¢ A T R - I .
@) YT taoa ) Tam @9

For a proof, see [6], Entry 13 ¢) and (vi), pp. 400-401.
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x3: Modular Equations

Theorem 3:1 Let

(@) (D () (o)
= d =
= (o (® ™ °TFE(d(®

then, r r !
RS+ pl— 8=0: (3:1)
RS ' '

T| 0

R
—+
S

Proof From (1.2) and the de nition of R and S, it can be seen that
B3(A3+1)R*= A3(B3+1) (3:2)

and
c3B3+1)s*= B3(C®+1); (3:3)

whereA = G( );B =G( ¢?)and C = G( ).
On changingqto ¢ in (2.1), we have

G(a*) + G( ) +2G*( ¢’)G*(qf) =0 (3:4)
and also changegto qin (2.2), we have
G*( q+2G*d)G( o G(q)=0: (3:5)
Eliminating G(¢?) between (3.4) and (3.5) using Maple,
2(AB)*  4(AB)®+3(AB)?+ AB + A®+ B3=0: (3:6)
Now on eliminating A between (3.2) and (3.6) using Maple, we obtain
8(BR)* 80(BR)®+63(BR)? 5BR + B® 16B°R +72B3R?+7B°%R*
22B°R+2B?+2B’R® B’R* 9BR?+BR®+B+R=0: 3:7)
Changing qto ¢ in (3.6),
2(BC)* 4(BC)®+3(BC)’+BC+ B3+ C3®=0: (3:8)
Eliminating C between (3.3) and (3.8) using Maple,
8B*+7B% 165°B%+72S?B® 80SB®*+ S*B%+2B?S* B?+2B?S 225°B?
+63B2S? 9BS?+ SB  5BS®+ BS*+ S%=0: (3:9)
Finally on eliminating B between (3.7) and (3.9) using Maple, we have

L(R;S)M(R;S)=0;
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where,
L(R;S)=15S°R® 173R*S*+ SR+49S2R? S® 1375*R?+8S*R +705S*R?
137S°R* 8S°R 15S°R3®+8SR* 8SR?+16SR®+705S°R* 155°R2+16S°R  3275°R3
1208°R° + 705R°S* + 15S?R® SR® S®R’ 137R®S*+8R’S* 327R°S® + 49R°sP
+8R4S’ R°s® 15R5S® 8R’S® R8S®  15R®S®+16R’S®  8ROS’+16R®S’+ R’S’
1205°R3® + 15S°R? + 705S°R*  1375°R*+15S°R®* S’R® S°R R®=0

and
M(R;S)= R?S+ RS? 8RS+ R+ S=0:

Using the series expansion oR and S in the above we nd that

L(R;S) =223522+8q 152 8q °%8 2q > 5eq 274 +48q 132 24q 9B+ i

and
M(R;S): q 15:8+ q 3=2 8q 9:8+ q 7:8+ q 3:4+2q l:2+ o
where 1
R = @4_ q5:8+2q29:8+2q21:8+2q13:8+ -
and

S= % + QP+ 2P 2P+ 21+
=

One can see thatq 'L(R;S) does not tend to 0 asq! 0 whereasq *M (R;S) tends to 0
asq! 0. Hence,q M (R;S) = 0 in some neighborhood ofg = 0. By analytic continuation
g 'M(R;S)=01in jg < 1. Thus we have

M(R;S)=0:
On dividing throughout by RS we have the result.

Theorem 32 If

2( oP) 2( of)
R = and S = :
=2 (9 ( 9 q( g (q¥
then 4 4 2 2 ( 3 3)
R S R S 3 R S
- + = + = + = RS — —  + =
S R S R RS S R
3 R S ) 9 - _
3RS == S*g (RS)? + RSP 6=0: (3:10)
Proof Let
2(cP) and Q= 2(c°)

"TE 0 @ 9@ @
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On using Entry 10 (ii )and (iii ) of Chapter 17 in [6, p.122] inP and Q, we deduce

2 2 1=2
Ps z35 )
6 = — and - = ——

Q 2179

Employing these in (2.3) and (2.4) it is easy to see that
@ )2 T_Qe+Py @ Ha ) T_PAP? 1)
@ Ha ) Pz Py " @ ) )

Q2 P2
Multiplying these two, we arrive at
P4 4P2Q%2+ Q*+3Q%2 P*Q?=0:

(3:11)
Changingqto qin the above,

RY 4R%2Q%+ Q*+3Q? R*Q%?=0: (3:12)

On eliminating Q between (3.11) and (3.12), we have
P‘R* 5P*% 12P?2+16P%R%?+4P?R* 11R* 8R® R®8+12R?+4P‘R?

=( 4P%? P*+4R%+ R“)ID 6R4 24R2+8R6+ R8+9

On squaring the above and then factorizing, we have

P* 2P’R?’+R* P*R® P’R*+3P?+3R*=0: (3:13)
Changing g to ¢ in (3.13), we have

Q% 20Q%s?+ S* Q%S? Q%S*+3Q%2+3S%2=0: (3:14)
Eliminating Q between (3.12) and (3.14) and then on dividing throughout by (RS)* and on
simplifying, we obtain the required result.

Theorem 3.3 If

( @) (P ( ) (o9
R:= — and Si= — ;
a=* (9 ( gv®) =2 ( @) ( g%
then
(r _ r _ _ =)
R, 8, RS  Pog 1 s, R, R¥™ s
S2 ' Rz S R RS R S S R
- RS+ = (3:15)
- RS '
Proof Let
() () (@) (q'9)
P=———"" and Q= —/——F—
q (@ (o)

T (@) ()
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On using Entry 11 (ii) and (iii ) of Chapter 17 in [6, p.122] inP and Q we deduce

=) ~ 1=8 and P2 ~ mo 1=2.
Q Q m
Employing (2.5) and (2.6) in the above, it is easy to check tha

@y )T _pey @ ) )T QP+l
@ Ha ) Q P @ e ) T PQ P

Multiplying these two, we obtain
P2+ Q?> 2PQ P2Q+Q=0: (3:16)
Changinggto qin the above
R+ Q?> 2RQ R?Q+Q=0: (3:17)
Eliminating Q between (3.16) and (3.17), we obtain
P2+ R2+(P+R)(1 PR)=0: (3:18)
On Changing q to ¢ in the above
Q%+ S2+(Q+S)(1 QS)=0: (3:19)

Finally, on eliminating Q between (3.17) and (3.19) and on dividing through out by RS)?,
we have the result.

Theorem 34 If

, (@) (o) 5= ¢ ) (a?).

R~ (1) (D ()

then
Vg (4+6X1)y7 +(24+24 X1 +9X2)ys (148 +12x1 +36X2)ys5 + (145 + 252X1)y,

(648+678x; 36Xp+54X3)ys+(2180+360x,+441X, 324X3)y, (1016+2016¢; 396X, 54x3)y:

+81x4 324x3 + 1548x, + 1236x; + 5250 = 0; (3:20)
where
1 R" s"
— n - - - =
Xn =(BRS)" + @R9)" and Yn S + R
Proof Let
3 21 q42
p=g @) @) (¢) (
T @ R GECOE
Using Entry 11 (ii ) and (iii ) of Chapter 17 [6, p.122] inP and Q it is easy to deduce
P 1= p2 1
— = — and — = p—:
Q Q mm?0
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Employing (2.5) and (2.6) in the above, it is easy to check tha

2

(P S)ZPX PQ p2 4P3Q Q2+2PQ P2=0
and ) )
LPXQ) P Q 4PQ 9P°Q?+18P3%Q 9P*=0:
where
(o o )
@ Ha )y

Eliminating x between these two we have
Q*+8Q'P? 4P3Q® 2P*Q* 44P*Q*+24Q°P° 12P'Q+81P%Q*
+72P°Q"  18Q°P® 18Q°P* 36Q°P°+ P®+ Q° 2Q° 12P°Q°
12P3Q% +24Q%P? 4Q°P 36P'Q°® 12PQ’ =0: (3:21)
On changinggto qin the above
Q*+8Q%R? 4R3Q® 2R%Q? 44R*Q*+24Q%R® 12R'Q+81R%Q*
+72R°Q*  18Q°R® 18Q°R* 36Q°R°+ R®+ Q° 2Q° 12R°Q°
12R%Q% +24Q°R? 4Q°R 36R'Q%® 12RQ’=0: (3:22)
Now on eliminating Q between (3.21) and (3.22),
R* 2R® 18P°R2Z+144P'R® 450P°R*+504P°R® 450P*R® 12PR’
12RP 7+ 78R?P® 228R3P°®+226R*P* 228R°P*+78R°P? 18R®P?
+P* 2P®+ P®+81P®R*+ R®+16RP°> 50R?P*
+56R3P3®  50R*P2+16R°P +144P3R7 4RP3*+6P%R? 4PR®
+486R°P% 324R°P7 324R7P° +81R8®P4=0: (3:23)
On changingqto ¢ in the above
Q*+ Q% 20%+ s* 2585+ S8 180852 +144Q7°S®  450Q0S% +504Q°S°
450Q%s®  12QS” 12SQ’ +78S%Q°® 22853Q° +226S*Q* 2283°Q°
+78S%Q? 18358Q?% +810Q8%s* +16SQ° 50S2Q* +56S°Q3
50S%Q? + 16S°Q + 144Q3S’  4SQ%+6Q%S?  4QS°® +486S°Q°
3245°Q’ 3245'Q° +81S%Q* =0: (3:24)

Finally, on eliminating Q between (3.22) and (3.24), on dividing throughout by (RS)® and
then simplifying we obtain the required result.
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Theorem 35 If

(a) (9"
P= ———— and Q= ———=—~
q=* (9®) q’=* (g?h)
then
2 Q 2! p 2 Q 2!
20+(PQ* P tAPQIr27=IS(PQ? 5 o+ § (3:25)
Proof Let
- fCa .
WS )
It is easy to see that
P= M—ZZ and Q= —124
M1 7
which implies
3 M7,
M]_ = ? and M7 = ?: (326)
From Entry 51 of Chapter 25 [7, p.204], we have
9 My 0 My °
MiMo)2+ ——— = —2 + _——= 3:27
(M:M2) (M1M5)2 M M (3:27)
Using (3.26) in (3.27), we deduce that
P8(P4 9)
Mj? = —i (3:28)
On changingqto g’ in (3.28), we have
M 12 _ Q8(Q4 9)
14 Q4 1 *
Thus from the above and (3.28)
12 8(p4 4
Mz PP ONQ* 1), (3:29)
M4 Q%(P* 1)(Q* 9)
From Theorem 3.1(i ) of [9], we have
1 L * m @ L M
LM+W_ i + N +4 W+T (3:30)
where M M
L= 1t and M= 2
M7 M 14
On using (3.26) in L, we obtain
M, *Q M

= and M=_—=:

L = _“
M P M1s
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Employing this in (3.30) and on dividing throughout by ( PQM»=M14)3, we have
6

M2 24 42 M2
Mz p 3P M2
M 14 Q Q M 14

6

Pé 3 Q% =0: (3:31)

Finally, on eliminating M>=M3,4 between (3.29) and (3.31) and on dividing throughout by
(PQ)?, we have the result.

x4: Evaluations of Ramanujan's Cubic Continued Fraction

p__
Lemma 41 Forq=e "3, let

1 (9
An = = :
L)
Then
(i) AnAi=p =1, (4:1)
(i) Ar=1; (4:2)
1
i) H = — 4:3
(iii ) H (o) EW (4:3)
For a proof see [10].
Lemma 4:2 3 A2 Al
BAFAG, + 5 =346 L+ L
"N AZAG, AZ A}
For a proof, see [10].
Lemma 4:3 5 5
3 Aosn An
3(AnAgsn)? + =
( " 25n) (AnAZSn)2 An A25n
+5 A25n 2 +5 An 2+5 A25n 5 An :
n Aosn An Aosn
For a proof, see [10].
Theorem 4:1 If A, is as de ned as in Lemma 4.1, then
0s __s__ 1, r !
@ Ain + AnA16n A A16n T An =8: (4:4)
An A16n A421n An A16n

Proof For proof of (4.4), we use Theorem 3.1 withR(qQ) = Asn=An and S = A1, =Asn.

Theorem 4:2 We have o
Ap=2+ §
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and

A4 = 2 p§

Proof Put n=1=4in (4.4) and using (4.1) we obtain the result.

Corollary 4:1 We have

— 1 p__ p_
=3\ — 2=3
H(e )= —148(292+168 3)77°(73 42 3)
and

p _ _
He ¥1?)= %(292 168IO 3)3(73 + 42IO 3):

Proof On using Theorem 4.2 in (4.3), we have result.

Theorem 4:3 If A, is as de ned as in Lemma 4.1, then

AsnAon 4+ AnAszen 4+ AsnAon 2+ AnAsen ° AgnAsen

2 AnAun
AnASGn A4nA9n AnASGn A4nA9n AnA4n A9nA36n
A4nA9n 3+ AnASGn 3 3 A9nA36n AnA4n A4nA9n + AnASGn
AnAsgn AsnAogn AnAan AognAsen AnAzen  AsnAon
AonAzen 2 AnAs )
ontien 49 nten 6=0: 4.5
AnAgn AognAsen (4:9)

Proof The proof is similar to Theorem 4.1 by applying Theorem 3.2.

Theorem 4:4 We have

q
As= ‘62 33+3"6 6=A%
and 19—
Apeg = p—§46 2+3 3+3 6+6=A,L:

Proof Setting n =1=6 in (4.5) and upon using (4.1), we nd that

)
4 4 2 2
Ag ‘9 Ao=3 . Ag A=z 4220
Aoz Asg Aoz Ag

Since A, is real and increasing inn, we haveAg=A,-3 > 1. Hence

45—
As - P35 3

Aps (4:6)

Again on setting n =2=3 in Lemma 4.2, we have

2 4
3 =3+6 AG + AG'

3(AysAg)? + — > :
2=37%0 (A2=3A6)? Al Al
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On using (4.6) in this, we obtain

9 —p—
Ar3Ag= 2+ 3 4:7)

Finally, on employing (4.6), (4.7) and (4.1) we have the resilt.

Corollary 4:2 We have

and

Proof On using Theorem 4.4 in (4.3), we have the result.

Theorem 45 If A, is as de ned as in Lemma 4.1, then

I
r r !
AsnAosn 2+ AnAioon 2+ AsnAssn + AnA1oon Azsn A1oon N AnAun
AnAioon AsnAssn AnAioon  AanAosp AnAgn A2snA1o0n
r r 3=2 3=2!
AsnAosn + AnAioon + AsnAosn + AnAioon _ Aa2snAioon + AnAgn
AnA1oon AsnAssn AnA1oon AsnAssn AnAaun AzsnAigon
(4:8)

Proof The proof is similar to Theorem 4.1 by using Theorem 3.3.

Theorem 4:6 We have
[ S

R © e+ R —— —
_ 2+p10+ 4 10+10. a pa2 36
A = 2 6 ‘A1=10
and s o S
B 2+ "2 10+10.a " 36 . .
A2:5— 2 6 _A5:21

p = p

— Pp— _
wherea=(18+4 10)( 4 10+10)+60+20 10

Proof Setting n =1=10 in (4.8) and upon using (4.1), we nd that

x2+i2 4 x+ 1 4=0;
X X

where x = A10=A,=5. Since A, is real and increasing inn, we have A1p=A,-5 > 1. Hence we
choose

X + Ez2+ pf):
X

On solving q

2+pF)+ 4I 10+10 : (4:9)
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Put n =2=5in Lemma 4.3, we have

3 AlO 3 A2=5
3(Az=5A10)° + =
(Az=sA10) (A2=5A10)2 Az=s A1o
( 5 ,)
45 A . Ass 45 A Az=s
A= Ao Ao=s A1o
On employing (4.9) in this, we obtain
s
I ¢ —
a az 36
Az=sA10 = — % (4:10)
— Pp— —
wherea = (18 +4 P 10)( 4 10+10)+60+20 P 10. On using (4.9) and (4.10) we have the

result.

Theorem 4:7 If A, is as de ned as in Lemma 4.1, then

" #
4 An 2 A49n 2 4
2+2(AnAsn) A A +3(AnAgn)" +3
49n n
2 " An 2 A49n 2#
=5(AnA + — : 4:11
( n 49n) A49n An ( )

Proof The proof is similar to Theorem 4.1 by applying Theorem 3.5.

Theorem 4:8 If A, is as de ned as in Lemma 4.1, then

Vs (4 + 6X1)y7 + (24 +24 X1 + 9X2)y6 (148 +12x1 + 36X2)y5 + (145 + 252 Xl)y4

(648+678x; 36Xp+54X3)ys+(2180+360x,+441X, 324X3)y, (1016+2016¢; 396X, 54x3)y:

+81x4 324x3+ 1548x, +1236x1 +5250=0; (4:12)
where 1
Xm = (3 AnAunAsgn A m 4 : m=1;2;3
m = (3AnAsnAsonAigsn) @A AP Ao
and " "
_ AgwnAien . AnAan ; m=1:2 :8

Ym = AnAgn AsonA1gen

Proof The proof is similar to Theorem 4.1 by applying Theorem 3.4.

Theorem 4:9 We have

pP— S
Ag = ﬁ%ﬁ (a+ a® 14)(9+ 10p 29" = AL,
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and I
p- - 1=4
A= 2 9%10 2 NS
2=7 — 17a+ m - =2
where 1 p 13 2
a= Z(197+18 113} + P— + —:
3 3(197 +18 113)=3 3

Proof On setting n =1=14 in (4.12) and upon using (4.1), we nd that

1 1 1 1 1
8+ = 16 t'+ = +90 tb+ = 244 t5+ = +649 t*+ —
t8 t7 t6 t5 t4

2040 t3+t13 +3134 t2+ti2 4148 t+t1 +10332=0:

. 1 .
wheret = (A,-7A14)%. On setting t + T X we obtain

x® 16x7+82x%  13%°+129x* 10443 +1332x% +864x + 5184 = 0:

On solving this, we obtain

p 13

D —— +
3(197 + 18" 113)1=3

1 —- 2
X=6; =(197+18 113)'*%+ -

3 3
are the double roots and the remaining roots are imaginary. Bice A, is increasing inn, and
solving for (A14=A,-7)?, it is easy to see that

A1s 2 a+t+ pa2 4

A,.r 2 :

wherea is as de ned earlier. On settingn = 2=7 in (4.11) and on using the above, we have the
result.
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Abstract : The object of the present paper is to study the nature of curva ture tensor,
Ricci tensor, scalar curvature and Weyl conformal curvatur e tensors with respect to a semi-
symmetric metric connection on a 3-dimensional trans-Sasakian manifold.We have given an
example regarding it.

Key Words : -Sasakian manifold, -Kenmotsu manifold, cosymplectic manifold, Levi-
Civita connection, semi-symmetric connection, Weyl confo rmal curvature tensor.

AMS(2010) : 53C25

x1: Introduction

The notion of locally ' -symmetric Sasakian manifold was introduced by T. Takahash[14] in
1977. Also J.A. Oubina in 1985 introduced a new class of almésontact metric structures
which was a generalization of Sasakian [13],-Sasakian [11], Kenmotsu [11], -Kenmotsu [11]
and cosymplectic [11] manifolds, which was called trans-Sakian manifold [12]. After him many
authors [4],[5],[10],[12] have studied various type of prperties in trans-Sasakian manifold.

In this paper we have obtained the curvature tensor and alsohe rst Bianchi identity with
respect to a semi-symmetric connection on a 3-dimensionarans-Sasakian manifold. We also
nd out the condition of Ricci tensor to be symmetric under th is connection. We have shown
that the Riemannian Weyl conformal curvature tensor is equd to the Weyl conformal curvature
tensor with respect to semi-symmetric connection and alsogual to the curvature tensor with
respect to semi-symmetric connection when the Ricci tensounder this connection vanishes.

1Received April 12, 2013, Accepted August 2, 2013.
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x2. Preliminaries

Let M" be ann-dimensional (n is odd) almost contact C! manifold with an almost contact
metric structure (; ; ;g ) where is a (1 1)tensor eld, is a vector eld, is a 1-form and
g is a compatible Riemannian metric.

Then the manifold satis es the following relations ([3]):

(2:1) 2(X)= X+ (X); =0;
(22) X)=9(X; ), ()=1
(23)g(X; Y )=9g0XY) (X)) (Y):

Now an almost contact manifold is called trans-Sasakian maifiold if it satis es ([13]):
(2:4) (r x )Y = [9(X;Y) (Y)XT+ [o(XY ) (Y) X I
From (2.4) it follows
2:5) (rx )Y)= g (XY )+ [gXY) (X) (Y),8XY 2 (M)
where ; 2 F(M) and r be the Levi-Civita connection onM ",

A linear connectionr on M" is said to be semi-symmetric [1] if the torsion tensorT of
the connectionr satis es

(26) T(X;Y)= (V)X  (X)Y,
where is a 1-form onM ™ with U as associated vector eld, i.e,
277) (X)=g(X;U)

for any di erentiable vector eld X onM",

A semi-symmetric connectionr is called semi-symmetric metric connection [2] if it further
satis es

(2:8)r g=0.

In [2] Sharfuddin and Hussain de ned a semi-symmetric metre connection in an almost
contact manifold by identifying the 1-form  of [1] with the contact 1-form i.e., by setting

29 TXY)= (Y)X  (X)Y.

The relation between the semi-symmetric metric connectionr and the Levi-Civita con-
nectionr of (M";g) has been obtained by K.Yano [9], which is given by

2:20)r xY=rxY+ (V)X o(X;Y)U:

Further, a relation between the curvature tensor R and R of type (1; 3) of the connections
r andr respectively are given by [7],[8],[9]

(211 R(X;Y)Z = R(X;Y)Z+1M(X;Z2)Y  MY;Z2)X  o(Y;Z)LX + g(X;Z)LY,
where,

(2:12) A(Y;Z)= g(LY;Z)=(r v )Z) (Y) (Z)+ 3 (U)g(Y;2).

The Weyl conformal curvature tensor of type (1; 3) of the manifold is de ned by

(2:13) C(X;Y)Z = R Y)Z + (Y;2)X  (X52)Y +9(Y;2)QX  9(X;Z)QY,
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where,
(2:14) (Y;2)=9(QY;2)=  73S(Y:2)+ gaam=9(Yi2);

where S and r denote respectively the (Q2) Ricci tensor and scalar curvature of the manifold.
We shall use these results in the next sections for a 3-dimeimal trans-Sasakian manifold
with semi-symmetric metric connection.

x3: Curvature tensors with Respect to the Semi-Symmetric Metri ¢ Connection
On a 3-Dimensional Trans-Sasakian Manifold

From (2:5), (2:9) and (2:12) we have
(B MY;2)= g(Y;Z) ( +1) (Y) @)+( + aY;2):
Using (2:12), we get from (31)
382)LY = Y ( +1) (Y) +( + %)Y:

Now using (31) and (3:2), we get from (211) after some calculations

@B RXY)Z = RXY)Z [9(XZ)Y 9o(Y;Z)X]
O(X;Z2)Y g(Y;Z2)X ]+(2 +D[o(X;Z2)Y  9(Y;2)X]
( +10 (X) (2)Y  (Y) (2)X]
( +DlaX;Z2) (Y) 9a(Y;2) (X)]:

Thus we can state

Theorem 3:1 The curvature tensor with respect tor on a 3-dimensional trans-Sasakian
manifold is of the form (3:3).

From (3:3) it is seen that

(3:4) R(Y;X)Z = R(X;Y)Z:

We now de ne a tensor R? of type (0;4) by

(3:5) RAX; Y;Z;V) = g(R(X;Y)Z;V):

From (3:4) and (3:5) it follows that

(3:6) RYY;X;Z; V)= RUX;Y;Z;V):

Combining (3:6) and (3:4) we can see that

(3:7) RYX;Y;Z;V) = RYY; X;V; Z):

Again from (3:3) exchangingX;Y;Z cyclically and adding them, we get

B8 R(X;Y)Z+ R(Y;Z2)X + R(Z;X)Y =2 [9(X;Y )Z+9g(Y;Z)X +g(Z; X )Y]:

This is the rst Bianchi identity with respectto r . Thus we state
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Theorem 3:2 The rst Bianchi identity with respect to r on a 3-dimensional trans-Sasakian
manifold is of the form (3:8).

Let S and S denote respectively the Ricci tensor of the manifold with respecttor andr .
From (3:3) we get by contracting X,
(3:11) S(Y;Z2) = S(Y;Z2)+ g (Y;Z2) (B +1)o(Y;2)+( +1) (Y) (2).

In (3:11)we putY = Z=¢;1 i 3;wherefegis an orthonormal basis of the tangent
space at each point of the manifold. Then summing over, we get

B:12)r=r 24 +1).
From (3:11), we get
(3:13)S(Y:Z) S(Z;Y)= (aY:Z) do(ZY )N=29g(Y;Z2):

But g( Y;Z ) is not identically zero. So S(Y;Z) is not symmetric. Thus we state

Theorem 3:3 The Ricci tensor of a 3-dimensional trans-Sasakian manifold with respect to the
semi-symmetric metric connection is not symmetric.

The Weyl conformal curvature tensor of type (1;3) of the 3-dimensional trans-sasakian
manifold with respect to the semi-symmtric metric connection r is de ned by

(3:14) C(X;Y)Z = R(X;Y)Z + (Y;2)X X;Z)Y + g(Y;2)QX  g(X;Z)QY,
where,

(3:15) (Y;2)= 9g(QY;Z2)= 3S(Y;2)+ L9(Y;2):

Putting the values of S and r from (3:11) and (3:12) respectively in (315) we get

(3:16) (Y;2)=9(QY;2)= (Y;2) g(Y;2)+ 2531g(Y;2) ( +1) (Y) (2):

and,

B17)QY = QY Y+ ZAY ( +1) (Y):
Using (3:3),(3:16) and (3:17), we get from (314) after a brief calculations
(3:18) C(X;Y)Z = C(X;Y)Z:

Thus we can state

Theorem 3:4 The Weyl conformal curvature tensors of the3-dimensional trans-sasakian man-
ifold with respect to the Levi-Civita connection and the sermsymmetric metric connection are
equal.

If in particular S=0; thenr =0, so from (3:15) we get

(3:19) (Y;2)=0:

From (3:19) and (3:14) we get

(3:20) C(X;Y)Z = R(X;Y)Z:

From (3:18) and (3:20) we have
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(3:21) C(X;Y)Z = R(X;Y)Z:

Corollary 3:5 If the Ricci tensor of a 3-dimensional trans-Sasakian manifold with respect to
the semi-symmetric metric connection vanishes, the Weyl adformal curvature tensor of the
manifold is equal to the curvature tensor of the manifold wih respect to the semi-symmetric
metric connection.

x4: Example of a 3-Dimensional Trans-Sasakian Manifold Admitting
A Semi-Symmetric Metric Connection

Let the 3-dim. C! real manifold M = f(x;y;z) : (X;y;z) 2 R%;z 6 0g with the basis
fer;ex e whereer = 28 e, = 28 e3= 28,
We consider the Riemannian metricg de ned by
8
S Lifi=]
g(eiie) = o
- 0 ifi 6

Now we dene a (1;1) tensor eld by (e) = e; (&)= e and (e) =0; and
choose the vector eld = e; and dene a 1-form by (X) = g(X;e3);8 X 2 (M). Then
(e1)= (e2)=0and (e3)=1.
From the above construction we can easily show that
2X)= X+ (X); =0
; X)=9(X; ); ()=1;
gexX; Y )=9X;Y) (X) (Y):

Thus M is a 3-dim. almost contactC* manifold with the almost contact structure ( ; ; ;g ).
We also obtain [e;;e] =0;[e2;e3] = e and [e;;e3] = e1. By Koszul's formula we get

le,€ =¢€3 Ie€ =0; ree€=0;
r61e2=0; r62e2=e3; r63e2=0;
le€= € Iee= € Iee3=0:

Then it can be shown that M is a trans-Sasakian manifold of type (0 1).
Now we de ne a linear connectionr such that

reg =reqg+ (g)e 9(e;g)e8ij =1;23
Then we get

re€=0; ree=0; ree=0;
r61e2=0; r62e2=0; r63eZ:O;
r61e3=0; r62e3=0; r63e3:0:
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If T is the torsion tensor of the connectionr , then we have
TEGY)= (V)X (X)Y and (r xg)(Y;Z)=0;

which implies that r is a semi-symmetric metric connection onM .
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Abstract : Let G(V;E) be a graph with p vertices and g edges. For every assignment
f V(@G !'f 0;1,2,3;:::;q0; an induced edge labelingf : E(G) ! f 1;2;3;:::;q9g is
de ned by

8

2 f+* V) if f (u) and f (v) are of the same parity
Fw=, rwfrw+1

2

for every edgeuv 2 E(G): If f (E) = f1;2;:::;qg; then we say that f is a mean labeling
of G: If a graph G admits a mean labeling, then G is called a mean graph. In this paper,
we prove that the graphs double sided step ladder graph 2S(Tn ); Jelly sh graph J(m;n)
forjm nj 2, Pan(+) Nm; (P2[ kK1) + N2 for k 1; the triangular belt graph TB( );
TBL(n; ;k; ); the edgemC, snake,m 1;n 3 and S;(B(m),)) are mean graphs.
Also we prove that the graph obtained by identifying an edge o f two cycles C, and C,, is a

mean graph form;n  3:

otherwise

Key Words : Smarandachely edge 2-labeling, mean graph, mean labelingJelly sh graph,
triangular belt graph.

AMS(2010) : 05C78

x1: Introduction

Throughout this paper, by a graph we mean a nite, undirected, simple graph. Let G(V; E) be
a graph with p vertices andq edges. For notations and terminology we follow [1].

Path on n vertices is denoted byP, and a cycle onn vertices is denoted byCp: Ki.:m
is called a star and it is denoted bySy,: The bistar By, is the graph obtained from K, by
identifying the center vertices of K1., and K 1., at the end vertices ofK , respectively. By.m
is often denoted by B (m): The join of two graphs G and H is the graph obtained fromG|[ H
by joining each vertex of G with each vertex of H by means of an edge and it is denoted by
G + H: The edgemC, snake is a graph obtained fromm copies ofC, by identifying the
edgevi+1 Vk+2 in each copy ofCp; n is either 2k + 1 or 2k with the edge vyv, in the successive

1Received April 11, 2013, Accepted August 5, 2013.
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copy of C,,: The graph P, P, is called a ladder. LetP,, be a path of length 2n 1 with 2n

the vertices (1;i) and (1;i +1): On each edges;; fori =1;2;:::;n; we erect a ladder withi +1
steps including the edgee; and on each edges; fori = n+1;n+2;:::;2n 1; we erect a
ladder with 2n +1 i steps including the edgee;: The resultant graph is called double sided
step ladder graph and is denoted by 3(Ty,); wherem = 2n denotes the number of vertices in
the base.

A vertex labeling of G is an assignmentf : V(G) I f 0;1;2;:::;qg: For a vertex labeling

f; the induced edge labelingf is de ned by

8

2 M if f (u) and f (v) are of the same parity
FW)= | frwe+t
e
A vertex labeling f is called a mean labeling ofG if its induced edge labelingf : E(G) !
f1,2;:::;qg is a bijection, that is, f (E) = f1;2;:::;qg: If a graph G has a mean labeling,
then we say that G is a mean graph. It is clear that a mean labeling is a Smaranddwely edge
2-labeling of G.

A mean labeling of the Petersen graph is shown in Figure 1.
2

otherwise

14 13

12 15

Figure 1

The concept of mean labeling was introduced and studied by Somasundaram and R.Ponraj
[4]. Some new families of mean graphs are studied by S.K.Vaya et al. [6], [7]. Further some
more results on mean graphs are discussed in [2], [3], [5].

In this paper, we establish the meanness of the graphs doublsided step ladder graph
2S(Tm); Jelly sh graph J(m;n) for jm nj 2; Ph(+) Npm; (P2 [ kK1) + N» for k 1
the triangular belt graph TB( ); TBL(n; ;k; ); the edgemC, snhakem I,n 3 and
St(B(m)(n)): Also we prove that the graph obtained by identifying an edge @ two cycles Cy,
and C, is a mean graph form;n  3:

x2: Mean Graphs

Theorem 2:1 The double sided step ladder grap@S(T,) is a mean graph wherem = 2n
denotes the number of vertices in the base.



24 R.Vasuki and S.Arockiaraj

Proof Let Py, be a path of length 2h 1 with 2n vertices (1;1);(1;2); ;(1;2n) with
2n 1 edgese:;e; ;en 1 Whereg is the edge joining the vertices (1i) and (1;i +1): On

each edgeg;; fori =1;2; ;n; we erect a ladder withi + 1 steps including the edgee; and on
each edgeg;fori=n+1;n+2; ;2n 1;we erect aladder with h+1 i steps including
the edgee;:

(2;1);(22);  1(22n);(3;2);(3;3);  ;(Bi2n 1);(4;3);(4:4);  ;(&2n 2);  (n+l;n);(n+
1;n+1): In the ordered pair (i;j ); i denotes the row (counted from bottom to top) and j de-
notes the column (from left to right) in which the vertex occurs. Dene f : V(2S(Tn)) !
f0;1;2;:::;qg as follows:

f@i;j)=(n+1 D2n 2+3)+ | 1, 1 j 2ni=1;2

f@i;j)=(n+1 D2n 21+3)+j+1 i; i 1 j 2n+2 ;3 i n+1l.

Then, f is a mean labeling for the double sided step ladder graph(Ty,): Thus 2S(Ty,)
is a mean graph.

For example, a mean labeling of $(Ty1) is shown in Figure 2.

0 1
3 4 5 6
10 1 12 3 4 15
21 22 3 24 25 6 27 28
36 37 38 39 40 41 2 43 44 45
.

55 56 57 58 59 60 61 62 63 64

Figure 2

For integers m;n 0 we consider the graphJ(m;n) with vertex set V(J(m;n)) =
fuyv;x;yolf xg;Xx2;¢::0xmg[f v1;¥2;  ;Yngand edge seE(J(m;n)) = f(u;x); (u;Vv); (u;y);
(v;ix); (vsy)al[f (xi;x):i=1;2;  ;mg[f (yi;y):i=1;2;, ;ng: We will refer to J(m;n) as
a Jelly sh graph.

Theorem 2:2 A Jelly sh graph J(m;n) is a mean graph form;n  Oandjm nj 2

Proof The proof is divided into cases following.

Casel m=n:
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Dene alabeling f : V(J(m;n)) !'f 0;1;2;:::;9= m+ n+5g as follows:
f(uy=2;f(y)=0;
f(vVy=m+n+4; f(x)=m+n+5;
f(xij)=4+2(i 1); 1 i m
f(ynes i)=3+2(i 1); 1 i n
Then f provides a mean labeling.
Case 2 m=n+lorn+2
Dene f :V(A(m;n)) !'f 0;1;2;:::;9= m+ n+5g as follows:
f(U)=2é;f(V)=2n+4;f(y)=0;

<

m+ n+5 fm=n+1
f(x)=".
- m+n+4 if m=n+2
8
< : . H
4+2(i 1) 1 i n
f(xi)=. _ _
- 2n+5+2(i (n+1); n+l i m
f(Yner i)=3+2(1 1); 1 i n:

Then f gives a mean labeling. ThusJ(m;n) is a mean graph form;n 0 and jm

For example, a mean labeling of] (6;6) and J(9; 7) are shown in Figure 3.
2

17
6 0

8

10 16

12

Figure 3

nj

2

25
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Let Pn(+) Nm be the graph with p = n+ mand g = 2m+n 1 V(Py(+) Nm) =
fViVa,  VniViiY2,  (Ym@, whereV(Pn) = fviiVva;  ;vad, V(Nm) = fyiiys; ;ymgand
8 9
[ < ) y ; : : : : =
E(Pn(+) Nm)= E(Pn) . (V1:y1); (Vi y2) (V1] Ym) .
(Vn;¥1); (Wn3y2); (Vi Ym): o

Theorem 2:3 P,(+) N, is a mean graph for allnym 1.

Proof Letusdene f : V(Py(+) Np)!'f 1,2;3; ;2m+ n 1g as follows:

f(yi)=21 1,1 i m;
f(v1)=0;
fw)=2m+1+2(i 2): 2 ”;1
. . n 1
f(Vher i)=2mMm+2+2(i 1); 1 i 5

Then, f gives a mean labeling. ThusP, (+) N, is a mean graph fornym  1:

For example, a mean labeling ofPg(+) Ns and P;(+) Ng are shown in Figure 4.

0 11 13 15 17 1 14 12 0 13 15 17

Figure 4

Theorem 2:4 For k 1; the planar graph (P2 [ kK1) + N is a mean graph.

Proof Let the vertex set of P, [ kK1 befz;;z5;X1; X2; ;Xkgand V(N2) = fyi;y.0: We
haveq=2k +5: De ne a labeling f : V((P2[ kK1)+ Np)!'f 1;2; ;2k+5gby

f(y1)=0; f(y2)=2k+5; f(zn)=2
f(zz)=2k+4
f(xij)=4+2(i 1); 1 i k
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Then, f is a mean labeling and henceR, [ kK1) + N, is a mean graph fork 1.

For example, a mean labeling of P, [ 5K 1) + N is shown in Figure 5.

4

Figure 5

Let S = ' ; #g be the symbol representing, the position of the block as give in Figure 6.

Figure 6

Let be a sequence afi symbols ofS; 2 S": We will construct a graph by tiling n blocks
side by side with their positions indicated by : We will denote the resulting graph by TB( )
and refer to it as a triangular belt.

For example, the triangular belts corresponding to sequenes 1 = f#"g; . = f##"#g
respectively are shown in Figure 7.

TB(#":")

TB (#; #;"; #)

Figure 7
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Theorem 2:5 A triangular belt TB( ) is a mean graph for any in S" with the rst and last
block are being# for all n 1.

the bottom vertices of the belt. The graph TB( ) has 2n +2 vertices and 4n +1 edges. De ne
f:V(TB( ) !f 0;1;2;:::;0=4n+1g as follows :

f(u)=4i; 1 i n
f(Uh+1)=4n+1

f(v1)=0

f(vi)=2+4(i 2); 2 i n

Then f gives a mean labeling. ThusTB( ) is a mean graph for alln 1

For example, a mean labeling ofTB( ); TB( ) and TB( ) are shown in Figure 8.

4 8 12 16 17
TB (#;"; #; #)

0 2 6 10 14
4 8 12 16 20 21

TB#HH" #HH
0 2 6 10 14 18
4 8 12 16 20 21

TB (#; # #;#,#)
0 2 6 10 14 18

Figure 8

Corollary 2:6 The graph P2 is a mean graph.

Proof The graph P2 is isomorphic to TB(###:::;#) or TB(";";";:::;"): Hence the
result follows from Theorem 2.5.

We now consider a class of planar graphs that are formed by andgamation of triangular
belts. For eachn 1 and in S" n blocks with the rst and last block are # we take the
triangular belt TB( ) and the triangular belt TB( ); in Sk wherek > 0:

We rotate TB( ) by 90 degrees counter clockwise and amalgamate the last btk with the
rst block of TB( ) by sharing an edge. The resulting graph is denoted byl BL (n; ; k; ),
which has 2(nk + 1) vertices, 3(n + k) + 1 edges with

V(TBL(n; ;k; ) = fuyi;Uso;  Upn+s; U1 Uz,

yU2:n+1 3 V3:1, V3;2; yV3ik 15 V451, Va2, yVak 10:
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Theorem 2:7 The graph TBL(n; ;k; ) is a mean graph for all in S" with the rst and

last block are# and in SK for all k> 0

Proof Dene f : V(TBL(n; ;k; ) !f 0;1,2;:::;3(n+ k) +1g as follows:

f(uyi)=4k+4i; 1 i n
f(Upns1)=4(n+ k)+1

f (Uz1) = 4K

fug)=4k+2+4(i 2); 2 i n+1
f(vai)=4i 4 1 i k

f(vai)=4i 2, 1 i k

Then f provides a mean labeling and hencd BL (n; ;k; ) is a mean graph.

For example, a mean labeling ofTBL (4;#;";";#;2;";") and TBL (5;#";#"; #
is shown in Figure 9.

12 16 20 24 25
8
10 14 18 22
4 6
0 2
16 20 24 28 32 33
12
14 18 22 26 30
8 10
4 6
0 2

Figure 9

#")
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Theorem 2:8 The graph edgenC, snake,m 1;n 3 has a mean labeling.

fork | m:
Case 1l nis odd

Let n =2k+1 for somek 2 Z*: De ne a vertex labeling f of edgemC,, snake as follows:

f(v)=0; f(vpy)=1

f(vip)=2i 2, 3 i k+1

f(Viks1e y,)=n 2 1); 1 i k
f(vi,) = F (Viks2) 1 )5 F(v2,) = T (Viksny 1 )s
f(vip)=n+4+2(i 3); 3 i k+1

f(Vikss i),)=2n 2 2( 1); 1 i k 1
f(Vn,)= n+2
f(vip)="f(vw, )+2n 20 3 j m 1 i n

Then f gives a mean labeling.
Case 2 niseven

Let n =2k for somek 2 Z*: De ne a labeling f of edgemC, snake as follows:

f(vy,)=0; f(vy,)=1;

f(vi,)=2i 2 3 i k+1
f (Vkere iy,)=n 1 20 1); 1 i k 1
fvi)=f(vi, )+n L 2 j m 1 i n

Then f is a mean labeling. Thus the graph edgenC,, snake is a mean graph fom 1 and
n 3

For example, a mean labeling of edge @;-snake and %¢-snake are shown in Figure 10.

1 4 11 16 23

Figure 10
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Theorem 2:9 Let G° be a graph obtained by identifying an edge of two cycles, and C,:
Then G®is a mean graph form;n 3

Proof Let us assume thatm n:
Case 1 mis odd andn is odd

Letm=2k+1;k landn=2I+1;1 1. TheG%hasm+n 2 verticesandm+n 1
edges. We denote the vertices o6° as follows:

V3 Vi +2
V2

N Vk+3

Vik+2 1+2 Vk+2 |

Figure 11

Dene f :V(GY!f 0;1;2;3;:::;0=m+ n 1g as follows:

f(v1)=0; f(vj)=2i 1, 2 i k+1
f(vi)=m+3+2(i k 2); k+2 i k+I
f(vi)=m+n 1 2( k I 1); k+I1+1 i k+2I
f(vi)=m 1 2(i k 21 1), k+21+1 i 2k+2|

Then f is a mean labeling.

Case 2 mis odd andn is even

Letm=2k+1;k landn=2I;1 2:Denef:V(GY!f 0;1,2;3;:::;q=m+n 1g
as follows:
f(v1)=0;f(vj)=2i 1, 2 i k+1
f(vi)=m+3+2(i k 2); k+2 i k+I
f(vi)=m+n 2 2( k | 1); k+I+1 i k+21 1
f(vi)y)=m 1 2(i k 2); k+21 i 2k+2I 1

Then, f gives a mean labeling.

Case 3 m and n are even
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Letm=2k;:k 2andn=2I;:1 2 Dene f on the vertex set of G° as follows:
f(vp)=0;f(vj)=2i 2, 2 i k+1
f(vi)=m+3+2(i k 2); k+2 i k+|
f(i)=m+n 2 2(i k | 1) k+I+1 i k+2I 1
f(vi)=m 1 2( k 2); k+21 i 2k+21 2

Then, f is a mean labeling. ThusGPis a mean graph.

For example, a mean labeling of the graphG® obtained by identifying an edge ofC; and
Cio are shown in Figure 12.

Figure 12
Theorem 2:10 Let fuijviwju; : 1 i ng be a collection ofn disjoint triangles. Let G be the
graph obtained by joiningw; touj+1;1 i n landjoining u; touj+; andvi« ;1 1 n 1

Then G is a mean graph.

Proof The graph G has & vertices and &1 3 edges respectively. We denote the vertices
of G as in Figure 13.

Vi Vo V3 V4

Figure 13

Dene f :V(G)!f 0;1;2;:::;6n 3g as follows:

f(u)=6i 41 i n
f(vi)=6i 6,1 i n
f(wj)=6i 31 i n:

Then f gives a mean labeling and henc& is a mean graph.

For example, a mean labeling ofG when n = 6 is shown Figure 14.
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Figure 14

The graph obtained by attaching m pendant vertices to each vertex of a path of length
2n 1 is denoted by B(m)): Dividing each edge ofB(m)) by t number of vertices, the
resultant graph is denoted by S;(B (m)n)):

Theorem 2:11 The $;(B(m),)) is a mean graph for allm;n;t 1.

Proof Let vi;Vvo;:::; Vo, be the vertices of the path of length 2y 1 and uj. 1; Ui 2;: 15 Uim
be the pendant vertices attached atvi;1 i  2n in the graph B(m),: Each edgev;vi.1 ;1
i 2n 1;is subdivided by t vertices x;; 1;Xi;2;:::;X;x and each pendant edgevju;j ; 1 i

2n;1 j  mis subdivided byt verticesyij. 1;Vij 251515 Vit ¢
The vertices and their labels ofS; (B (m)1)) are shown in Figure 15.

vy X1;1 X1;2 L. X1t Vo
Y1511 Yim; 1 ¥y2;1:1
i1 7R o 2;m; 1
B ey2;2% <M
Y1;1;2
L V1im:
Q12,2 WM 2 y2;1;2 Y2m; 2
y¥2:2;2
Y113t Vo.1- Y2;mit
i1 Y 1met 215t Yo:9- o
e Y1;21t 2;2;t
Ui uiio Uiim uz;1 uz;2 u2;m

Figure 15

Dene f :V(S(B(Mm)m)) 'f 0;1,2;:::5(t+1)2mn +2n  1)g as follows:
8
S (t+1)(m+1)(i 1) ifiisoddandl i 2n 1

f(vi)=
. ;B(t+1)[(m+1)i 1] ifiisevenandl i 2n 1
f(x, )_< t+D)[(m+2)i+m 1]+k ifiisodd,1 i 2n land1l k t
& S+ D[(m+1)i 1]+ k ifiiseven,1 i 2n land1l k t
8
%(t+1)(m+1)(i 1) if i is odd,
(Y ) = +2t+2)(j] 1+ Kk; 1 i 2,1 j mandl k t
Yk 3+ DUM+D(i 2)+1) i iiseven,

+2t+2)(j] 1+ k; 1 i 2n1 j mandl k t
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8
%(t+1)[(m+1)(i 1)+1] if i is odd,

and f (uy; ) = +2t+2)(j 1); 1 i 2nand1l j m
; (t+D[(m+1)(i 2)+2] if iiseven,
+2t+2)(j 1); 1 i 2nandl j m:

Then, f is a mean labeling. ThusS;(B(m),)) is a mean graph.

For example, a mean labeling ofS3(B (4)()) is shown in Figure 16.

Figure 16
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Abstract : Let G = (V;E) be a graph and C = fC;;Cyp; ; Ckg be a partition of color

classes of a vertex setV (G). Then the graph G is a k-colorable complement graph G¢ (with

respect to C) if for all C; and C;;i 6 j, remove the edges betweenC; and C;, and add the
edges which are not inG between C; and C; . Similarly, the k(i)- colorable complement graph
Gfm of a graph G is obtained by removing the edges inhC;i and hCji and adding the missing
edges in them. This paper aims at the study of Special kinds of colorable complements of a
graph and its relationship with other graph theoretic param eters are explored.
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x1: Introduction

All the graphs considered here are nite, undirected and comected with no loops and multiple
edges. As usualh = jVj and m = jEj denote the number of vertices and edges at a graph
G, respectively. For the open neighborhood of a vertew 2 V is N(v) = fu 2 V=uv2 Eg,
the set of vertices adjacent tov. The closed neighborhood isN[v] = N(v) fvg. In general,
we usehX i to denote the sub graph induced by the set of vertices<. If deq(v) is the degree
of vertex v and usually, (G) is the minimum degree and ( G) is the maximum degree. The
complement G, of a graph G de ned to be graph which hasV as its sets of vertices and two
vertices are adjacent inG. if and only if they are not adjacent in G. Further, a graph G is
said to be self-complementary (s.c), ifG = G;. For notation and graph theory terminology we
generally follow [3], and [5].

Let G = (V;E) be a graph and P = fVi;V,; ;Vkg be a partition of V. Then k-
complementG{ and k(i)-complement GE(i)(with respect to P) are de ned as follows: For all
Vi and V;;i & j, remove the edges betwee, andV;, and add the edges which are not inG
betweenV; and V;. The graph G{ thus obtained is called thek-complement of a graphG with
respect toP. Similarly, the k(i)-complement ofGE(i) of a graph G is obtained by removing the
edges inhvii and hv,i and adding the missing edges in them fot & j. This concept was rst

1Received June 13, 2013, Accepted August 10, 2013.



36 B.Chaluvapaju, C.Nandeeshukumar and V.Chaitra

introduced by Sampathkumar et al. [9] and [10]. For more detédl on complement graphs, we
refer [1], [2], [4], [8], [11] and [12].

A graph is said to be k-vertex colorable (or k-colorable) if it is possible to assign one color
from a set ofk colors to each vertex such that no two adjacent vertices havéhe same color. The
set of all vertices with any one color is independent and is déed a color class. Ank-coloring of a
graph G usesk colors: it there by partitions V into k color classes. The chromatic number (G)
is de ned as the minimum k for which G has ank-coloring. Hence, graphG is a k-colorable if
and only if (G) Kk, [7].

We make use of the following results in sequel [6].

Theorem 1:1 For any non-trivial graph G,

degxi) =2 m:

Xi2V

Theorem 1:2(Konig's [5]) In a bipartite graph G, 1(G) = ¢(G). Consequently, if a graphG
has no vertex of degre®, then ((G) = 1(G).

x2: k-Colorable Complement

Let G = (V;E) be a graph. If there exists ak-coloring of a graph G if and only if V(G)
can be partitioned into k subsetsCj; Cy; ; Cx such that no two vertices in color classes of
Ci;i=1;2; ;k, are adjacent. Then, we have the following de nitions.

De niton  2:1 The k-colorable complement graphGS (with respect to C) of a graph G is
obtained by for everyC; and C;, i 6 j, remove the edges betwee@; and C; in G, and add the
edges which are not in a graplG.

De nition  2:2 The graph G is k-self colorable complement graph, iG = Gf.
De nition  2:3 The graph G is k-co-self colorable complement graph, iG. = G .

Lemma 2:1 Let G be ak-colorable graph. Then in anyk-coloring of G, the subgraph induced
by the union of any two color classes is connected.

Proof If possible, let C; and C, be two color classes of vertex seV (G) such that the
subgraph induced byC; [ C; is disconnected. LetG; be a component of the subgraph induced
by C1[ C,. Obviously, no vertex of G; is adjacent to a vertex inV(G) V(Gy), which is assign
the color either C; or C,. Thus interchanging the colors of the vertices inG; and retaining
the original colors for all other vertices, we gets a di erert k-coloring of a graph G, which is a
contradiction.

Theorem 2:1 Let G be a(n;m)-graph. If for every C; and C;, | 6 j, and each vertex ofC, is
adjacent to each vertex ofC;, then m(Gg) = ?.

Proof If for every C, and C;, | 6 j in a (n;m)- graph with hCyi is totally disconnected,
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where Cy is the partition of color classes of vertex seV (G), then by the de nition of k-colorable
complement,m(GS) = ? follows. Conversely, suppose the given condition is not sé ed, then
there exist at least two verticesu and v such that u 2 C; is not adjacent to vertex u 2 C; with
| 8 j. Thus by above lemma, this implies that m(GS) 1, which is a contradiction.

A graph that can be decomposed into two partite sets but not faver is bipartite; three
sets but not fewer, tripartite; k sets but not fewer, k-partite; and an unknown number of sets,
multipartite. An 1-partite graph is the same as an independet set, or an empty graph. A 2-
partite graph is the same as a bipartite graph. A graph that can be decomposed intk partite
sets is also said to bek-colorable. Thatis (Kp) = n, but the chromatic number of complete
k- partite graph (K 1,05 o) = k<n forr; > 2, wherei =1;2; ;k. By virtue of the
facts, we have following corollaries.

Corollary 2:1 Let G be a complete graptK,,; n 1 vertices andm =
(Kn)=n. Then m(G$) = 2.

edges with

n(n 1)
2

Corollary 2:2 Let G be a complete bipartite graphK, .r,; 1 r;  rz, with (Ky ;,) =2 for
n=(ry+ rp)- vertices andm =(ry:rp) edges. Thenm(G§) = ?.

Theorem 2:2 Let G be a pathP, with (P,)=2 ; n 2 vertices. Then
8

m(GS) = Sin 2y if n is even
“X(n 1)(n 3) ifnis odd.

Proof Let G be a pathP, with (P,)=2; n 2 vertices, andC = fC;; C,g be a partition
of colorable class of vertex set oP,. We have the following cases.

Case 1 |If fuq;uy; ;Ut 1;Urg 2 Cq and fvg;vy; Vi 1,19 2 Co with vi v is path of
even length. Thenug;uz; ;u; 1 are adjacent ¢ 2)-vertices, that is deglu;) = (t 2) if
1 i t 1. Similarly, vi;v2; ;v are adjacentto (t 2)- vertices that is degu;) =(t 2)
if2 i t 1,andv; and u; are adjacentto (¢ 1)- vertices in GS. Thus, 2(t 1) +(n

2)(t  2) =2m(G§). By Theorem 1.1, with the fact that n =2t and m(G) = n 1. Hence

m(G$) = %(n 2)2.

Case 2 |If fujg;uy; jUr 1;Uig 2 C1 and fvg;vy; iVisVie1 g 2 Cp with vi vy is path
of even length. Thenuz;uy; ;Ui are adjacent ¢ 1)-vertices, vz; V3; ;Vp are adjacent to
(t 2)- vertices and,v; and u; ; are adjacentto (t 1) - vertices in GS. Thus, t(t 1)+ (t

1Dt 2)+2(t 1) =2m(GS). By theorem 1.1, with the fact that n =2t+1and m(G)=n 1.

Hencem(G%):%(n 1)(n 3).

Theorem 2:3 Let G be a cycleC,; n 3 vertices. Then

w, if (Cn)=2 andn is even.

(n+1)(n 3)

(i) m(G%)=

(i) m(GS) = , if  (Cy) =3 and exactly one vertex is contain in any one
colorable class of a vertex partition set of an odd cycl€, .
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Proof The proof follows from Theorem 2.2, with even cycle ofC, and exactly one vertex
is contain in any one colorable class of a vertex partition seof an odd cycle C,.

Theorem 2:4 Let G be a WheelW,; n 4 vertices andm =2(n 1) edges. Then

M, if (Cn)=4 andn is even.

(n+1)(n 3)

(i) m(G§) =

(i) m(GS) = ,if  (W,) =3 and exactly one vertex is contain in any one
colorable class of a vertex partition set of an odd cycl€, 1 of W,.

Proof By Theorem 2.3 andm(K ) = 0 due to the fact of W, = K1 + C, 1, the result
follows.

Theorem 2.5 Let T be a nontrivial tree with (T)=2. Then

m(G$) = (ryr) n(T)+1:

Proof Let C = fC;;C,g be a partition of colorable class of a treeT with n 2 vertices
andm(T)= n(T) 1. If everyvertexin C; is adjacent to every vertex inC,, that is K,.., with
m(Kr,r,) = r1irp. By denition of G¢ with (T) =2, we have m(G5) = m(K,,r,) m(T).
Thus the results follows.

Theorem 2:6 For any non trivial graph G is k - self colorable complement if and only if
G = P;or 2K»,.

Proof By de nition of k-self colorable complement. It is clear that both G and GS are
isomorphic to P; or 2K, with (P7) = (2K3) = 2. On the other hand, supposeG is k-self
colorable complement, whenG is not isomorphic with P; or 2K,. Then there exist at least
two adjacent verticesu and v in G such that u 2 C; and v 2 C, are in disjoint color classes of
C = fCy;Cogwith (P7) = (2K) = 2. This implies that, u and v are not adjacent in G
or they are in one color classes irG$, that is totally disconnected graph. Thus the graph G
and its colorable complementsGS are not isomorphic to each other, which is a contradiction.
Hence the results follows.

Theorem 2:7 Let G be ak-self colorable complement graph. Thers has a vertex of degree at
n( (G 1),

least 2 (G)

Proof Let G be a (n;m)- graph with G = GS and C = fCy;Cy;  ;Ckg be a partition
of color classes of a vertex seV (G). Suppose, if (G) = k and V(G) is }:E;\rtitioned into
k independent setsCy;C,; ;Ck. Thus, n = jV(G)] = jC1;Cy;  ;Cij = :(:1 iV(G)j
k (G); where (G) is the independence number of a grapl. There fore (G)= k = n= (G).
Also, supposev 2 C;, where C; is a colorable set inC with at most n= (G). Then the sum of
n( (G 1

(G)

the degree ofv in G and G is greater than . This implies that the degree ofv is

n

(G)

1
at least é(n ). Hence the result follows.
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Theorem 2:8 Let G be ak-self colorable complement graph. Then

(k 1@n k) m(G) 2n(n k) + k(k 1):
4 4
Proof Let G be a k-self colorable complement graph andC = fCy;C,; ;Ckg be a

partition of color classes of a vertex selV (G). If jC;j= nyforl t Kk, then the total number
of edges betweerC, and C; in C, | & j, in both the graph G and its colorable complement

graph G¢ is nn;. Since the graphG is k-self colorable complement graptG¢, half of these
& 0 1
) n P P L
edges are not there inG. Hencem(G) @ A nin;: Clearly,  nin; is minimum, when
2 16 16 j
nt =1 for k 1 of the indices. Thus, we have
0 1 0 1

me @"A Ye* laik npn ke
2 2 2

Hence the upper bound follow. To establish thegower boynd, tie graph G being k-self colorable

P 1 K1
complement has at least nin;- edges. So,z[@ A+(k 1)(n k+1)] m(G)and
& 2

the result follows.

Theorem 2:9 For any non trivial graph G is k - co - self colorable complement if and only if
G= Kn .

Proof On contrary, suppose given condition is not satis ed, then there exists at least three
vertices u; v and w such that v is adjacent to both u and w, and u is not adjacent to w. This
implies that an edgee = uw 2 G, and induced subgraphhu; v; wi in G§ is totally disconnected.
Thus E(GS)  E(G.), which is a contradiction to the fact of G, = G$ with (K,) = n.
Converse is obvious.

x3: k(i)-Colorable Complement

Let G =(V;E) be agraphandC = fCy;C,; ;Ckg be a partition of color classes of a vertex
set V(G). Then, we have the following de nitions.

Denition  3:1 The k(i) - colorable complement graprGE(i)(with respect to C) of a graph G
is obtained by removing the edges ihC,i and hC;i and adding the missing edges in them for
16 ).

De nition  3:2 The graph G is k(i)-self colorable complement graph, iG = Gf(i).
De nition  3:3 The graph G is k(i)-co-self colorable complement graph, 5. = fo(i).
Theorem 3:1 For any graph G, m(Gg;,) = w
with complete n- partite graph Ky, .r,:r5: o, OF (Kn)e.

if and only if the graph G is isomorphic
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Proof To prove the necessity, we use the mathematical induction. ket G be a graph with
n =1 vertex. Then (G)=1and m(Gf(i)) = ?. Hence the result follows. Suppose the graph
G with n > 1 vertices. Then the following cases are arises.
Case 1 If the graph G is totally disconnected, that is (K )¢, complement of a complete graph
Kn, then G has a only one color clas<; with  ((K,)¢) = 1. By the de nition of G¢.,, the

(i)’
nin 1)
2

induced subgraph ofhC;i is complete, which form a - edges.

Case 2. If the graph G is complete n- partite graph Ky, .r,,..r ,» then for every two color
classesC| and C; for | & j, and each vertexC, adjacent to each vertex ofC; in complete n-
part'te graph Krl;rz;rs;:::;r n W|th m(Krl;rz;r3;:::;r n) = I'1r2r3 . rn. By the de nltlon Of GS(I)
with G = Ky ,r gm0, We have
0 1 0 1 0 1
r r r
m(GSs) = @ PAL@ PA i+ @ " A drgrargiiing:
2 2 2
0 1

r
where@ ' A s the maximum number edges of induced subgraphC;i if t = 1;2;:::;n, which
2

are complete. This formsu- edges.

Conversely, suppose the grapl® is not isomorphic to completen- partite graph K, ., z:r
or (Kn)c. Then there exist at least three verticesf a; b; @ such that at least two adjacent ver-
tices a and bare not adjacent to isolated vertexc. By the de nition of Gf(i) with (G)=k 2,
which formapath(a b c)or(b a c)oflength 2, which is not a complete, a contradiction.

This proves the su ciency.

Theorem 3:2 Let G be a pathP, with (P,)=2 andn 2 vertices. Then
8
<in2+2n 4P ifnis even

m(G5;)) = . 7
© 3(n 1)(n+3) ifnis odd

Proof Let G be a pathP, with (P,)=2; n 2 vertices, andC = fCy; C,g be a partition
of colorable class of vertex set oP,. We have the following cases.

Case 1 Let C = fCy; C,g be a partition of colorable class ofP,. If fug;uy; iU 1;ug2 Cy
and fvq;vy; iVt 1;vtg 2 Co with vi  u; is path of even length. ThenhC;i and hC,i are
complete in Gg(i) and alsov; u; path have (hn 1) - edges in both the graphG and its k(i)-
colorable complement graphGg;,. Thus, m(G) + t(t 1)=(n 1)+ n(n 2)=4 = m(Gg;,)

and this implies m(G$;,) = %f[n2 +2n  4P.

Case 2 Let C = fCy; C,g be a partition of colorable class ofP,. If fug;uy; iU 1;ug2 Cy
and fvq; vo; Vi 1;tg 2 Co with vi ug+1 is path of odd length. Then hC;i and hC,i are
complete in Gg(i) and alsov; Uui+1 path have (n 1) - edges in both the graphG and its 2(i)-
colorable complement grathg(i). Thus, m(G) + t(t 1)=2+t(t+1)=2=(n 1[L1+(n

3)=8+(n +1)=8] = m(G§;,) and this implies m(G§;,) = :er(n 1)(n + 3).
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Theorem 3:3 Let G be a cycleC,; n 3 vertices. Then

(i) m(Gg(i)) = %[n(n +2)],if (Ch)=2 andn is even.

. 1 . . -
(i) m(Gg(i)) = Zr(n2 +3) ,if (Cn) =3 and exactly one vertex is contain in any one
colorable class of a vertex partition set of an odd cycl€, .

Proof The proof follows from Theorem 3.2, with even cycle ofC, and exactly one vertex
is contain in any one colorable class of a vertex partition seof an odd cycle C,.

Theorem 3:4 Let T be a nontrivial tree with (T) = 2. If C = fCy;C,g be a partition of
colorable class of a treel, then

m(G5y) = %[rz +s’+n 2]
wherejCqj = r and jCyj = s.

Proof Let C = fCy;C,g be a partition of colorable class of a treeT with (T) =2 and
m(T)=n(T) 1=r+ s+01. Tfien by de nition 8f Gﬁ(i), we havehCii and hC,i are complete.
r s
There fore,m(C;)= @ A andm(C,)= @ ~ A:
2 2

Thus, we have
0 1 0 1

m(GS,) = @ r2 A+ @ Z A+ m(T) = %[r(r F1)+ s(s+1) 2L

Hence the result follows.

Theorem 3:5 For any non trivial graph G is k(i) - self colorable complement if and only ifG
is isomorphic with K,.

Proof Let G = K, be a complete graph with (G) = n. Then by the de nition of G‘k:(i),
the induced subgraphhC;i for t = 1;2;:::;n are connected andjC;j = 1 for t = 1;2;:::;n.
Thus Gﬁ(i) = Ky and the result follows. Conversely, suppose given conditio is not satis ed,
then there exists at least two non adjacent verticesu and v in a graph G such that (G) =1
and m(G) = ?. By the de nition of Gf(i), we have (Gf(i)) = 2 with an induced subgraph
hu;vi in Gf;) is connected. Thusm(G) < m (Gg;,), which is a contradiction to the fact of
G= Gf(i).

x4: fG, G, GE(i)g - Realizability

Here, we show theG; Gf; GE(i) - Realizability for some graph theoretic parameter.

Let G be a graph. ThenS  V(G) is a separating set if G S has more than one
component. The connectivity (G) of G is the minimum size ofS V(G) suchthat G S'is
disconnected or a single vertex. For anyk (G), we say that G is k-connected. Then, we

have



42 B.Chaluvapaju, C.Nandeeshukumar and V.Chaitra

Theorem 4:1 Let G be a graph withC = fC;;C,g be a partition of colorable class of a
vertex setV. If hCii and hCpi are (t 1) -colorable with Maxf (Gg); (Gg)g t, then
Min.fk(G); k(G ); k(G )g has at least(t 1) -edges.

Theorem 4:2 Let G be a(n;m)- graph. Then

(i) (GF)=1 if and only if G is isomorphic with K, or (Kn)c OF Krrpra: ory -
(i) (G‘k:(i)) = n if and only if G is isomorphic with K or (Kn)c of Kipirpmrs: ory -

Proof By the de nition of GS and Theorem 2.1, (i) follows. Also by the de nition of Gf(i)
and Theorem 3.1, (ii) follows.

A set M of vertices in a graphG is independent if no two vertices ofM are adjacent. The
number of vertices in a maximum independent set ofG is denoted by (G). Opposite to an
independent set of vertices in a graph is a clique. A clique i graph G is a complete subgraph
of G. The order of the largest clique in a graphG and its clique number, which is denoted by
I (G). Infact (G)= kifand onlyif ! (G) = k. Then, we have

Theorem 4:3 Let G be a nontrivial (n; m)- graph. Then

) (GS,) (G (G
(i) 1(GE) 1(G) !(GY):
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Abstract : In this article, we show that an algorithm for VG of a caterpil lar and proved
that A(m;j;n) is vertex graceful if m; is monotonically increasing, 2 j n, whenn is odd,
1 mz 3andmi<mga, (mj;n)[ Ps3is vertex graceful if m; is monotonically increasing,
2 j n,whennisodd,1 my 3, mi<m2andC,[ Chs«1 is vertex graceful if and
only if n 4.
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x1: Introduction

A graph G with p vertices and g edges is said to be vertex graceful if a labeling : V(G) !
f1,2,3 pg exists in such a way that the induced labelingf* : E(G) ! Z, dened by
f*((u;v)) = f(u)+ f(v)(mod g is a bisection. The concept of vertex graceful ¥ G) was
introduced by Lee, Pan and Tsai in 2005. Generally, if replalg q by an integer m and
fS:E(G)! Z, alsois a bijection, such a labeling is called &marandachely vertexm-labeling
Thus a vertex graceful labeling is in fact a Smarandachely wveex g-labeling.

All graphs in this paper are nite simple graphs with no loops or multiple edges. The
symbolsV (G) and E (G) denote the vertex set and edge set of the grapls. The cardinality of
the vertex set is called the order ofG. The cardinality of the edge set is called the size 0G. A
graph with p vertices and g edges is called a; g) graph.

x2: Main Results

Algorithm 21

1. Letvy;v, v, be the vertices of a path in the caterpillar. (refer Figure 1).
2. Let vj be the vertices, which are adjacent tov; for1 i n and for anyj.
3. Draw the caterpillar as a bipartite graph in two partite sets denoted as Left (L) which

1Received April 10, 2013, Accepted August 15, 2013.
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contains vy ; Voj ; Va; Vy; ; and for any j and Right (R) which contains vy ; va; Vs ; Va; and
for any j. (refer Figure 2).
4. Let the number of vertices inL be x.

5. Number the vertices inL starting from top down to bottom consecutively as 1;2; ;X.
6. Number the vertices in R starting from top down to bottom consecutively as (x +
1); ;q. Note that these numbers are the vertex labels.

7. Compute the edge labels by adding them modula.
8. The resulting labeling is vertex graceful labeling.

Vi V, V, Vs
O 13 @ 150 (15) @

Vs
5 18 3
9/10/11\12\ 14 lﬁA OA& 4/5/ 6

Vu V11 V12 V14 V21 V31 V32 V41 VAz V43 V51 V52 V53 V54 V55
® @ 1 ay @ 13 @ & © 18  @an @ @9 (0

Figure 1: A caterpillar

Figure 2: A caterpillar as bipartite graph

Denition  2:2 The graph A(m;n) obtained by attachingm pendent edges to the vertices of
the cycle C, is called Actinia graph.

Theorem 2:3 A graph A(m;j;n); m; is monotonically increasing with di erence one, 2 j n
is vertex graceful,1 m,; 3 whenn is odd.

Proof Let the graph G = A(mj;n); m; be monotonically increasing with di erence one,
2 j nmnbeoddwithp=n+mp(mzt) my(PLE);my = mp 1 vertices andqg = p
edges. Letvy;vo;vs; ;Vn be the vertices of the cycleC,,. Let v; (j =1:;2;3; ;n) denote
the vertices which are adjacent tov;. By de nition of vertex graceful labeling, the required



46 P.Selvaraju, P.Balaganesan and J.Renuka

vertices labeling are

8 .
i1 i . ..
<4 ma+ U +1;1 0 n; s odd,
Vi = 2 . _ _
Lm0 1S D g Loy Lo n; i iseven
n 1 : : ; . . . ..
2(72) mp+ O 4 Ll my+ L2 4 By my+ i Liis odd;
Vi =i 2 . .
?(—2) me+ 2 + 5+ 1 0 ma+i Liiseven

The corresponding edge set labels are as follows:

Let A=fg=vivisz1=1 i n 1] e = vyvig; where

#
2 i(i +1)

(me+1)(n+1) ~n 1 + my(i 1)+T+1 (mod @)

2 2
forl i nB=feg =vivyy=1 i ng; where
(n 1) (n+1) . i 1 (i+1) .

6 = o Mpt o +(i 1) mp+ —= 4+ j+1 (modq)
ford i nandiisodd,j=1;2; ;mo+i 1.C=fe =vivy=1 i ng, where

2 .

+
o= m+n e L U 20m i siv) (modg)
ford i nandiiseven,j=1;2; me+ i 1

Hence, the induced edge labels of G are q distinct integers. Herefore, the graphG =
A(m;;n) is vertex graceful forn is odd, andm 1

Theorem 2:4 A graph A(m;;n) [ P3;m; be monotonically increasing,2 j n is vertex
graceful, 1 my 3;nis odd.

Proof Let the graph G = A(m;;n)[ Ps;m; be monotonically increasing ,2 | n,
nis odd with p= n+3+ mn% mlw;ml < m, vertices andqg = p 1 edges.
Letvi; Vo, V3; ;Vn be the vertices of the cycleC,. Let v;j (j = 1;2;3; ;n) denote the
vertices which are adjacent tov;. Let ui;u;;us be the vertices of the pathP3. By de nition of
vertex gra80eful labeling, the required vertices labeling e

_<iTl m2+i+Tl +1;1 i n;iisodd;
Vi_3(m +1) 0 4 012,02 ol 4 L4210 i n:iis even
<n 1 n+1 i1 i3 L it L o4 o i :
_ ST Mt A met R k42l 0 niiis odd,
VIJ B | 2 +i 2 +i+-+2.1 i
o Mpt 2 p 2 i n;iiseven
=201 mo+ 0l 4 g j =1:3andu, =
=0 ) ! > =1, 2= P

The corresponding edge labels are as follows:

Let A=fg=vivisz1=1 i n 1[ e, = vyvig; where
2
+mp(i 1)+

#

(m2+1)(n+1)+ n 1 +3 (modg)

2 2

i(i +1)
2

e =




Vertex Graceful Labeling-Some Path Related Graphs 47

forl i mB=fg =vvj=1 i ng, where
+ i i+
g = u m2+M +(| 1) m2+!' +(I 1)+j+3 (modq)
2 2 2
ford i nandiisodd,j=1;2; ;me+i L:C=fe =vivy=1 i ng, where
" , #
N .
o= m+n e L L 20msi psivje2 (modg
fork i nandiiseven,j=1;2 ime+ i 1:D = fe = ujuj4 fori =1;2g, where
+
= '”Zl(m2+n Lyit1 (modg)

for i = 1;2: Hence, the induced edge labels o& are g distinct integers. Therefore, the graph
G = A(m;;n) [ Ps is vertex graceful forn is odd.

De nition  2:5 A regular lobster is de ned by each vertex in a path is adjacento the path P.
Theorem 2:6 A regular lobster is vertex graceful.

Proof Let G be a 1- regular lobster with 3h vertices and g = 3n 1 edges. Let
V1, V2, V3, ;Vnh be the vertices of a pathP, . Let v; be the vertices, which are adjacent
to v, and vl; adjacentto v, for1 i n andn is even .The theorem is proved by two cases.
By de nition of Vertex graceful labeling, the required vert ices labeling are

Case 1 g is even

<3 1.1 i niisodd
Vi = )
I :83(n2+ I);1 i n;iiseven
23(n+7%|)1:1 i n;iisodd
Vi1 i
->¥+3:1 i n;iiseven
<¥+2;1 i n;iis odd
Viz = +
I 3(n2 1) 1;1 i n;iiseven
The corresponding edge labels are as follows:
Y
LetA=fe =vivis1=1 i n 1g,whereg = L220+1 (modqg)forl i n 1;
. 3(n+2i) . .
B=fei1=vVvivii=l i ng;whereg; = — 1 (modg)forl i nandiis odd,
. 3(n +2i) . .
C="feg1 = vivii=1 i ng, where g; = — (mod ) for 1 i n and is even,
. 3(n +2i) . .
D =fe, = vj1vi2=1 i ng; whereeg, = — (modg)forl i nandiis odd,
. 3(n +2i) . .
E =fez=vvi2=1l i ng, whereg; = — 1 (modg forl i nandis

even.
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Case 2 nis odd

8 _.
3 1 . .
EI—;1 i n;iisodd;
Vi_->M'l i n;iiseven
> ; ;
8 .
<31 § ngiis odd;
Vit = 3]
I -3(|22)+3;1 i n;iiseven
8
<¥+2;1 i n;iis odd;
Vio = i
2 :M+1;1 i n;iiseven
The corresponding edge labels are determined bA = fe = vjvjs1 =1 i n 1g;
3(n+2i+1) . .
where g = — (mod qg) for 1 i n 1,B=fe;=vvi=1l i ng; where
Y
€1 = w‘%l)l (modg)forl i nandiisodd,C=fe;=vivi1=1 i ng, where
+2i)+
€1 = w (modqg)forl i nandisevenD = fey=vj1vi;=1 i ng; where
+2i)+
€o = w (modqg)forl i nandiisodd E = fe,=vlvi,=1 i ng; where
3(n+2i 1 . . .
€ = % (modg)forl i n andis even. Hence the induced edge labels &f

are g distinct edges. Therefore, the graphG is vertex graceful.

Theorem 2:7 C,[ C,+1 is vertex graceful if and only ifn 4.

Proof Let G= C,[ Cp+1 with p=2n+1 vertices and g=2n + 1 edges. Suppose that
the vertices of the cycleC,, run consecutivelyuy; uy; ;Un with up joined to u; and that the
vertices of the cycleCn+1 run consecutively vi; vy; iVn+1 With vp41 joined to vy.

By de nition of vertex graceful labeling

(8 up = L;up = 2;u; = 2i fori =2;3; ;bn+1)=2c;u; = 2(n j)+3for j =
b(n+3)=2c; ;n 1

(Hvi=2;v,=2n 1and

. . n+1 3t

(i) Vag+t =2n 4t 6s+7;t=0;1;2;s=1;2; ;b(n+1 3t)=6cif s= ch< 1
then no s.

(i) Wite (0)=0; (1)=4; (2)=2; (0)=0; (1)=3= (2

Vh+1 35 t = 2N  6S (t);t=0;1,2,s=0;1, ;bLG(t)c: If s= bLG(t)c< 0
then no s value exists.
(iii ) We consider as thatv; to f (i); and suppose thatn 2= mod(3);0 2: There

are 2+ vertices as yet unlabeled. These middle vertices are labaleaccording to congruence
class of modulo 6.
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Congruence class

f(n+2)/2)=n+2,f(n+4)2)=n+3,
f(n +6)/2) =n+ 4
f(n+1)/2)=n+2,f(n +3)/2)=n+ 3,
f((n + 5)/2) =n + 4, f((n + 7)/12) = n+5
n=2(mod6) f(n+2)/2)=n+2,f(n+4)/2)=n+3
f((n + 1)/2) = n+4, f((n+3)/2) = n+3,
f((n+5)/2) = n+2

f((n + 2)/2) = n+5, f((n+3)/2) = n+4,
f((n+4)/2) = n+3, f(n+5)/2) = n+2
n=4(mod6) f((n + 3)/2) = n+3, f((n+5)/2) = n+2

To check that f is vertex graceful is very tedious. But we can give basic ideaThe C,

cycle has edges with label§2k+2=k=4;5; ;n 1g[f 0;3;5;7g. In this case all the labeling
of the edges of the cycleC,+1 run consecutivelyviv, as follows:

n=0 (mod 6)

n=1(mod6)

n=2(mod6)

n=4(mod6)

1,2n 1;2n 3);(2n 11;2n 13;2n 15); ;(2n+1 12k;2n 1 12;2n 3 12k); ;
middle labels, ;(2n+3 12;(2n+5 12k;(2n+7 12); ;(2n 21,2n 192n 17);(2n
9;2n  7;2n 5);2: The middle labels depend on the congruence class modulo andeabest
summarized in the following table. If n is small the terms in brackets alone occur.

Congruence class

n = 0(mod6) (12;9);6; 4, 7,(13;15,17)
n = 1(mod6) (13;11);6;4;7;(13; 15;17)
n = 2(mod6) (11);6;4,7;(9)

n = 2(mod6) (13);7;4,6;(9;11)

n = 4(mod6) (15;9);6;4;7(11; 13)

n = 4(mod6) (9);7;6;4(11,13,15)

Thus, all these edge labelings are distinct.

References

[1] J.A.Gallian, A Dynamic Survey of graph labeling, The Electronic journal of Coimbino-
torics, 18 (2011), #DS6.

[2] Harary F., Graph Theory, Addison Wesley, Mass Reading, 1972.

[1I3 Sin-Min Lee, Y.C.Pan and Ming-Chen Tsai, On vertex- graeful (p,p+1) Graphs, Congres-
sus Numerantium, 172 (2005), 65-78.

[4] M.A Seoud and A.E.I Abd el Magsoud, Harmonious graphs,Utilitas Mathematica, 47
(1995), pp. 225-233.

[5] P.Balaganesan, P.Selvaraju, J.Renuka,V.Balaji, On veex graceful labeling, Bulletin of
Kerala Mathematics Association, Vol.9,(June 2012), 179-184.



International J.Math. Combin. Vol.3(2013), 50-55

Total Semirelib Graph

Manjunath Prasad K B

(Sri Siddaganga College for Women, Tumkur, India)

Venkanagouda M Goudar
(Department of Mathematics, Sri Siddhartha Institute of Te chnology, Tumkur,Karnataka, India)

E-mail: meenakshisutha.43@gmail.com, vmgouda@gmail.co m

Abstract : In this paper, the concept of Total semirelib graph of a plana r graph is in-
troduced. We present a characterization of those graphs whose total semirelib graphs are
planar, outer planar, Eulerian, hamiltonian with crossing number one.

Key Words : Blocks, edge degree, inner vertex number, line graph, regioms Smarandachely
semirelib M -graph.

AMS(2010) : 10C75, 10C10

x1: Introduction

The concept of block edge cut vertex graph was introduced by ¥nkanagouda M Goudar [4 ].
For the graph G(p,q), if B = ui;uz; ;ur :r 2 is a block of G, then we say that the vertex
u; and the block B are incident with each other. If two blocks B; and B, are incident with a
common cutvertex, then they are adjacent blocks.

All unde ned terminology will conform with that in Harary [1 ]. All graphs considered here
are nite, undirected, planar and without loops or multiple edges.

The semirelib graph of a planar graph G is introduced by Venkaagouda M Goudar and
Manjunath Prasad K B [5] denoted by R¢(G) is the graph whose vertex set is the union of set
of edges, set of blocks and set of regions of G in which two veces are adjacent if and only if
the corresponding edges of G are adjacent, the correspondjredges lies on the blocks and the
corresponding edges lies on the region. Now we de ne the totaemirelib graph.

Let M be a maximal planar graph of a graphG. A Smarandachely semirelibM -graph
TM (G) of M is the graph whose vertex set is the union of set of edges, set blocks and set of
regions ofM in which two vertices are adjacent if and only if the correspading edges ofM are
adjacent, the corresponding edges lies on the blocks, the mesponding edges lies on the region,
the corresponding blocks are adjacent and the graplenM . Particularly, if G is a planar graph,
such aTM (G) is called the total semirelib graphof G denoted, denoted byTs(G).

The edge degreeof an edge uv is the sum of the degree of the vertices of u and v.oFthe
planar graph G, the inner vertex number i(G) of a graph G is the minimum number of vertices

1Received March 8, 2013, Accepted August 18, 2013.
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not belonging to the boundary of the exterior region in any enbedding of G in the plane. A
graph G is said to be minimally nonouterplanar if i(G)=1 as was given by Kulli [4].

x2: Preliminary Notes

We need the following results to prove further results.

Theorem 2:1([1]) If G is a (p,q) graph Whose)\(/ertices have degre# then the line graph L(G)
has q vertices andqg_edges, whereg. = g+ > d? edges.

Theorem 2:2([1]) The line graph L(G) of a graph is planar if and only if G is planar, ( G) 4
and if degv=4, for a vertex v of G, then v is a cutvertex.

Theorem 2:3([2]) A graph is planar if and only if it has no subgraph homeomorplti to K5 or
K3;3.

Theorem 2:4([3]) A graph is outerplanar if and only if it has no subgraph homeomrphic to
K4 or K2;3.

x3: Main Results

We start with few preliminary results.

Lemma 3:1 For any planar graph G,L(G) Rs(G) Ts(G).
0 1

n
Lemma 3:2 For any graph with block degreen;, the block graph has@ 'A edges.
2

Denition  3:3 For the graph G the block degree of a cutvertey; is the number of blocks
incident to the cutvertexv; and is denoted byn;.

In the following theorem we obtain the number of vertices andedges of a Total semirelib
graph of a graph.

Theorem 3:4 For any planar graph G),( the totgt(l semirelib graphTs(G) whose vertices have

degreed;, has g+ r + b vertices and% o + g edges where r and b be the number of
regions and blocks respectively.

Proof By the de nition of Ts(G), the number of vertices is the union of edges, regions and
blocks of G. HenceTs(G) has (Xq + r + b) vertices. Further by the Theorem 2.1, number of
edges inL(G)isq = q+ = d?. Thus the number of edges inTs(G) is the sum of the
number of edges inL (G), the number of edges bounded by the regions which is q, the maber
of edges lies on the blocks is g and the number the sum of the block degree of cutvertices
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P
which is (') by the Lemma 3.2. Hence
1 X ) X X 1 X ) X X
E[Ts(G)] = a+ 5 d"+aq+ g+ 2')= > "+ g+ 2'):
Theorem 3:5 For any edge in a plane graph G with edge degreg is n, the degree of the
corresponding vertex inTg(G) is i). n if g is incident to a cutvertex and ii). n+1 if & is not

incident to a cutvertex.

Proof Suppose an edge; 2 E(G) have degree n. By the de nition of total semirelib graph,
the corresponding vertex in Ts(G) has n-1. Since edge lies on a block, we have the degree of
the vertexisn 1+1= n. Further, if ¢ 6 b 2 E(G) then by the de nition of total semirelib
graph, 8¢ 2 E(G), & is adjacent to all verticesg of Ts(G) which are adjacent edges of; of
G. Also the block vertex of Ts(G) is adjacent to g . Clearly degree ofe isn + 1.

Theorem 3:6 For any planar graph G with n blocks which areK, then Ts(G) contains n
pendent vertices.

Theorem 3:7 For any graph G, Ts(G) is nonseparable.

Proof Let e;;e; ieh 2 E(G), bh = e = e ;b = e, be the blocks and
ri;ro; Tk be the regions of G. By the de nition of line graph L(G), e1;ey; ;e, form
a subgraph without isolated vertex. By the de nition of Ts(G), the region vertices are adjacent
to these vertices to form a graph without isolated vertex. Snhce there are n blocks which are
K, we have eachb, = e;;bp = ey; by = e, are adjacent to e;; ey; :en. Hence semirelib
graph Rg(G) contains n pendent vertices. By the de nition of total semirelib graph, the block
vertices are also adjacent. Hencds(G) is nonseparable.

In the following theorem we obtain the condition for the planarity on total semirelib graph
of a graph.

Theorem 3:8 For any planar graph G, the T¢(G) is planar if and only if G is a tree such that
(G 3

Proof SupposeRs(G) is planar. Assume that 9v; 2 G such that degy 4. Suppose
degy = 4 and e;;e;; es; e, are the edges incident tov;. By the de nition of line graph,
e1; e; e3; e4 form K4 as an induced subgraph. InTs(G), the region vertex r; is adjacent with all
vertices of L (G) to form K5 as an induced subgraph. Further the corresponding block veices
by ; by; bs; ;b 1 of of blocksB1;B>;B3; ;Bn in G are adjacent to vertices ofK 4 and the
corresponding blocks are adjacent. ClearlyTs(G) forms graph homeomorphic toKs. By the
Theorem 2.3, it is non planar, a contradiction.

Conversely, Supposedegv 3 and let e;; e;; €3 be the edges ofG incident to v. By the
de nition of line graph e;;ey; e3 form K3 as a subgraph. By the de nition of Ts(G), the region
vertex r; is adjacent to e;; ep;e; to form K4 as a subgraph. Further, by the Lemma 32, the
blocksby; by; bs; ;b of T with n vertices such that by = e;; b, = ey; by, 1= e, 1 becomes
p 1 pendant vertices.By the de nition of Ts(G), these block vertices are adjacent. Henc&s(G)
is planar.
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In the following theorem we obtain the condition for the outer planarity on total semirelib
graph of a graph.

Theorem 3:9 For any planar graph G, Ts(G) is outer planar if and only if G is a path P3.

Proof SupposeTs(G) is outer planar. Assume that G is a tree with at least one vertex
v such that degv= 3. Let e;;e;;e3; be the edges ofG incident to v. By the de nition of line
graph e;; e;; 3 form K3 as a subgraph.InTs(G), the region vertex r; is adjacent to e;; e;; €3 to
form K4 as induced subgraph. Further by the lemma 3.2 = e1;b» = e; T
becomes n-1 pendant vertices irRs(G). By the de nition of Tg(G), i[Rs(G) 1], which is
non-outer planar ,a contradiction.

Conversely, Suppose G is a patiP;. Let e;;e; 2 E(G). By the de nition of line graph
L[Ps](G) = P,. Further by de nition of Ts(G);b, = e;;b, = e, forms and the vertices of line
graph form C4 . Further the region vertex r; is adjacent to all the vertices of Ts(G) which is
outer planar.

In the following theorem we obtain the condition for the minimally non outer planar on
total semirelib graph of a graph.
Theorem 3:10 For any planar graph G, Ts(G) is minimally non-outer planar if and only if G
is Ps.

Proof SupposeTs(G) is minimally non-outer planar. Assume that G 6 P,4.Consider the
following cases.

Case 1 Assume thatG = Kq,, for n 3. Then there exist at least one vertex of degree at
least 3. Supposealegv= 3 for any v 2 G. By the de nition of line graph, L[K1.3] = K3. By the
de nition of Ts(G),these vertices are adjacent to a region vertex i, which form K 4. Further the
block vertices formK 3 and it has e;; e;; e3 as its internal vertices. Clearly, Ts is not minimally
non-outer planar, a contradiction.

Case 2 SupposeG 6 Ki.,. By the Theorem 3.9, Ts(G) is non-outer planar,a contradiction.

Case 3 Assume that G = Pp,for n 5. Supposen = 5. By the de nition of line
graph,L[Ps](G) = P4 and e;e; are the internal vertices of L(G). By the de nition of T,
the region vertex ry is adjacent to all vertices of L(G) to form connected graph. Further the
block vertices are adjacent to all vertices ofL (G). Clearly the vertices e,; e3 becomes the inter-
nal vertices of Ps. Clearly i[Ts] = 2, which is not minimally nonouterplanar, a contradictio n.

Conversely, supposeG = P4 and let e;;e;63 2 E(G). By the de nition of line graph,
L[P4] = P3. Let r; be the region vertex in Ts(G) such that r; is adjacent to all vertices of
L(G). Further the blocks b are adjacent to the verticesg for i = j. Clearly i[Ts(G)] = 1.
Hence G is minimally non-outer planar.

In the following theorem we obtain the condition for the non Eulerian on total semirelib
graph of a graph.

Theorem 3:11 For any planar graph G, Ts(G) is always non Eulerian.
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Proof We consider the following cases.

Case 1 Assume that G is a tree. In a tree each edge is a block and hendg = e;;b, =
€] ibh 1= e, 186y 12 E(G) and 8, 1 2 V[Ts(G)]. In Ts(G), the degree of a block
vertex by is always even, but the pendent edges o6 becomes the odd degree vertex ifs(G),
which is non Eulerian.

Case 2 Assume that G is K, -free graph. We have the following subcases of Case 2.

Subcase 1 SupposeG itself is a block with even number of edges. Clearly each edge G is of
even degree. By the de nition of Ts(G), both the region vertices and blocks have even degree.
By the Theorem 2.3,e = b 2 V[Ts(G)] is of odd degree, which is non Eulerian. Further if G is
a block with odd number of edges, then by the Theorem 3.3, each = b 2 V[Ts(G)] is of even
degree. Also the block vertex and region verteXy, ri are adjacent to these vertices. Clearly
degree ofty and r; is odd, which is non Eulerian.

Subcase 2 SupposeG is a graph such that it contains at least one cutvertex. If eat edge is
even degree then by the sub case 1, it is non Eulerian. Assumédt G contains at least one
edge with odd edge degree. Clearly for ang, 2 E(G), degree ofg; 2 V[Ts(G)] is odd, which
is non Eulerian. Hence for any graph GTs(G) is always non Eulerian.

In the following theorem we obtain the condition for the hamiltonian on total semirelib
graph of a graph.

Theorem 3:12 For any graph G, Ts(G) is always hamiltonian.

Proof SupposeG is any graph. We have the following cases.

Case 1 Consider a graphG is a tree. In a tree, each edge is a block and hendg = e;; b, =

€; ibh 1= €, 186y 12 E(G) and 8k, 1 2 V[Ts(G)]. Since a tree T contains only ne
regionry which is adjacent to all verticese; ey; ;en 1 of Ts(G). Also the block vertices are
adjacent to each vertexe which corresponds to the edge of G and it is a block in G. Cleay
ri;e; b b es;es; bg; ;11 form a hamiltonian cycle. Hencds(G) is hamiltonian graph.

Case 2 SupposeG is not a tree. Let e;;ey; ien 1 2 E(G), by;by; ;b be the blocks
and rq;ro; Tk be the regions of G such thate;;ey; e 2 V(by), e+;842; i€m 2
V (b); D €m+l . €m+2 ;en 12 V(hy). By the Theorem 3.3, V[Ts(G)] = e1;e; en 1]

b ; bp; b [ raro; ;rk. By theorem 3.7, Ts(G) is non separable. By the de nition,
bier;e; e 1 roembs ki1 €k ;en 1hkrke by form a cycle which contains all
the vertices of Ts(G). Hence T5(G) is hamiltonian.
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x1: Introduction

Dual numbers were introduced by W.K. Cli ord [5] as a tool for his geometrical investigations.
After him,e E.Study used dual numbers and dual vectors in hisresearch on the geometry of
lines and kinematics [7]. The pitches and the angles of the pihes of the closed ruled surfaces
corresponding to the one parameter dual unit spherical cures and oriented lines inR® were
calculated respectively by Hac salih@lu [10] and Garsqg [8]. De nitions of the parallel ruled
surface were presented by Wilhelm Blaschke [6]. The integtanvariants of the paralel ruled
surfaces in the 3-dimensional Euclidean spac®® corresponding to the unit dual spherical
parallel curves were calculated by Senyurt [14]. The integal invariants of ruled surface of a
timelike curve in dual Lorentzian space were calculated by Bktes and Senyurt [2]. The integral
invariants of ruled surface of a closed spacelike curve wittimelike binormal in dual Lorentzian
space were calculated by Bektss and Senyurt [3].

Theset D=f"= +" i 2 R;"? = 0g is called dual numbers set, see [5].0n this
set, product and addition operations are respectively

(+" )+ +" )=(C + )+"(C + )

and
(+" ) +" )= +"(C + )

1Received May 15, 2013, Accepted August 22, 2013.
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D | 0

The elements of the setD3= A= a+"a ' a!; a 2 R® are calleddual vectors On
this set addition and scalar product operations are respedvely
D3 D3! D3
I I ] I I
"AiB ! A BZa+b+"la +b |
:D D3! D3
I I
CA 1 CA=( +" ) (a+ra)=ta+"(a + 'a)
The set D3; is a module over the ring O; +; '), czlzllled the D  Modul.

The Lorentzian inner product of dual vectors A; B 2 D® is de ned by

P, EP,E D, EDP , E

"Ai;B =‘a;b +" ‘a;b +°a;b
B . L 1 !
where * a’; b is the following Lorentzian inner product of vectors a = (a;;az;az) and b =
(bi;bp;b3) 2 R¥jie., P, E
“asb = aib + aphy + aghs:
E

!

The set D2 equipped with the Lorentzian inner product ~ A; B s called 3-dimensional dual
] o

Lorentzian space and is denoted in what follows byD3$ = ~ A Za+lba! a",Ea 2R} [17].

| |
ba 2 D3 is called dual space-like vectorif A; A_ > 0or A =0,

|
Adual vector A = a+
| | |
a dual time-like vector if “ A} A < 0, a dual null (light-like) vectorif “A; A =0for A 60
| | |
. For A 60,the norm " A of A is dened by

r

[ B. ! E !ha!;a
A = AiA = kak+ e kakso:

T
The dual Lorentzian cross-product of A;” B 2 D3is de ned as
! ! | ! 1 ! | !
AB=a b+""a b +a b
1 I
wheré a b is the cross-product [14] ofa : b 2 R given by

'a 'bz(ah abpab asbab, ah):

Theorem 1:1(E. Study) The oriented lines in R3 are in one to one correspondence with the
points of the dual unit spherekAk (1;0) where A 6( O a) 2 D-Modul , see [9].

I I
The dual number = ' +™ s called dual angle between the unit dual vectorsA ve B
and keep in mind that

sin +™ ) = sin' +™ cos';

cos( +™ ) = cos
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x2: Characterization of Ruled Surface of a Closed Spacelike Cur ve with Spacelike
Binormal in Dual Lorentzian Space D3
| | |
LetU:1 ! D3t ! "U((t)= Us(t); U((t) =1 be a dierentiable spacelike curve with

I
spacelike binormal in the dual unit sphere. Denote by (J) the closed ruled generated by this
cuve. p o | |

Let 'U;iUs:Us be the Frenet frame of the curveU = U with

! ! ! oo | ! ! !
U;=U ; Uy=U U ; Usz= U3 U,

I I
De nition  2:1 The closed ruled surface(U) corr'esponding to the dual spacelike curveJ (t)
which makes the xed dual angle = ' + ™ with U(t) determines

| I I
"V =cos Uj+sin "Us (2.1)

I !
The surface'§\/) corresponding to the dual spacelike vectorV is called the parallel ruled
surface of surfallce' () in the dual Lorentzian spaceD3.
Now, take U (t) as a closed spacelike curve with curvature = ki + "‘kl and torsion
= ko + "k?_ . Recall that in the Frenet frames associated to the curvelU; and Uz are spacelike
vectors and U, is timelike vector and we have
! ! ! ! ! ! ! ! !
U, U, = Us ; U Us = U ; Us U; = Uy (22)
Under these conditions, the Frenet formulas are given by ([8])
oo | oo | ! oo !
U = U ; U= U+ U ; Uz = U (2.3)
The Frenet instantaneous rotation vector (also called insantaneous Darboux vector) for
the spacelike curve is given by ([16])
I I I
Co= ' U + ' Us; (24)
I I I
Let be V1 =" V. Dierentiating of the vector "V, with respect the parametert and using
the Eq.(2.3) we get | |
A =( cos + sin) U, (2.5)

and the norm of that vector denoted by P is
P= cos + sin : (2.6)
Then, substituting the values of (2.5) and (2.6) into Frenet equations gives
!Vz ! U, (2.7)

I
For the vector V3;we have |

|
"V3=sin 'U; cos U;s (2.8)
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If Eq.(2.1), (2.7) and (2.8) are written matrix form, we have

2, 3 2 32 3
V1 cos 0 sin U,
I I
E'VZZZE o 1 0 é E'UZZ
I I
V3 sin O cos ‘Uz
or 2, 3 2 32 3
U, cos 0 sin \Y/1
| I
fnf=§ o 1 o £§wi
| I
"Us sin O cos YA

| | |
The real and dual parts of U;; U,: Uz are

8
! i ol
U1 =COS" Vvi+sSIn© vg3
! I
TU2= Vo
"us=sintv cos' v
3= 1 3
! | ol v | (2.9)
Uy =CO0S" vV +sin® vy (sin® vi cos" va)
! !
U= V)

L | , i o
uz=sin®v,; cos"vy+' (cOs" vy sin" vy)

I
Let P = p+ "p be the curvature and Q = g+ "q the torsion of curvé V (t). Then, the
following relating holds between the vectors

[ B ool ol o
ViiVoiVzand Vi Vo 5V [18]

8! °o 1o | oo
2V, =PV, V, =PVi+QVa Vi = QVo
q T o o ety v Sy (2.10)
2 P= <Vy;Vy o> Q= Vi)
<Vi;Vi>
If Eq.(2.10) is separated into its real and dual parts, we get
8, o o0 I oo
%' Vi =PV iV =pvitQVug Vs =QVe
I o | I
"V =pVatp vy
[ -] | | | I . (2.11)
E Vo =pVvy+tpVvitqvstQgvs;
'!Vg :hV2+q!V2

Now, we are ready to calculate the value ofQ as function of and : Dierentiating Eq.

(2.5) with respect to the curve parametert we get
I !
"Vi=(+ Zcos + sin) U+
b o (2.12)
+( cos + sin) Up+( cos + 2sin) Uz

Using EQgs.(2.1), (2.5) and (2.12) into Eq.(2.10), we get

Q= sin + cos (2.13)
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and separating Eq.(2.6) and Eq.(2.13) into its dual and realparts gives

8
% p= kycos' + k;sin'

=k, cos" +k,sin" ' (kgsin' ks cos'
p 1 2 (k1 2 ) (2.14)
E q= kiysin' + kycos'
g = kysin' +k,cos ' (kicos + kpsin')
n, , O

In its dual unit spherical motion the dual orthonormal system “Vi;V,; V3 atanyt makes a
dual rotation motion around the instantaneous dual Darboux vector. This vector is determined
by the following equation ([16]). |

I | |
= QV]_ + PV3: (215)
For the Steiner vector of the motion, we can write

o b
D = (2.16)

or | || |

— |
D= "V; Qdt+V; Pdt (2.17)

| |
Using the values of the vectorsU; and Uz into Eq.(2.4), gives

| | | | |
o= (cos'Vi+sin V3)+ (sin Vi cos Vj3);
| | |

! H . . .
Because of the equation® = for the dual Steiner vector of the motion, we may write
I I
I I I
‘D= "V, Qdt V3 Pdt (2.19)

I
The real and dual parts of D are

& v H ., H
d= "v; qdt vz pdt
! I H I H | H | H (2.20)
d = "vy; gdt “v,; qdt "vs pdt vy pdt
! ! ! ! !
D= U dt + Us dt (2.21)
Eq.(2.21) can be written type of the dual and real part as folbw
8, H H
< : | |
d= "u; kpdt+ usz kqidt
o | H I H | H | H (2.22)
If the equation (2.3) is separated into the dual and real part we can obtain
8, o I I o | I I o I
%' u;=kKiug;"u,=kiug+kous; " ug=kxus
"ul = Kua+ Kiuy;
B T I T (2.23)
E' U, =kjus+kyuz+kiu;+kyu,
Z1 o I I
Uz = kyuzt kyu,
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Now, let us calculate the integral invariants of the respecive closed ruled surfaces. The
pitch of the rst closed surface (U;) is obtained as

p, E b | E

Ly, = diug + diu ;
I
Lul = kzdt (224)
The dual angle of the pitch of the closed surfacdJ; is
b, E
U, = D;U; :
and from Eq.(2.21) we obtain |
U = dt: (2.25)
The real and dual of U; are
I I
up = kedt 5Ly = k,dt (2.26)
The drall of the closed surface ;) is
_ h‘jul;aul i

U — .
! hdu; duyi

Using the valuesblul and aul given by Eq.(2.23), we get

Py, = Ky (2.27)
k1
The pitch of the closed surface () is given by
Ly, =0: (2.28)
The dual angle of the pitch of the closed surfacel,) is
P, E
v, = D;Uz ;
u, =0: (2.29)
The drall of the closed surface J,), we may write
P = h'juz; aug i
Y27 u,; dusi
Using the valuesblug and auz given by Eq.(2.23), we get
Pu, = kif v (2.30)
The pitch of the closed surface Us3) is
E b E

Lu3='d':U3 +dtus
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Ly, = kydt (2.31)
The dual angle of the pitch of the closed surfaceys) is
b, E
Us = D; Us
which gives using (2.21) |
Us = dt (2.32)
The real and dual parts of y, are
I I
u, = kidt ; Ly, = kpdt (2.33)
The drall of the closed surface Us3) is
P, = h|jU3; aug i
Ys 7 Tus; dusi
Using the values ofaug and Elug given in Eq.(2.23) gives
P, = f2. (2.34)
ko
Let (t) = P+ (b) bei the Lorentzian timelike angle bethen the instantaneos dual

Pfa on vector ~ and the vector "Us. In this case dual Pfa on vector™ is spacelike vector and

o}
! !

= cos ; = sin

| |
then C =l c+ "¢ , the unit vector in the” direction is

I I |
"C = sin ‘U;+cos Us

|
and the real and dual parts of C are
8 | |
c = sinfuq+coslus
(| . | | o
- ¢c = sinfu; +cos!us I cosfu; ! sinfus

! I
The pitch of the closed surface C) generated by C is given by
I I
|_C:<'d!;c >+<'d';c>
I I I I
Lc =cos! k,dt +sin ! k,dt ! (sin! kidt cos! kodt)

If we use Eq.(2.26) and Eq.(2.33) into Eq.(2.37) we get
Lc = sinlL y, +coslL 4, +! (cos! , +sin! )

!
The dual angle of the pitch of that closed ruled surface C), we have

b, E
c = D; C

(2.35)

(2.36)

(2.37)

(2.38)
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and from Eq.(2.21) and (2.35) it follows that

I I
[ ! [ [
us = <Up dt+Usg dt sin U;+cos U;>;

I I
c = sin dt cos dt (2.39)

Using Eg.(2.25) and (2.32) gives
c= sin y,tcos vy, (2.40)

!
The drall of the closed surface C) is

_ h'jc;'dc [

Pe = tc:dci

1% ° | in! ! ! I+ int
po= (kzcos!  kysin! )[(k, ki! ).cos.2 (k2! ky)sin!] (2.41)
1@ (kpcos! kpsin!)
Now, let us calculate the integral invariants of the respecive closed ruled surfaces. The
pitch of the closed (V1) surface is given by

p, B b | E
Ly, = divi + dvi |
|
Ly, = g dt: (2.42)

Substituting by the value g into Eq.(2.42)
I I I I
Ly, =sin’ k,dt cos k,dt+ ' (cos' kpdt +sin’ kodt) (2.43)

or

Ly, =cos'L y, +sin'L , + (sin' 4, cos' ;): (2.44)

The dual angle of the pitch of the closed ruled surface\{;) , we have

b, E
v, = D, Vi

and using Eq.(2.19) we obtain
I I
I I I
v, = < Vi Qdt "V PdtiVy>;
I
v, = Qdt: (2.45)

Using Eq.(2.13) into the last equation, we get
I I
v, = Sin dt +cos dt

or
v, =C0S y, +sin Us (2.46)
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Separating Eq.(2.46) into its real and dual parts gives

8
Sy, =cos' y, tsin' oy, 2.47)
Ly, =cos’L y, +sin'L g, +"' (sin® , cos ;)
The drall of the closed surface V1) is
P, = h'jvl; Elvl i
V1T vy dvy
which gives using the values oﬁvl and Hvl in Eq.(2.11)
Py, = P (2.48)
p
and using the values ofpand p given by Eq.(2.14) gives
k, cos' + k, sin' kq sin' ko cos'
Py, = —= C ' : 2.49
Vi ki cos' + kysin' ki cos' + k,sin' ( )

Theorem 2:1 Let (V1) be the parallel surface of the surfacéU;). The pitch, drall and the dual
of the pitch of the ruled surface(V;) are
I I
1)y,= qdt 2)y= Qdt 3 )Pvlz%

Corollary 2:1 Let (V1) be the parallel surface of the surfacéU;). The pitch and the dual of
the pitch of the ruled surface(V;) related to the invariants of the surface(U;) are written as
follow

1)Ly, =cos'L y, +sin'L y, +
2) y,=c0s y, +sin Us

(sin® 4, cos )

The pitch of the closed surface V) is given by
p, E P | E

Ly, = div2 + d v
Ly, =0 (2.50)
The dual angle of the pitch of the closed ruled surface\(y) is
b, E
v, = D; V2
Using EQ.(2.19) we get
v, =0 (2.51)
The drall of the closed surface V-) is
B h'jVZ;bVZ i

Py, = .
Ve hdvsy; dvai
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Using the values ofbvz and Hvz given by Eq.(2.11) gives

_ PP *Qq
Py, = A (2.52)
and with the values of p;p ;qand q given by Eq.(2.14) we get
Py, = e (2.53)

Theorem 2:2 Let (V1) be the parallel surface of the surfacéU;). The pitch, drall and the dual
of the pitch of the ruled surface(V,) are

pp + q9
1)Lw=0  2) =0 3 )P,= " 5rn
The pitch of the closed surface V3) is given by
p, BE b | E
Ly, = divs + dvs ;
I
Lv, = p dt (2.54)
and using Eq.(2.54)
I I I I
Ly, = cos k,dt sin' k,dt+ ' (sin' kidt cos' kodt) (2.55)
or
Ly, =sin'L 4, cosL y, ' (cos' y, *+sin' ;) (2.56)

The dual angle of the pitch of the closed ruled surface\(s) is

b, E
Vs = D; Vs

Due to Eq.(2.19) we have
I I
1 1 1
Vs = <V, Qdt "Va PdtVs>;
v, = Pdt (2.57)

and using Eq.(2.6) into the last equation gives
I I

v; = COS dt +sin dt
or
vs =Sin y, Ccos y, (2.58)
Separating Eq.(2.58) into its real and dual parts give
8
< '

vs =SIN" 4, cos (2.59)
Ly, =sin'L y, cosL y, ' (cos' y, +sin' ,)
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The drall of the closed surface V3) is

_ h'jvg; Elvg i

Py, = — 22—
Ve hdvs; dvsi

Using the values ofbvs and Hvs given by Eq.(2.11) gives
Py, = — (2.60)

and using the values ofgand q given by Eq.(2.14) into the last equations, we get

k, sin’ k, cos' , ki cos' + ks sin'

Py, = - -
8 kysin' + ks cos' kisin' + ks cos'

(2.61)

Theorem 2:3 Let (V1) be the parallel surface of the surfacéU;). The pitch, drall and the dual
of the pitch of the ruled surface(Vs) are
I I
1)ly,= pdt 2)v= Pd 3 )Py-= %:
Corollary 2:2 Let (V1) be the parallel surface of the surfacéU;). The pitch and the dual of

the pitch of the ruled surface(Vs) related to the invariants of the surface(U;) are written as
follow

1)Ly,=sinL ,, cosL y, ' (cos' y, +sin' )
2) vy,=sin U, COS ;.

Let ( t) = (t)y+ " (t) be the Lorentzian timelike angle between the instantaneos dual
- !
Pfaon vector  and the vector V3,
In this case dual Pfa on vector s spacelike vector,

The unit vector C = T + " T , in the ~ direction is

F_ ! !
C = sin Vi+cos V; (2.62)
I !
Using the values of the vectorsv; and Vs given by Eq.(2.9) into Eq.(2.62), we get

I | I I I
C = sin cos U;+sin Uz +cos sin U cos Uz

I I I
C =sin( ) 'Up  cos( ) "Us (2.63)
I
The real and dual parts of C are
8
<! o ol !
T = sin"vy+Ccos vi
. - I I - (2.64)
T = sin"vy; +CoS v3 COS Vp sin® v
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I
The pitch of the closed surface C) is given by

b, E b | E
L== d;tc + d:tT

@]

I I
and using the values ofd and d given by Eq.(2.22) into the last equation we get
I I I I
Lz= cos pdt+sin g dt+ cos qdt+sin pdt (2.65)

or
Le= sinLy, +cosLy,+ (cos v, +sin ;) (2.66)

Finally if we use Eq.(2.47) and Eq.(2.59) into Eq.(2.66), weget

L==sin(" L cos Ly,+
c ( )Lu, « ) vy (2.67)
( J(cos( ) u)tsin(" ) u,
I
The dual angle of the pitch of the closed ruled surface C) , we may write
-
and using Eq.(2.21) and Eq.(2.62) we get
I I
I I
c= < Vi Qdt Vi3 Pdt sin Vi+cos Vz>;
I I
c= sin Qdt + cos Pdt (2.68)
If we use the Egs.(2.45) and (2.57) into the last equation, weget
= sin y, +cos v, (2.69)
If we use Eq.(2.46), we get
c= sin( ) v, cos( ) u, (2.70)
I
The drall of the closed surface C), we may write
dc;dc
P~ =
©  dcidc
0 0 . .
P = (qcos__psin )[4 p )cos  (q_+p)sin ] 271)

@ (gcos psin )?
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Abstract : Prime labeling originated with Entringer and was introduce d by Tout, Dabboucy
and Howalla [3]. A Graph G(V;E) is said to have a prime labeling if its vertices are labeled
with distinct integers 1 ;2; 3; ;JV (G)j such that for each edgexy the labels assigned tox
and y are relatively prime. A graph admits a prime labeling is call ed a prime graph. We
investigate the prime labeling of some H -class graphs.

Key Words : labeling, prime labeling, prime graph, H-class graph
AMS(2010) : 05C78

x1: Introduction

A simple graph G(V;E) is said to have a prime labeling (or called prime) if its vertices are
labeled with distinct integers 1;2; 3;:::;jV(G)j; such that for each edgexy 2 E(G); the labels
assigned tox and y are relatively prime [1].

We begin with listing a few de nitions/notations that are us ed.

(1) A graph G = (V;E) is said to have orderjVj and sizejEj:

(2) A vertex v 2 V(G) of degree 1 is called pendant vertex.

(3) P, is a path of length n:

(4) The H-graph is de ned as the union of two paths of lengthn together with an edge
joining the mid points of them. That is, it is obtained from tw o copies ofP, with vertices

edge ifn is odd and the verticesv(,=2.1 and u,=» if n is even [4].

(5) The coronaG; G, of two graphs G; and G, is de ned as the graph G obtained by
taking one copy of G; (which has p; points) and p; copies ofG, and then joining the i™ point
of G; to every point in the i copy of G, [1].

x2: Prime Labeling of H-Class Graphs

Theorem 2:1 The H -graph of a path of lengthn is prime.

Proof Let G = (V;E) be aH -graph of a path of length n: It is obtained from two copies

1Received April 15, 2013, Accepted August 24, 2013.
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of paths of length n: It has 2n vertices and Zn 1 edges.

V(G)= fu;;vi=l i ng

E(G) = fuitisa;vivier=1 i n  19[f Ugn=2)eVdin=2)ed
Dene f :V(G)!f 1;2;:::;2ng by

f(V(n+1)=2) =1if nis odd

f(Va=2) =1if nis even

f(u)=i+1;1 i n
f(vi)=n+i+1;1 i (n=2) 1; wheni 6 (n=2)if nis even
f(vi)=n+1i;(n=2)+1 i n;if niseven
f(vi)=n+i+1;1 i (n 1)=2; wheni 6 (n+1)=2; if nis odd
f(vi)=n+i;(n+3)=2 i n; wheni 6(n+1)=2; if nis odd

Clearly, it is easy to check that GCD (f(u);f(v)) = 1; for every edge

uv 2 E(G): Therefore, the H-graph of a path of length n admits prime labeling.

Example 2:2 The prime labeling for H-graph with n = 14;16 are shown in Fig.1 and 2.

10

2 9
11

3 10
12

4 11
1

5 1
13

6 12
14

7 13
15

8 14
16

Fig.1 n 0(mod2) Fig.2 n 1(mod2)

Theorem 2:3 The graphG K is a prime.

Proof G K is obtained from H-graph by attaching pendant vertices to each of the
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vertices. The graph has 4 vertices and & 1 edges, wheren = |G;j.

V(G Ki)=fu;vi=l i 2ng
E(G Ki)=fujujs1;Vvivisa=1 i n  1g[f Ujup+i;Vviva+i=1 i ng

[f U(n+1) =2V(n+1) =2 N iS 0dd Or U(p=2)+1 Vn=2; N iS eveng

Dene f :V(G Kgq)!f 1;2;:::;4ng by

8
fu)=2i+1:1 | nandf i6(n+1)=2 if nis odd
- 16 n=2 if n is even
f (Un+1) =2) =1 n odd
f (Un=2+1) =1 neven
fUp+i)=2i; 1 i n
f(vi)=2n+2i 1,1 i n
f(Va+i)=2n+2i;1 1 n
GCD(f (uj);f(ui+1))= GCDRi+1;2i+3)=1;1 i (n 3)=2;n odd
GCD(f (uj);f (ui+1)) = GCD(2i+1;21+3)=1;(n+3)=2 i n 1;nodd
GCD(f (u);f(ui+1)) = GCD(Qi+1;2i+3)=1;1 i (n=2) 1;neven
GCD(f (u);f (uj+1))= GCD(2i +1;2i+3)=1;(n=2)+2 i n 1;neven
GCD(f (v);f(vi+1))= GCD(2n+2i 1;2n+2i+1)=1;1 i n
GCD(f (vi);f (vn+i))= GCD(2n+2i L;2n+2i)=1;1 i n

In this case it can be easily veried that GCD(f (u);f (v)) = 1 for remaining edges uv 2
E(G Kj): Therefore, G K; admits prime labeling.

Example 2:4 The prime labeling forG K;and G K, are shown in Fig.3 and 4.

Ug  Us Vi Vs 2 3] 13 14
2 3 11 12
P PN 7 S 2 5| 15 16
4 14
Ug Us V3 Vg 6 7| 17 18
& 1 15 16
Ug U4. 7 177V4 Vg ﬁ 1942.0
8 18
Uo  Us Vs Vio 9 12 k1 22
09 19 )

10 11 23 74

F|g3 G K; Fig.4 G Ky
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Theorem 2:5 The graphG S; is prime.

Proof The graph G S, has & vertices and 6 1 edges, wheren = |Gj.

V(G Sp)=fuj;vi=1 i ng[f ui(l);ui(z);vi(l);vi(z)zl i ng
E(G S)= fujlj+1;vivisa=1 i n 1g][f uiui(l);uiui(z);vivi(l);vivi(z)zl i ng

[f Up+1=2Vh+1=2 N iS 0dd OF Up=041 Vh=2 N IS even

Dene f :V If 1;2;:::;6ng by
f(Ups1=2) =1;f (u&)ﬂ) ,)=6n Lf (uéi)ﬂ) ) =6n:

Case 1 Supposen 1(mod 2):

Subcase 1.1 n 1(mod 4)

f(uz 1)=6(i 1)+3;1 i (n 1)=4
f(uz 1)= f(un 1=2) +6+6[i ((n 1)=4)+2];
((n 1)=4)+2 i (n 1)=2)+1
f(u)=6(i 1)+5;1 i (n 1)=4
f(ua)=f(un p=2)+4+6[i ((n 1)=4)+1];
(n =AY+ i (n 1)=2
Fu® )=f(u) 1+6(i 1;1 i (n 1)=4
f (u(zli) )= TUn n=2)+7+6[i ((n 1)=4)+2];
(n D=AY+2 i (n 1)=2
FU@ )= f(u)+1+6(i 11 i (n 1)=4
U )= fun =) +8+6[1 (N 1=4)+2];
((n D=AY+2 i ((n 1)=2)+1
FUD)= fu+1+6(i 11 i (n 1)=4
fUSY) = F(Um 1=2) +3+6[1 (N 1)=4+1];
(n =AY+ i (n 1)=2
FUD)= fu+2+6(i 11 i (n 1)=4
fUD)=f(un 1=2)*+5+6[i ((n 1)=4)+1];
(n =AY+ i (n 1)=2
f(vi))=3n;f(v))=3n+2
f(va 1)=f(v)+6(i 1);2 i (n+1)=2
f(va)=f(v2)+6(i 1);2 i (n 1)=2

FO )=f(v) 1+6( 1k1 i (n+1)=2
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FOE )= f(v)+1+6(i 11 i (n+1)=2
fi)= f(v)+1+6(i 1x1 i (n 1)=2
fOVEy= f(w)+2+6(i 11 i (n 1)=2
GCD(f (uz 1);f(uz))= GCD(6I 36 1)=1;1 i (n 1)=4
GCD(f (uz);f (Uuzis1)) = GCD(6i 1,6i+3)=1;1 i ((n 1)=4) 1
GCD(f (uz 1);f(uz))= GCD(6i 7:6i 3)=1;
(n D=AY+2 i (n 1)=2
GCD(f (uz);f (uzi+1)) = GCD(6i 3,61 1)=1;
(n D=A+1 i (n 1)=2
GCD(f (uz 1);f (U )= GCD(6i 7;6i 5)=1;
((n D=AY+2 i ((n 1)=2)+1
GCD(f (uz);f (uU¥)) = GCD(BI 1;6i+1)=1;1 i (n 1)=4
GCD(f (uz);f (uUd)) = GCD(6i 3,61 2)=1;
(n D=AY+1 i (n 1)=2
GCD(f (v1);f (v2)) = GCD(3n;3n+2)=1
GCD(f (v2i 1);f(v2i))= GCD@n+6i 6;3n+6i 4)=1;
2 i (n 1)=2
GCD(f (v2i);f (vai+1)) = GCD(Bn +6i 4;3n+6i)=1;
1 i (n 1)=2
GCD(f (va);f (V)= GCD@Bn+6i 43n+6i 2)=1;
1 i (n 1)=2
Subcase 1.2 n  3(mod 4)
f(uy 1)=6(i 1)+3;1 i (n+1)=4
f(uzi 1)=f(Un n=2) +2+6[i ((n+1)=4)+1];
(N+1)=4+1 i (n+1)=2
f(uy)=6(i 1)+5;1 i (n+1)=4) 1
f(ua)=f(Un 1=2) +6+6[i ((n+1)=4)+1];
(n+1)=A)+1 i (n+1)=2) 1
fuy )=f(u) 1+6(i 11 i (n+1)=4
FUD )= f (U 1)+ 34600 ((n+1)=4)+1];
(n+1)=4)+1 i (n+1)=2
fUg )= fu)+1+6(i 11 i (n+1)=4
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FU2 )= f(un pe2) +4+6[0  ((n+1)=4)+1];

(n+1)=4)+1 i (n+1)=2
f)=f(u)+1+6(i 1;1 i (n+1)=4) 1
FUS) = f(un y=2) +5+6[i  ((n+1)=4)+1];

(n+)=)+1 i (n+1)=2) 1
fu@)=f(u)+2+6(i 1;1 i (n+1)=4) 1
FUS) = f(un y=2) +7+6[0  ((n+1)=4)+1];

(n+)=)+1 i (n+1)=2) 1
f(vi))=3n;f(v2))=3n+2
fvy 1)="f(vy))+6(i 1);2 i (n+1)=2
f(va)=f(v)+6(i 132 i (n+1)=2) 1
FO) )= f(v)) 1+6(i 151 i (n+1)=2
FVQ )= f(v)+1+6(i 1)1 i (n+1)=2
fOS)= f(v)+1+6(i 131 i (n+1)=2) 1
F@)=f(w)+2+6(i 11 i ((n+1)=2) L

As in the above case it can be veried that GCD (f (u);f (v)) = 1 for every edge uv 2
E(G S):
Case 2. n 0O(mod 2)

f(Un=2)41 ) =15 (u&)zz)+l )=6n 1Lf (ugi):z)+l y=6n:

Subcase 2.1 n 0(mod 4)

f(ug 1)=6(i 1)+3;1 i n=4

f(uz 1) = f(Un=g)) +6+6[i (n=4)+2];(n=4)+2 i n=2
f(uz)=6(i 1)+5;1 i n=4

f(uz)=f(Un=) +4+6[i (n=4)+1];(n=4)+1 i n=2
fuP )= f(u) 1+6(i 11 i n=4

FUS) )= F(upnep)+7+6[i (n=4)+2];(n=4)+2 i n=2
fu@ )=fu)+1+6(i 1)1 i n=4

fug )= f(Un=2)) +8+6[i (n=4)+2];(n=4)+2 i n=2
FUP)= fu)+1+6(i 1:;1 i n=4

f (U(zli)) = f(Un=2))+3+6[i (n=4)+1];(n=4)+1 i n=2
FUQ)=f(u)+2+6(i 1;1 i n=4

FUP)= f(upeg)+5+6[i (n=4)+1];(n=4)+1 i n=2
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f(vi)=3n 1;f(v))=3(n+1)

fvo 1)=f(vy))+6(i 1);2 i n=2
f(va)=f(v)+6(i 1);2 i n=2

F )= fv)+1+6(i 11 i n=2

F@ )= fv)+2+6+(i 1;1 i n=2
F®)=f(va) 1+6(i 1)1 i n=2
FOv@)= fv)+1+6(i 1%1 i n=2

Clearly GCD(f (u);f (v)) =1 for every edgeuv 2 E(G Sy):
Subcase 2.2 n 2(mod 4)

f(ua 1)=6(i 1+3;1 i (n+2)=4
f(ua 1)= f(Upn=2) +2+6[i (N+2)=4)+1];(n+2)=4)+1 i n=2
f(uz)=6(i 1)+5;1 i (n 2)=4

f(uz) = f(Un=g)) +6+6]1 (N 2=4)+2];((n 2)=4)+2 i n=2
FU® )= f(u) 1+6(i 11 i (n+2)=4

FUS )= f(Un-2)+3+6[i (n+2)=4)+1];(n+2)=4)+1 i n=2
FUP )= f(u)+1+6(i 151 i (n+2)=4

FUS )= f(Un-g)+4+6[i (n+2)=A)+1];(n+2)=4)+1 i n=2
FUPy= f(u)+1+6(i 1;1 i (n 2)=4
FUS) = F(umeg) +5+6[0 (0 2=A)+2;((n 2)+2 i n=2
FU@)= f(u)+2+6(i 1;1 i (n 2)=4

FUP) = f(Unp)+7+6[1 (N 2= +2:(n 2J=)+2 i n=2
f(vi)=3n Lf(v)=3(n+1)

f(va 1)=f(v)+6(i 1);2 i n=2

f(vai)=f(v2)+6(i 1);2 i n=2

FO )= fv)+1+6(i 11 i n=2

FO@ )= fu)+2+6(i 11 i n=2

F®)=f(va) 1+6(i 1)1 i n=2

FV@)= f(v)+1+6(i 151 i n=2

In this case also it is easy to check thatGCD (f (u);f (v)) = 1: Therefore G S, admits
prime labeling.

Example 2:6 The prime labelings for G S, with n 1(mod4), n 2(mod4); n
3(mod4); n  0(mod4) are respectively shown in Fig.5-8 following.
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Fig.5 G S; n 1(mod4) Fig.6 G S, n 3(mod4)

Fig.7 G S, n 0(mod4) Fig.8 G S, n 2(mod4)
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Abstract : Let f be a function from the vertex set V (G) to f0;1;2g. For each edgeuv

f(u)+ f (v)
2

assign the label . f is called a mean cordial labeling if jvi (i) wvi (j)j 1

and jer (i) e (j)j 1,i;j 2f0;1; 29, where vi (x) and e (x) respectively are denote the
number of vertices and edges labeled with x (x =0;1;2). A graph with a mean cordial

labeling is called a mean cordial graph. In this paper we investigate mean cordial labeling
behavior of union of some graphs, square of paths, subdivison of comb and double comb
and some more standard graphs.

Key Words : Path, star, complete graph, comb.

AMS(2010) : 05C78

x1: Introduction

All graphs in this paper are nite, undirected and simple. The vertex set and edge set of a
graph G are denoted byV (G) and E (G) respectively. The union of two graphsG; and G, is
the graph G, [ G, with V (G]_[ Gz) =V (Gl) [ \Y (Gz) and E (Gl [ Gz) = E (G]_) [ E (Gz)
The corona of G with H, G H is the graph obtained by taking one copy ofG and p copies
of H and joining the i vertex of G with an edge to every vertex in the i copy of H. The
subdivision graph S (G) of a graph G is obtained by replacing each edgeaiv by a path uwv.
The triangular snake T, is obtained from the path P,.; by replacing each edge of the path
by the triangle C3. mG denotes them copies of the graphG. The square G? of a graph G
has the vertex setV G? = V (G), with u;v adjacent in G wheneverd(u;v) 2 in G. The
powers G2, G*::: of G are similarly de ned. Ponraj et al. de ned the mean cordial labeling
of a graph in [4]. Mean cordial labeling behavior of path, cyte, star, complete graph, wheel,
comb etc have been investigated in [4]. Here we investigatehe mean cordial labeling behavior
of some standard graphs. The symbotixe stands for smallest integer greater than or equal to
x. Terms and de nitions are not de ned here are used in the sens of Harary [3].

1Received January 18, 2013, Accepted August 27, 2013.
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x2: Mean Cordial Labeling

Denition 2:1 Let f be a function from V (G) to f0;1;29. For each edgeuv of G as-
fu+f(v)
2
je (1) e () 1,i;j 2f0;1;29, wherev; (x) and e (x) denote the number of vertices and
edges labeled withx (x =0;1;2) respectively. A graph with a mean cordial labeling is callec

mean cordial graph.

sign the label . f is called a mean cordial labeling ifjv; (i) vt (j)j 1 and

Theorem 2:2 If m 0 (mod 3) then mG is mean cordial for all m.

Proof Let m = 3t. Assign the label O to all the vertices of rst t copies of the graphG.
Then assign 1 to the vertices of nextt copies ofG. Finally assign 2 to remaining vertices of
mG. Thereforevs (0)= vt (1)=vs 2)=pt, e 0)= & (1) = & (2) = qt.

Theorem 2:3 If G is mean cordial, thenmG, m 1 (mod 3) is also mean cordial.
Proof (m 1)G is mean cordial by theorem 22. Let g be a mean cordial labeling of

(m 1)G. Using the mean cordial labelingg of (m 1) G and the mean cordial labeling ofG,
we get a mean cordial labeling oinG.

Theorem 2:4 Py [ P, is mean cordial.

Proof Let ujusz:::um andvyvs ::i:v, be the pathsP,, and P, respectively. ClearlyPn [ Pn
hasm + n vertices andm + n 2 edges. Assumen n.

Case 1 m+n 0 (mod 3)

Let m+ n =3t. De ne

f(u) = 2; 1 i

f(u+i) = 1; 1 i m

f(v) = 1; 1 i n ¢
f(vh t#i) = 0; 1 i ¢t

Clearly vi O)= v Q)= i Q)= tande (0)= & (1) =t 1, e (2) = t. Thereforef is a
mean cordial labeling.

Case 2 m+n 1 (mod 3)
Similar to Case 1.

Case 3 m+n 2 (mod 3)
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Let m+ n=3t+2. Dene

f(u) = 2; 1 i
f(u+i) = 1; 1 i m t

f(vi) = 1; 1 i n t 1
f (Vo t+i) = 05 1 i t+1

Clearly vi 0) = v Q)= t+1, vy (2)=tande (0)=t 1,e (1) = & (2) = t. Therefore
Pm [ Pn is mean cordial.

Theorem 2.5 C,[ Pn is mean cordial if m n.

Proof Let C, be the cycleuju,:::unu; and P, be the path vivy:::v, respectively.
Clearly C, [ Pm hasm + n vertices andm + n 1 edges. Assumen n.

Case 1 m+n 0 (mod 3)

Let m+ n = 3t. De ne

f(u) = 0; 1 1 ¢t
fu+i) = 1; 1 i n ;t
f(vi) = 1; 1 i m ¢t
f(Vm t+i) = 2; 1 i t
Clearly e 0O)=t 1, (1)=& (2)=t.
Case 2 m+n 1 (mod 3)
Letm+ n=3t+1. Dene
f(u) = 0; 1 i t+1;
f (Ugr2+ i) = 1; 1 i n t 1
f(vi) = 1; 1 i m ¢t
f(vm +i) = 2; 1 i t
Clearly e 0)= & ()=t 1,e (2)=t.
Case 3 m+n 2 (mod 3)
Let m+ n=3t+2. Dene
f(u) = 0; 1 i +t+1;
f(U++i) = 1; 1 i n t 1
f(vi) = 1; 1 i m t 1
f(Vm ¢ 1+4i) = 2; 1 i t

Clearly &t (0)= & (1)=t, & (2)= t+1. Hence C, [ Py is mean cordial.
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Theorem 2:6 Ki, [ Pn is mean cordial.

Proof LetV (K1n)= fu;ui:1 i ngandE (Kin)= fuui:1 i ng. Let Py bethe
path viv, :::vy respectively. Clearly K., [ Pm hasm+ n+1 verticesandm+ n 1 edges.

Case 1 m+n 0 (mod 3)

Letm+n=3t. Dene f (u)=1

f(u) = 1; 1 i t 1
f(u 1+i) = 2; 1 i n t+1;
f(vi) = 2; 1 i m t 1
f(Vmt 1+i) = 0; 1 i t+1:

Clearly et O)= & (1)=t, & 2)=1t 1.
Case 2 m+n 1 (mod 3)

Similar to Case 1.
Case 3 m+n 2 (mod 3)

Let m+ n = 3t+2. Assign the labels to the vertices as in case 1 and thees (0) = e (2) = t,
e (1)=t+1. HenceKqn [ Pm is mean cordial.

Example 2:7 A mean cordial labeling ofK 1.5 [ Pg is given in Figure 1.

2 2 1

b,

Figure 1

Theorem 2:8 S(P, Kj) is mean cordial whereS(G) and G H respectively denotes the
subdivision of G and corona of G with H.

Proof Let P, be the path uju,:::u, andv; be the pendant vertices adjacent tou;. Let
the edgesu;uj+1 , UjVv; be subdivided by the verticesz; and w; respectively.
Case 1 n 0 (mod 3)

Let n = 3t. Dene f (uj) = f(vi) = f(w) =2, f(Ux+i)=F(vi+i) = f (Werj) = 1,

f(upt+i)=f (varei) = f (Wsi)=0,1 i t.
f(z) = 2;, 1 i t#
f (z+i) = 1; 1 0 t 1

|
o
[E=Y
—

f(zor 1+1)



82 R.Ponraj and M.Sivakumar

Herevi (0) = v (2) =4t, v (1) =4t lande (0) = & (1) =4t 1, & (2) = 4t. Hence
S(P, K}3)is mean cordial graph.

Case 2 n 1 (mod 3)

Label the verticesz, uj,vi (1 i n 1),w; (1 i n 2)asin Case 1. Then assign
the labels Q 1, 1; 2 to the vertices z,, un, Wy 1, Vi, respectively. Hencevs (0) = vs (1) = vf (2) =
4 +1, e (0)=4t, & (1)=& (2)=4t+1. Hence S(P, K}3) is mean cordial.

Case 3 n 2 (mod 3)

Label the verticesz, ui, vi (1 i n 2),w (1 i n 3)asincase 1. Assign the
labels Q1;2;2;1;1;0;0 to the verticesun 1, Un, Vn 1, Vn, Wn 2, Wn 1, Zn 1, Zn Fespectively.
Herevi (1) = v (2) =4t+2, v (0) =4t +3, & (0) = & (1) = & (2) =4t +2. Hence
S(Pn K3)is mean cordial.

Example 2:9 Mean cordial labeling ofS(P4 K1) is given in Figure 2.
2 2 1 0 0 0 1

Figure 2

Theorem 2:10 (P, 2K;) is mean cordial.

Proof Let P, be the path ujus:::u, and v; and w; be the pendant vertices adjacent to
u (L i n). Letthe edgesujui+1, UjVvi, ujw; be subdivided by the verticesx; and y;, z
respectively.

Case 1 n 0 (mod 3)
Letn =3t. Dene f (uj)=f(vi)=Ffw)="F(i)=T(z)=2, f(U+i)= T (Visi) =

f(Wiei) = fyei) = f(ze) = 1, fuasi) = Fvasi) = f (Wosi)
=f (Ya+i) = f (z2e+i)=0,1 i L
fxi) = 2 1 i t
f (Xe+i) = 1 it 1
f(Xat 141) = 0 1 i t

Herevi (0) = v (2) = 6t, vy (1) =6t 1,e (0) = & (1) =6t 1, e (2) =6t. Hence
S(Pn 2K;) is mean cordial.

Case 2 n 1 (mod 3)

Label the verticesu;, vi, wj, yyandz (1 i n 1), x; (1 i n 2)asin case 1.
Assign the labels 02;1;0;2; 1 to the vertices un, Vn, Wn, Xn 1, Yn and z, respectively. Hence
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vi (0) = vy (2)=6t+2, vy (1) =6t+1, ¢ (0) = e (2) =6t+1, & (1) =6t+2. Hence
S(P, 2K;)is mean cordial.

Case 3 n 2 (mod 3)

Label the verticesu;, vi, w;, yyandz (1 i n 2),x; (1 i n 3)asincase 1.
Assign the labels Q0; 2; 2; 2; 2; 0; 0; 1; 1; 1; 1 to the verticesun 1, Un, Vn 1, Vn, Wn 1, Wn, Xn 2,
Xn 1, ¥n 1, ¥Yn Zn 1 and z, respectively. Hencevs (0) = v (2) = 6t +4, v (1) = 6t + 3,
& (0)=¢6 (1)=6t+3, & (2)=6t+4. Hence S(P, 2K) is mean cordial.

Theorem 2:11 P2 is mean cordiali n 1 (mod3)andn 7.

Proof Let P, be the path u;u;:::u,. Clearly Pn2 (n  6) are not mean cordial. Assume
n 7. Clearly the order and size ofP? aren and 2n 3 respectively.

Case 1 n 0 (mod 3)

Let n =3t. Inthis casees (0)=(t 1)+(t 2) 2t 3. whichis a contradiction to the
size of P2.

Case 2 n 1 (mod 3)

Let n=3t+1. De ne

f(u) = 0; 1 i t+1;
f (Usr+ i) = 1; 1 i t
f (Uotsr+ i) = 2; 1 i t

Herevi (0)=t+1, vy (1)= vt 2)=t, & (0)=2t 1,6 (1)= & (2) = 2t. Therefore P? is
mean cordial.

Case 3 n 2 (mod 3)

Let n=3t+2. Here e (0) 2t 1, a contradiction to the size ofP2. Therefore P? is not
mean cordial.

Example 2:12 A mean cordial labeling ofPZ is given in Figure 3.

Figure 3

Theorem 2:13 The triangular snake T, (n> 1) is mean cordiali n 0 (mod 3).

Proof Let V (Tn) = fu;,vi:1 i n+1;1 j ng and E(Ty) =
fuiui+1 01 i ng[f uvi;viui+2 :1 1 ng.

Case 1 n 0 (mod 3)
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Let n =3t. De ne

fu) = 0
f (Uers i) = 1
f (Uate1e i) = 2
f(vi) = 0;

f (i) = 1
2

f(vaei) =

T
3
—_
Lo

Herevi (0) = t+1, vy (1) = vy ) = t, & (0) = & (1) = & (2) = 3t. Therefore triangular
snakeT, is mean cordial.

Case 2 n 1 (mod 3)
Let n=3t+1. Herev; (0)=2t+1. But & (0) 3t, a contradiction.
Case 3 n 2 (mod 3)

Let n=3t+2. Inthiscasev; (0)=2t+1or2t+2. But & (0) 3t+1,a contradiction.

x3: Conclusion

In this paper we have studied the mean cordial behavior o, [ Pn, Ch [ Pm, S(Pn K1),
S(Pn 2K;), P2, T,. Mean cordial labeling behavior of join and product of giventwo graphs
are the open problems for future research.
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x1: Introduction

Unless otherwise mentioned, a graph in this paper means a sipe graph without isolated
vertices. For all the terminology and notations in graph theory, we follow [1] and [2] and for
the de nition regarding p graceful graphs, we follow [4].

A labeling f of a graph G is one-one mapping from the vertex set ofG into the set of
integers. Consider a graphG with g edges. Letf, : V(G) ! f 0;1; ;! P(g)g such that
fo(uv) = jfp(u) fp(v)j. If f, is a sequence of distinct consecutive pentagonal numbershén
the function f, is said to bep graceful labeling and the graph which admits thep graceful
labeling is calledp graceful graph. Here! P(q) = w is the g" pentagonal number.

In [4], we proved that the paths, star graphs, comb graphs andwig graphs arep graceful.
In this paper, we are having some generalizations op graceful graphs.

Theorem 1:1 S(n;1;n)is p graceful.

Proof Let G = S(n;1;n). Let uz;uy;uz be the vertices ofP3 and uy;; uz1;uzi;i =1;2; n
be the pendant vertices attached with the vertices ofP;. Dene f, :V(G)!f 0;1;, ;!P(gg
such that f,(uy) =0

fp(un) = tP(0); i =1;2 ;m;
fo(uz) = 1 P(0), fp(uz) = fp(uz) !'P(q 1)
fo(us) = fp(uz) !P(Q 2), fp(usi)= fp(us)+ !P(@ 2 i); i=1;2:::;n.

Then we can easily verify thatf, generatesf, as required. Hence the result.

1Received May 13, 2013, Accepted August 30, 2013.
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Theorem 1:2 The union of two p graceful trees isp graceful.

Proof Let G; and G, be two p graceful trees. Letn; be the number of edges of5; and
n, be the number of edges o5, such that n; + n, = g, the number of edges ofG; [ G,. The
p graceful labeling of G; [ G, can be obtained as by assigning the vertices in the rst copy

Gi1[ G; i.e, G; in such a way as to get the edge label§! P(g);:::;! P(q (ny 1))gand then
by assigning the rst vertex of G, by ! P(@ (n; 1)) 1. The remaining vertices of G, are
labeled so as to gef! P(q@ n1); ;! P(1l)g as edge labels.

Corollary 1:1 The union of n, p graceful graphs isp graceful.

Denition 1:1 Let S, be a star withn pendant vertices. Takem isomorphic copies ofS,. Let
upanduj,j =12 nfori=1;2; :m be the vertices of the" copy of S,. Join u; to
Ug+i1 for i =1;2; ;m 1. The resultant graph is denoted byS'. Note that S" hasmn + n
vertices andm(n +1) 1 edges.

Theorem 1:3 The graph S' exhibits p gracefulness.

Proof Let the vertex set of S be fuju; =i = 1;2 ym;j =1;2;:::ng. Dene f, :
vV(sy)!f 0,1, ;! P(ggsuch that fy(ui) = ! P(Q);fp(ur) =0;

fp(usi) = fp(u) !'Pg (i 1)) i=2;3 ;n;

fo(Uka) = jfp(us) !'P(g (k 1n (k 2))j; k=2;3; ;m;

fp(uk) = jfp(ukt) !'P(g (k In (k 2) 1) k=2:3; ;m;

fp(u) = jfp(u) !'P(g (k Ln (k 2) i) i=2;3 n.

If the vertex labeling is less than the corresponding P(n), instead of subtraction, addition
may be done. Clearlyf, de ned in this manner generatesf, as required.

For example, thep graceful labeling ofS,° is shown in Figure 1.

70
O
137 0
O O
201 O
85203
262
522
G O © 707 O 817
418 59 482 539 783
O 0317 O O O 0498
25 794
O O 5 Q
369 O O O O
794 235 590 795

Figure 1

790
O
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x2: On Cycles and Related Graphs

Theorem 2:1 Cycles arep graceful graphs for somen > 6.

Case 1 n 0(mod 4)

Let n =4k for somek. Dene f,:V(Cy) !f 0,1, ;!P(g)g as follows.

fp(u) =0; fp(u2) = ! P(Q);

fo(ui)= fp(ui 1)+( 1)'P(q 2i+3); 366 b%c 2

fo(ug i) = fp(ug i+1)+( 1)'P(q 2i); 16i6 bc 4andfp(ug)="!P(q 1).

As we reachub%c 1 and ugp 1c+3, & stage may be reached when the vertex label is big
enough to accommodate two or more consecutivéP(i). Hence or otherwise we can complete

the proof in Case 1, by allotting all pentagonal numbers from! P(1) to ! P(qg). For example, p
graceful labeling of C15 is shown in Figure 2.

376 129 305 188 96 45 10
O O O O O
A\ A\ A\ A\ A\

o O 5

O O O O O O
Ny N4 \J Ny Ny

330 43 253 108 38 16 4

Figure 2

Case 2 n 2(mod 4)

Let n =4k +2 for somek. Dene f,:V(Cy)!f 0;1; ;!P(q)g such that

fo(u) =0; fp(u2) = ! P(Q);

fo(ui)= fp(ui 1)+( 1)'P(q 2i+4); 366 b%c 2

fo(ug i)= fp(ug i+1)+( 1)'P(q@ 2i 1);16i6 bc 4andfp(ug)=!P(q 1).

As discussed in the earlier case, after the above de ned sty we may make suitable

increments or decrements depending upon the size of verteabels, to get the remaining! P(i).
As an example consider the labeling of214 in Figure 3.
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0 287 77 222 130 79 67
@ O O O O O O
O O O O O O O
247 71 188 118 83 61 62

Figure 3

Case 3 n 3(mod 4)

Let n =4k 1 for somek. Here we de nef, on V(C,) as follows:

fp(u1) =0; fp(uz) = 1 P(a);
fp(ui) = fp(ui 1)+( 1)'1P(q 2i+4); 3616 bc 1,
fo(ug i) = fpug i+2)+( 1)'P(g 2 1); 16 i6 bjc 3andf,(ug)="!P(q 1)

As we reach the vertex atbjc ie, Upn ¢ and the vertex uqy 1c+2 @ stage will be reached
where the vertex labels is big enough to accommodate two or ne consecutive! P(i). Hence
or otherwise we can complete the labeling in the required mamer. For example, consider the

p graceful labeling ofCis in Figure 4.

330 83 259 142 72 50 38
O O O O O f)
A\ A\ A\ A\ A\ \

0 O

O O O O O O
A\ A\ A\ A\ A\

287 77 222 130 79 44 39

Figure 4

Denition 2:1 The armed crown is a graph obtained from cycle&C,, by attaching a pathP,, at
each vertex ofC, and is denoted byC, Py,.

De nition  2:2 Biarmed crown C, 2 P, is a graph obtained fromC, by identifying the pendant
vertices of two vertex disjoint paths of same lengtim 1 at each vertex of the cycle.

Corollary 2:1 The armed crown C, Py and bi-armed crown C, 2 P, are p graceful for
somen and m.
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x3: p Gracefulness of Some Duplicate Graphs

De nition  3:1 Let G be a graph withV (G) as vertex set. LetV°be the set of vertice§V g = jVj
where eacha 2 V is associated with a uniquea® 2 V° The duplicate graph of G, denoted by
D(G) has the vertex setV [ V°and E(D(G)) de ned as,

E(D(G)) = fat’and a®: ab2 E(G)g (see [2])

For example, D(C3) = Cs.

as a3
o———O
a1 _ a?O Oa
2 3 gz aé
CS D ( C3 )

Figure 5

Theorem 3:1 The duplicate graph of a path isp graceful.

Proof Let P, be a path.
D(Pn)= Pn[ Pn

By Theorem 1.2, D(P,) is p graceful.
Theorem 3:2 The duplicate graph of a starS, is p graceful.
Proof Let S, = K1, be a star.
D(Sn)=Snl Sn
By Theorem 1.2,D(Sy) is p graceful.

Theorem 3:3 The duplicate graph ofH graph admitsp graceful labeling.

Proof Let G be anH -graph on 2n vertices. D(G) = G[ G. Again by the same theorem
mentioned above, we have the result.

Theorem 3:4 The duplicate graphC30K 1., n > 5 admits p graceful labeling.

Proof D(C36Kin) = Cg02K1.,. Let uj;i =1;2;:::;6 be the vertices ofCs and u;; and
ugi; i =1;2;:::;n be the pendant vertices attached withu; and uy respectively.
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Consider the mappingf, on the vertices of G = Cg02K ;5 asfp : V(G) I'f 0;1;:::;! P(g)g
such that

fp(u)=0; fp(uz) = ! P(6);

fo(us) =29;  fp(us)=24;  fp(us)=23;  fp(ue) = 35;

fp(ui) = ' P(6+ n+i); i=1;2;:::5n;

fp(Usi) = fp(ua) + 1P(T+i 1) i=1;2; ;n.

Obviously f, de ned as above give rise tof , as required. Hence the result.

In general D (Cy,, 6K1.n) is p graceful for somem.

Remark 3:1 D(Czy) = Con [ Cap for all nis not p graceful.

But D(Can+1) = Cyon+1) isp graceful, if Cop4y is so.

Conjecture  All trees are p graceful.
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Abstract : Let n 2 be an integer. The complete graph K, with 1-factor | added has
a decomposition into Hamilton cycles if and only if n is even. We show that K, + | has
a decomposition into Hamilton cycles which are symmetric wi th respect to the 1-factor |

added. We also show that the complete bipartite graph Kn.n plus a 1-factor has a symmetric
Hamilton decomposition, where n is odd.
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position.

AMS(2010) :

x1: Introduction

By a decomposition of a nonempty graphG is meant a family of subgraphsG;; G,;  ; Gk of G
such that their edge set form a partition of the edge set of5. Any member of the family is called
a part (of the decomposition). This decomposition is usualy denoted byG = G; G» Gk.

Let n 2 be an integer. The complete graphK,, has many Hamilton cycles and since
its vertices have degreen 1, K, has a decomposition into Hamilton cycles if and only ifn is
odd. Suppose thatn =2m + 1. The familiar Hamilton cycle decomposition of K, referred to
as the Walecki decomposition in [1] is a symmetric decompasbn in that each Hamilton cycle
H in the decomposition is symmetric in the following sense. Lethe vertices of K, be labeled
as01;2, ;m;1;2;, ;m. Then eachH is invariant under the involution i ! i, wherei = i;
the vertex 0 is a xed point of this involution. A symmetric Ha milton cycle decomposition of
K dierent from Walecki's is constructed in [1].

Let G be a graph, then G[2] is a graph whereby each vertex is replaced by a pair of two
independent verticesx; x and each edgexy is replaced by four edgexy; xy; xy; xy.

Now suppose thatn is even. Adding the edges of a 1-factot to K, results in a graph

1Received December 10, 2012, Accepted September 2, 2013.
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Kn + | each of whose vertices has even degree The graph K, + | does have a decomposition
into Hamilton cycles (see [3]). The complete solution to theproblem of decomposingK , + |
into cycles of given uniform length is given in [3].

The degrees of vertices of the complete bipartite graptK ., equal n, and K., has a
decomposition into Hamilton cycles if and only if n is even. Ifn is odd, adding a 1-factor| to
Knn results in a graphKnn + | with all vertices of even degreen +1 and K, + | also has a
decomposition into Hamilton cycles.

Let n =2m be an even integer withm 1. Consider the complete bipartite graphK n:n
with vertex bipartition into sets f1;2; ;ngandfl;2; ;ng. By a symmetric Hamilton cycle
in Kn.n, we mean a Hamilton cycle such thatij is an edge if and only ifij is an edge. Thus a
Hamilton cycle in K., is symmetric if and only if it is invariant under the involuti oni! .

A symmetric hamilton cycle decomposition of K., is a partition of the edges of K
into m symmetric Hamilton cycles. Now letn =2m + 1 be an odd integer with m 1, and
consider the 1-factorl = ff 1;ng;f2;n  1g; ;fn;1ggof Ky + 1. A symmetric Hamilton
cycle decomposition ofK .., + | is a partition of the edges ofK ., + | into m +1 symmetric
Hamilton cycles.

Let m > 1 be even, consider the vertex set of the complete grapk ., tobef1;2; ;mg[
f1;2; ;mg, wherel = f11;22; ;mmg is a 1-factor of K o, .

The edges ofK,, + | are naturally partitioned into edges of K, onf1;2; ;mg, the
edges ofK ;m + I, and the edges oK, onf1;2; ;mg. We denote the complete graph on
f1,2;, ;mgby K. We abuse terminology and write this edge partition as:

By a symmetric Hamilton cycle of K, + | we mean a Hamilton cycle such that

(1) ij is an edge in Kn,) if and only if (ij) is an edge inK,, and

(2) ij isan edge in Kmm + |)ifand only if ji is an edge in Ky:m + 1).

Thus a Hamilton cycle of Ko, + | is symmetric if and only if it is invariant under the xed
point free involution of Ko, +1,where (a)= aforallainfl;2; ;mg[f 1,2, ;mgand
a= a. A symmetric Hamilton cycle decomposition of K, + | is a decomposition ofK o, + |
into m symmetric Hamilton cycles. Thus is a nontrivial automorphism of K,y + 1, which
acts trivially on the cycles in a symmetric Hamilton cycle decomposition of Ko, + | .

A double cover of K,y by Hamilton cycles is a collection Cy; Cy; Conm 10f2m 1
Hamilton cycles such that each edge oK o, occurs as an edge of exactly two of these Hamilton
cycles. Note that the sum of the number edges in these Hamilto cycles equals

0 1

2m
2m 1)2m=2@ A
2

twice the number of edges oK ,,, and this also equals half the number of edges d 4m 1.
We useKp + | t% denote the multigraph obtained by adding the edges of a 1dctor | to
Kn, thus duplicating > edges.
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Let k be a positive integer andL f 1;2; ;bgcg. A circulant graph X
graph with vertex set V(X)) = fug;uz;  ;uxgand edge setE (X ), where E(X)
k . k .k :

Z;1 2L f —-gg[f ujuj+x :i2f1;2; ;Eggﬁ > 2L,and E(X) = fujuj+; ;i1 2 Zg;1 2 Lg
otherwise. An edgeu;u;+, wherel 2 L is said to be of lengthl and L is called the edge length
set of the circulant X .

X(k;L)is a
fUiUi+| 2

Notice that K, is isomorphic to the circulant X (n;f1;2; ;b%cg). If niseven,K, | is
isomorphic to X (n;f1;2; ;g 1g) and K, + | is isomorphic to X (n;f 1; 2; ;g 1;%;%9).

Let X = X (k;L) be a circulant graph with vertex set fui;uy;  ;uxg. By the rotation
we mean the cyclic permutationfug; uy; ; Uk g

If P = Xox1 Xp is a path, P denotes the pathxpx, 1 X1Xo, the reverse ofP.

x2. Proof of the Result

In order that K, + | have a symmetric Hamilton cycle decomposition, it is necessy that n be
even.

Theorem 2:1 Let m 2 be an integer. There is a symmetric Hamilton cycle decompoton
Of K2m + I .

Proof View the graph Koy + | as the circulant graph X (2m;f1;2; ;m 1;m;mg) with
vertex setfxi;X2;  ;Xamg. Let P be the zig-zag (n 1) path

P = X1X+1X 1X+2X 2 Xa

whereA=1 2+3 +( 1)™(m 1). Thus P has edge length set , = 1,2, ;m 1g.
It is easy to see that
C=P[ ™(P)x

is an 2m-cycle andf '(C):i=0;1; ;m 1gis a Hamilton cycle decomposition ofK o + 1.
Next relabel the vertices of the graphK,y, + | by de ning a function f as follows: f :
xpi! xpforl i mandf :xi! Xi m form i 2m. Relabeling of the vertices of each

Hamilton cycle C,,, with the new labels gives symmetric Hamilton cycle. HenceK o, + | can
be decomposed into symmetric Hamilton cycle.

Lemma 22 Letm 2 be an integer, and letC be a symmetric Hamilton cycle ofK,m + |
Then

(1) If x is any vertex of K, + |, the distance betweerx and x in C is odd;

(2) C is of the form x1; X2; Xm o Xm o Xm o 1] 1 X2, X1X1 Where
xi2f1,2;,  ;m;12;  ;mg;
(3) The number of edges;x; in each symmetric Hamilton cycle is2;1 i m.

Proof Let x be a vertex of K, + | and let the distance betweenx and x in C be k. Then
there is a path x = Xy; P Xt X :XoX1 = x in C. Since for eachxi;i 2 N we have
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k+1 _ k+1 . .
k; — 2 N. Supposek is even, then 2 N .Therefore k is odd which proves (1).

Assertion (2) is now an immediate consequence. Since the dgcC is given as in (2), we
have edged x;1x1g9 and f X Xm g which proves (3).

Theorem 2:3 Let m be an even integer, then the graplk ,, + | [2] has a symmetric Hamilton
cycle decomposition.

Proof From the de nition of the graph K, + 1[2], each vertex x inK, + | is replaced by a
pair of two independent verticesx; x and each edgexy is replaced by four edgesy; xy;Xxy; xy.
Also note that if the graph H decomposes the grapls, then H [2] decompose$5[2].

By [3], cycle Cr, decomposeK , + |, then we have

Km+ 1[2]=Cn[2] Cn[2] Cml[2]

Now label the vertices of each graphC,[2] asx;x;, wherei =1;2; ;m. By [2], each graph
Cm[2] decomposes into symmetric Hamilton cycleC,, . Therefore K, + | [2] decomposes into
symmetric Hamilton cycles.

Theorem 2:4 Letm 4 be an even integer. From a symmetric Hamilton cycle decompd#n
of K + 1[2] we can construct a double cover oK ,, + | by Hamilton cycles.

Proof By Theorem 2.3, a symmetric Hamilton cycle ofK , + | [2] is of the formX1;X2;  ;Xm;
Xm i Xm 1 1 X2 X1X1 wherex; 2f 1;2; 'm;1;2; ;mg. Thus x1Xz::: X is a path of length
m 1linKpy+ I[2]andXmXm 1 XgXp IS its mirror image. Let

8
b= S x ifx2f1,2 :mg
- X ifxp 2112 ;mg
Then by; bp; ;bm; by is a Hamilton cycle in K, + |, the projection of C on K, + . Now

assume we have a symmetric Hamilton cycle decomposition &€, + 1 [2]. Then for each edge
XiXj in Km + 1, there are distinct symmetric Hamilton cycles C and C°in our decomposition
such that x;x; and x;x; are edges ofC and x;x; and x;x; are edges ofc® Hence from a
symmetric Hamilton cycle decomposition ofK , + | [2], we get a double cover oK, + | from

the projections of each symmetric Hamilton cycle.

Theorem 25 Let m 4 be even integer. ThenKyy, + | has a double cover by Hamilton
cycles.

Proof There is a Hamilton cycleC in K, + |, and there exists disjoint 1-factorl; and I,
whose union is the set of edges df. The vertices of the graphsK ;,, + 13 and Ko, 12 have
degrees equal to the even number. The graph§ . + 17 and K, |2 have decompositions into
Hamilton cycles Cy; Cy; :Cm and D1;Dy; ;Dm 1 respectively. ThenC; Cy; Cy; :Cm;
D1;Dy;: ;Dm 1 is a double cover ofK oy, + | by Hamilton cycles .

Theorem 2:6 For each integerm 1, there exist a symmetric Hamilton cycle decomposition
of Kom+1;om+1 + I
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Proof Let n=2m +1, we consider the complete bipartite graphK ., with vertex bipar-
titon f1;2;3; ;ngandfl;2;, ;ng. Letl beffl;ng;f2;n 1g;f3;n 2g; ;fn;1ggin
Knn + 1.

Let the sum of edgeabbea+ b mod n Let S¢ be the set of edges whose sum ls Let
i be anintegerwith 1 i m+1. Consider the union Sy 1[ S, 2i is calculated modulon.
observe that this collection of edges yields the followingyanmetric Hamilton cycle of K., + 1;

n2i 1,12 2,220 3;3; ;2N

For eachi, let H; equal Sy 1 [ Szi. Then Hy; Hy; iHm+1 IS a symmetric Hamilton cycle
decomposition ofKp.n + 1.
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Abstract : Inthis paper, ratio by using coe cients of Fibonacci sequen ce has been discussed
in detail. The Fibonacci series is made from Fn+2 = Fn + Fn+1 . New sequences from the
formula Fn+2 = aFn + bF,+1 by using a and b, where a and b are consecutive coe cients of
Fibonacci sequence are formed. These all new sequences havaeir own ratios. When nd
the ratio of these ratios, it always becomes 1:6, which is known as golden ratio in Fibonacci
series.
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x1: Introduction

The Fibonacci numbers were rst discovered by a man named Lewmardo Pisano. He was known
by his nickname, Fibonacci. The Fibonacci sequence is a segnce in which each term is the sum
of the 2 numbers preceding it. The rst 10 Fibonacci numbers ae: 1;1;2;3;5;8;13;21; 34;55
and 89. These numbers are obviously recursive. Leonardo Rieo Bogollo, (c.1170 - ¢.1250)
known as Leonardo of Pisa, Fibonacci was an Italian mathematian (Anderson, Frazier, &
Popendorf, 1999). He is considered as the most talented ma#imatician of the middle ages
(Eves, 1990). Fibonacci was rst introduced to the number system we currently use with
symbols from 0 to 9 along with the Fibonacci sequence by India merchants when he was
in northern Africa (Anderson, Frazier, & Popendorf, 1999). He then introduced the Fibonacci
sequence and the number system we currently use to the westeEurope In his book Liber Abaci
in 1202 (Singh, Acharya Hemachandra and the (so called) Fibwacci Numbers, 1986) (Singh,
The so-called Fibonacci numbers in ancient and medieval Ind, 1985). Fibonacci was died
around 1240 in Italy. He played an important role in reviving ancient mathematics and made
signi cant contributions of his own. Fibonacci humbers are important to perform a run-time
analysis of Euclid's algorithm to Find the greatest common dvisor (GCD) of two integers. A
pair of two consecutive Fibonacci numbers makes a worst caseput for this algorithm (Knuth,
Art of Computer Programming, Volume 1: Fundamental Algorit hms, 1997). Fibonacci numbers

1Received May 31, 2013, Accepted September 5, 2013.
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have their application in the Polyphone version of the MergeSort algorithm. This algorithm
divides an unsorted list in two Lists such that the length of lists corresponds to two sequential
Fibonacci numbers.
If we take the ratio of two successive numbers in Fibonacci ses, (1;1;2; 3;5; 8; 13; cdots)
we nd
1=1=1; 2=1=2; 3=2=1:5; 5=3=1:666::;8=5=1:6;13=8 = 1:625

Greeks called the golden ratio and has the value:61803. It has some interesting properties,
for instance, to square it, you just add 1. To take its reciprocal, you just subtract 1. This means
all its powers are just whole multiples of itself plus anothe whole integer (and guess what these
whole integers are? Yes! The Fibonacci numbers again!) Fibmcci numbers are a big factor in
Math.

1:1 Fibonacci Credited Two Things

1: Introducing the Hindu-Arabic place-valued decimal systemand the use of Arabic numerals
into Europe. (Can you imagine us trying to multiply numbers using Roman numerals?)

2: Developing a sequence of numbers (later called the Fibonacsequence) in which the rst
two numbers are one, then they are added to get 2, 2 is added tohe prior number of 1 to
get 3, 3 is added to the prior number of 2 to get 5, 5 is added to te prior number of 3 to
get 8, etc. Hence, the sequence begins asl12; 3;5; 8; 13; 21; 34; 55; 89; 144, etc Allows users to
distribute parallelized workloads to a shared pool of resorces to automatically nd and use the

best available resource. The ability to have pieces of workun in parallel on di erent nodes in

the grid allows the over all job to complete much more quicklythan if all the pieces were run
in sequence.

1:2 List of Fibonacci Numbers
The rst 21 Fibonacci numbers F, forn =0;1;2; ;::;20 are respectively
0;1;1;2;3,5;8;13; 21, 34,55, 89; 144, 233 377,610 987, 1597, 2584 4181, 6765

The Fibonacci sequence can be also extended to negative inde using the re-arranged
recurrence relation

Fn 2=Fn Fn 1

This yields the sequence ohega bonacci numbers satisfying
Fon=( 1)n+1 Fn:

Thus the bidirectional sequence is

Fe F7 Fe Fs Fa Fs Fo Fi1 Fo Fi Fo Fs Fs Fs Fg F7 Fa
22 13 8 5 3 2 1 1 0 1 1 2 3 5 8 13 21
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x2: Fibonacci Sequence in Nature

2:1 Sun ower

The Fibonacci numbers have also been observed in the family¢e of honeybees. The Fibonacci
sequence is a pattern of numbers starting with 0 and 1 and addig each number in sequence to
the next ; 0+1=1;1+1=2so the rst few numbers are 0;1;1;2;3;5;8; and so on
and so on in nitely.

Fig. 1:1 Sun ower head displaying orets in spirals of 34 and 55 around the outside

One of the most common experiments dealing with the Fibonadcsequence is his experiment
with rabbits. Fibonacci put one male and one female rabbit ina eld. Fibonacci supposed
that the rabbits lived in nitely and every month a new pair of one male and one female was
produced. Fibonacci asked how many would be formed in a year.Following the Fibonacci
sequence perfectly the rabbit's reproduction was determied 144 rabbits. Though unrealistic,
the rabbit sequence allows people to attach a highly evolvederies of complex numbers to an
everyday, logical, comprehendible thought.

Fibonacci can be found in nature not only in the famous rabbit experiment, but also in
beautiful owers. On the head of a sun ower and the seeds are acked in a certain way so that
they follow the pattern of the Fibonacci sequence. This spial prevents the seed of the sun ower
from crowding themselves out, thus helping them with survival. The petals of owers and other
plants may also be related to the Fibonacci sequence in the wathat they create new petals.

2:2 Petals on Flowers

Probably most of us have never taken the time to examine very arefully the number or ar-
rangement of petals on a ower. If we were to do so, we would ndthat the number of petals
on a ower that still has all of its petals intact and has not lo st any, for many owers is a
Fibonacci number:

(1) 3 petals: lily, iris;

(2) 5 petals: buttercup, wild rose, larkspur, columbine (aquilegia);

(3) 8 petals: delphiniums;

(4) 13 petals: ragwort, corn marigold, cineraria;

(5) 21 petals: aster, black-eyed susan, chicory;

(6) 34 petals: plantain, pyrethrum;
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(7) 55, 89 petals: michaelmas daisies, the asteraceae famil

2:3 Fibonacci Numbers in Vegetables and Fruits

Romanesque Brocolli/Cauli ower (or Romanesco) looks and &stes like a cross between brocolli
and cauli ower. Each oret is peaked and is an identical but smaller version of the whole thing
and this makes the spirals easy to see.

Fig. 1.2 Brocolli/Cauli ower

2:4 Human Hand

Every human has two hands, each one of these has ve ngers, €a nger has three parts which
are separated by two knuckles. All of these numbers t into the sequence. However keep in
mind, this could simply be coincidence.

Fig. 1:3 Human hand

Subject:  The Fibonacci series is a sequence of numbers rst created byeonardo Fi-
bonacci in 1202. The rst two numbers of the series are 1 and 1rad each subsequent number is
sum of the previous two. Fibonacci numbers are used in comper algorithms. The Fibonacci
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sequence rst appears in the book Liber Abaci by Leonardo of Bsa known as Fibonacci. Fi-
bonacci considers the growth of an idealized rabbit populabn, assuming that a newly born
pair of rabbits, one male, one female and do the study on it. Tle Fibonacci series become
1;1;2;3;5; 8,13, 21

x3: Ratio by Using Coe cients of Fibonacci Sequence

3:1 Ratio By Using 1;2 as Coe cients

Apply the formula by using the next two coe cients of Fibonac ci series i.e. 1 forF,,; and 2
for F,,. So the series that becomes from this formula i$,+» = 2F, + Fh+1, F1 =1, F, =1,
F3=3,5;11;21;43,85;171;341;683 1365 . K

From this sequence, nd the ratio by dividing two consecutive numbers.

F2

1
l:_121:]_
F 3
F_z:1:3
F 5
F—;‘: §:1:66
F 11
FT g2
F 21
TR
F, 43
Fo = 51720
F 85
F ool
F 171
F = gs - 20

From here the conclusion is that the ratio (in integer) of this series is 2.

3:2 Ratio by Using 2, 3 as Coe cients

The series that becomes by using ;B as coe cients is Fp+» =3F, +2Fn 41, 1.e,, F1 =1;F; =
1;F3 =5, 13;41;121; 365 1093 3281, 9841,
From this sequence, nd the ratio by dividing two consecutive numbers.

F2
F1
Fa
F2
Fa
Fs
Fs
Fa

|
1
-

B Rlo R e
w
| I
a1
N
o

ol &l
I

w

[

ol
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Fe
Fs
F7
Fs
Fg
Fr
Fo
Fg

From here the conclusion is that the ratio (in

3:3 Ratio by Using 3;5 as Coe cients

of Fibonacci Sequence

];1—211=3:15
%=3:01
%’:2:99
%:3:01

integer) of this series is 3.
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The series that becomes by using ;3 as coecients is Fn.o =5F, +3Fn4p,ie,, F1 =1;F; =
1;F3 =8, 29;127/526,2213 9269 38872 162961

From this sequence, nd the ratio by dividing two consecutive numbers.

F2
F1
Fa
F2
Fa
Fs
Fs
Fa
Fe
Fs
Fz
Fe
Fs
|:_7
Fo
F_s

From here the conclusion is that the ratio (in integer) of this series is 4.

3:4 Ratio by Using 5;8 as Coe cients

1
-

N I Rl
1
(00}

H

o @B

\‘
I
w
o

The series that becomes by using ;B as coecients is Fn., =8F, +5Fq41,ie.,, F1 =1;F; =
1;F3 =13, 73;469 2929 18397 115417724229

From this sequence , nd the ratio by dividing two consecutive humbers.

F2
Fi
Fs
F2
Fa

F3

= °=13
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E—i= 47—%9=6:4
E—zz %9=6:24
E—Z: %7:6:28
= T =627
Fo_ 12002950

From here the conclusion is that the ratio (in integer) of this series is 6.
Continuing in this way, nd that the ratio of

Fn+2 =13F, +8Fn41 is 9 (in integer);
Fn+2 =21F, +13Fn+1 is 14 (in integer);
Fn+2 =34F, +21Fn4+1 is 22 (in integer);

x4: Conclusion

Therefore the sequence becomes from all the ratios by usindié consecutive numbers as the
coe cients of Fibonacci sequence is:

2;3;4;6;9; 14, 22; 35, 56; 90; 145 234, 378
Now nd the ratio that on dividing consecutive integers, of t his sequence is:
3=2=1:5;4=3=1:33,6=4=1:5;14-9 = 1:6;22=14 = 1:6; 35=22 = 1:6
and 56=35 = 1:6;90=1:6; 145-90 = 1:6; 234=145 = 1:6

It always become 16, yes it is again the golden ratio of Fibonacci sequence. Sé conclusion
is that the ratio of these ratios is always become golden rat in Fibonacci series.
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| want to bring out the secrets of nature and apply them for tHeappiness of
man. | don't know of any better service to o er for the short tmne we are in the
world.

By Thomas Edison, an American inventor.
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