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Abstract—Probability transformations provide a method of
relating Dempster-Shafer sources of evidence to subjective proba-
bility assignments. These transforms are constructed to facilitate
decision making over a set of mutually exclusive hypotheses.
The probability information content (PIC) metric has been
recently proposed for characterizing the performance of different
probability transforms. To investigate the applicability of the PIC
metric, we compare five probability transformations (i.e., BetP ,
PrP l, PrNPl, PrHyb, and DSmP ) using a simulator of human
responses from cognitive psychology known as two-stage dynamic
signal detection. Responses were simulated over two tasks: a line
length discrimination task and a city population size discrimina-
tion task. Human decision-makers were modeled for these two
tasks by Pleskac and Busemeyer (2010). Subject decisions and
confidence assessments were simulated and combined for both
tasks using Yager’s rule and mapped into subjective probabil-
ities using the five probability transforms. Receiver operating
characteristic (ROC) curves, normalized areas under the ROC
curves (AUCs), along with average PIC values were obtained
for each probability transform. Our results indicate that higher
PIC values do not necessarily equate to higher discriminability
(i.e., higher normalized AUCs) between probability transforms.
In fact, all five probability transforms exhibited nearly the same
normalized AUC values. At lower, fixed false alarm rates, the
BetP , PrP l, PrNPl, and PrHyb transforms yielded higher
detection rates over the DSmP transform. For higher, fixed false
alarm rates, the DSmP transform yielded higher detection rates
over the other four transforms. These trends were observed over
both tasks, which suggests that the PIC may not be sufficient for
evaluating the performance of probability transforms.

Index Terms—Data fusion, Dempster-Shafer theory, Belief
fusion, Human Simulation, Probability transformations

I. INTRODUCTION

The Dempster-Shafer theory of beliefs is a popular tool
in the information fusion community (e.g., [1]–[6]). As op-
posed to the use of subjective probabilities (i.e., Bayesian
epistemology [7]), the Dempster-Shafer approach employs a
normalized measure of evidence (i.e., belief mass assignment)
on a powerset of alternatives. The result is a method of spec-
ifying imprecise evidence that results in classes of subjective
probabilities (i.e., belief and plausibility intervals [8], [9]).
To facilitate decision making, probability transformations are
used to generate a subjective probability supported by a given
belief mass assignment. There exists several Dempster-Shafer
theory based fusion rules [10], as well as a large number of
probability transformations (e.g., [11]–[13]). These transfor-
mations are usually evaluated through the use of hypothetical
examples and by measuring the amount of entropy present

in the resulting transformed probabilities for a given set of
evidence (i.e., the probability information content, PIC, as in
[13], [14]).

In this study, we simulate the error rates of a fusion
system for a selection of probability transformations using
models of human responses (i.e., decision-making, confidence
assessment, and response time) from cognitive psychology.
The human response model employed is the two-stage dynamic
signal detection (2DSD) from [15]. We have used this model
previously to simulate the performance of fusion combination
rules over binary decision tasks in [16], [17]. In the current
study, we use the line length discrimination task and the city
population size discrimination task that have been previously
modeled in [15]. For both tasks, human decison-makers were
positioned at a computer monitor. For the line length discrim-
ination task, subjects were presented with a pair of lines and
asked to determine which of the two was longer. For the city
population size discrimination task, subjects were presented
with two United States cities and asked to determine which
of the two had a higher population. For both tasks, subjects
were asked to provide their confidences in their declarations
on a subjective probability scale.

The remainder of the paper is organized as follows. Sec-
tion II overviews 2DSD, the line length discrimination task,
and the city population size discrimination task. Section III
describes the probability transformations investigated here,
and the relevant Dempster-Shafer terminology. Human re-
sponses are combined using Yager’s rule [18], after which
the combined results are transformed into subjective proba-
bilities using the Pignistic (i.e., BetP ) [19], PrP l, PrnP l,
PrHyb [11], and DSmP [13] probability transformations.
The framework of our simulation is described in Section IV.
In Section V, receiver operating characteristic (ROC) curves
and normalized areas under the ROC curves are estimated after
applying the five probability transformations investigated here,
along with the corresponding probability information content
(PIC) values.

II. HUMAN RESPONSE SIMULATION

The human response simulation methodology employed
here involves the line length discrimination task and the city
population size discrimination task given in [15]. We provide
a brief overview of the 2DSD model of human responses and



the two tasks ( [15] has more information on the parameter
estimation and validation of the human subjects).

A. Two-Stage Dynamic Signal Detection [15]
Let A = {A,A} represent two alternatives on a binary

decision task. The 2DSD human response model simulates
internal evidence accumulation for one alternative over the
other, L(t), using the stochastic linear difference equation,

∆L(t) = δ∆t+
√

∆t ε(t+ ∆t), L(0) = L0, (1)

where δ is the drift rate and ε(t) is a simulated white noise
process with zero mean and variance σ2. The parameter σ is
known as the drift coefficient. The drift rate δ is positive if
A is true and negative if A is true. This type of stochastic
process, known as drift diffusion, is a common model of
human decision making and response time used in cognitive
psychology. To make a choice, L(t) is accumulated using
∆L(t) until a threshold, either θA,−θA, is crossed (where
L0 ∈ [−θA, θA]). The decision a is then given as

a =


A L(t) > θA,

A L(t) < −θA,
wait otherwise

. (2)

Confidence assessment is achieved by waiting an additional
interjudgment time, τ , and binning the final value of L(t).
Let P (a) = [p

(a)
1 · · · p

(a)
Ka

] denote the Ka possible confidence
values when choosing a ∈ A at time td. The chosen confidence
level p ∈ P (a) for deciding a after waiting tc = td+τ is given
as

p = p
(a)
i when L(tc) ∈ [c

(a)
i−1, c

(a)
i ], (3)

where c
(a)
0 = −∞ and c

(a)
Ka

= ∞ for each a ∈ A. The
remaining confidence bin parameters C(a) = [c

(a)
1 · · · c

(a)
Ka−1]

are chosen such that ci−1 < ci for each i ∈ {1, . . . ,Ka − 1}.
The drift rate δ and initial condition L0 can be chosen

randomly at the beginning of a given simulation to allow for
decision variability between trials. This randomization of δ
and L0 is performed in [15] by choosing δ from a normal
distribution with mean ν and variance η2, and choosing L0

from a uniform distribution in the range [−0.5sz, 0.5sz]. The
values ν and η are the drift rate mean and standard deviation,
and sz is the size of the interval that L0 is chosen from.
To simplify the implementation and parameter estimation of
2DSD, the authors of [15] suggest the following:
• Set θA = θA = θ.
• Standardize possible confidence assessment values (e.g.,
P (A) = P (A) = [0.50, 0.60, · · · , 1.00]).

• Fix the confidence interval bins between each alternative
(i.e., C(A) = C(A) = C = {c1, c2, . . . , c5}).

• Fix σ = 0.1.
The 2DSD parameter set for a single subject, S becomes

S = {ν, η, sz, θ, τ, c1, c2, c3, c4, c5}. (4)

The ten parameters defined by S can be determined from
a subject’s decision, confidence, and response time statistics
using quantile maximum probability estimation [20].

TABLE I
RELATIONSHIP BETWEEN THE MEAN DRIFT RATES ν OF [15] WITH LINE

LENGTH AND CITY POPULATION RANK DIFFERENCES.

Mean Drift Rate Line length difference Population rank difference

ν1 0.27 mm 1 - 9
ν2 0.59 mm 10 - 18
ν3 1.23 mm 19 - 29
ν4 1.87 mm 30 - 43
ν5 2.51 mm 44 - 59
ν6 3.15 mm 60 - 99

B. Overview of Tasks

We use the line length discrimination task and the city
population size discrimination task, modeled in [15], as case
studies. For the line length discrimination task of [15], six
individuals were asked to compare a pair of horizontal lines
with different lengths. The two lines were separated by a 20
millimeter long line. Each pair of lines consisted of a 32.00
millimeter long line and either a 32.27, 32.59, 33.23, 33.87,
34.51, or 35.15 millimeter long line. For the city population
size discrimination task, six individuals were asked to compare
pairs of the 100 most populated United States cities. Their
answers were graded based on city population rank estimates
taken from the 2006 U.S. census [21].

For both tasks, subjects were instructed to first make a
declaration towards which of the two stimuli is larger (i.e. the
longer line or the more populated city). Immediately thereafter
the subjects were asked to assess their own confidence in
that declaration on the probability scale {0.50, 0.60, . . . , 1.00}.
Subject mean drift rates ν varied based on task difficulty, as
shown in Table I. The difficulty of the line length discrimi-
nation task decreases as the actual length difference between
the two lines increases. The difficulty of the city population
size discrimination task decreases as the difference between
the population ranking of the two cities increases. Separate
decision thresholds θ were determined for two cases of each
task. These where when (1) subjects were asked to focus on
fast responses; and when (2) subjects were asked to focus on
accurate responses. Here we have used 2DSD parameter sets
for subjects focusing on accurate responses. The values are
available in [15, Tables 3 and 6].

III. PROBABILITY TRANSFORMS AND DECISION MAKING

A. Preliminaries

The following necessary background on Dempster-Shafer
theory is taken from [8] and [10]. Consider the set of mutually
exclusive alternatives Ω and its powerset 2Ω. A Dempster-
Shafer approach to information fusion assesses evidence on
the powerset of alternatives through the use of belief mass as-
signments (BMAs), m(X), defined for all X ⊆ Ω. BMAs are
normalized quantities of evidence, such that

∑
Z⊆Ωm(Z) =

1. Two additional functions known as Belief, Bel(X), and
Plausibility, Pl(X), are defined. They respectively represent
a minimum and maximum amount of evidence assigned by



the BMA m(X) on some X ⊆ Ω. That is,

Bel(X) =
∑
Z⊆Ω
Z⊆X

m(Z), (5)

and
Pl(X) = 1− Bel(X) =

∑
Z⊆Ω

Z∩X 6=∅

m(Z), (6)

where ∅ is the empty set. When m(∅) = 0, BMAs become
normalized measures of evidence on the powerset and the
belief and plausibility measures can be interpreted as bounds
on potential subjective probabilities which are supported by
a given BMA. For the remainder of the study, we will
assume that m(∅) = 0. The differences between the belief
and plausibility bounds represents the amount of imprecise
evidence given by the BMA (i.e., the mass assigned to the
non-singleton elements of the powerset). If no belief masses
are assigned to the non-singleton elements of the powerset,
the BMA is equivalent to a subjective probability assignment.

There exists several fusion combination rules in the litera-
ture that operate using BMAs, each with its own benefits and
drawbacks [10]. In the current study, we make use of Yager’s
rule for combining belief mass assignments [18]. Given two
BMAs, m1 and m2, over the same powerset of alternatives,
Yager’s rule is given as

m1,2(X) =


∑

Z1,Z2⊆Ω
Z1∩Z2=X

m1(Z1)m2(Z2) X 6= Ω∑
Z1,Z2⊆Ω
Z1∩Z2=X

m1(Z1)m2(Z2) +K X = Ω
,

(7)
where K is defined as the degree of conflict between m1 and
m2 such that

K =
∑

Z1,Z2⊆Ω
Z1∩Z2=∅

m1(Z1)m2(Z2). (8)

Yager’s rule is commutative, but in general not associative
[10]. To make a decision, the BMAs produced by Yager’s
rule must be mapped into a subjective probability assignment
using a probability transformation.

B. Pignistic Probability Transform

The pignistic probability transformation (BetP ) was first
proposed by Philippe Smets in [22] and then included in [23]
as a part of the Transferrable Belief Model. The pignistic
probability transform involves transferring the belief mass
from each non-singleton element of a BMA to its respective
singleton elements by dividing its mass equally (i.e., according
to its cardinality). The pignistic probability can be defined for
any X ⊆ Ω as

BetP (X) =
∑
Z⊆Ω
Z 6=∅

|X ∩ Z|
|Z|

m(Z), (9)

where | · | is the cardinality of a set. The pignistic probability
transform satisfies all three Kolmogorov Axioms, and hence it
only needs to be computed for the singleton elements ω ∈ Ω.

C. Sudano Proability Transforms

Sudano has proposed a suite of five probability transforma-
tions in [11]: PrP l, PrNPl, PraP l, PrBel, and PrHyb. In
the current study, we will only focus on the PrNPl, PrP l,
and PrHyb transforms1. These three probability transforms
are defined for the singleton elements ω ∈ Ω as

PrP l(ω) = Pl(ω)
∑
Z⊆Ω
ω∈Z

m(Z)∑
ω̂∈Z Pl(ω̂)

, (10)

PrNPl(ω) =
Pl(ω)∑
ω̂∈Ω Pl(ω̂)

, (11)

and

PrHyb(ω) = PraP l(ω)
∑
Z⊆Ω
ω∈Z

m(Z)∑
ω̂∈Z PraP l(ω̂)

, (12)

where PraP l(ω) = PrP l(ω) for binary Ω. We direct the
reader to [11] or [13] for the full definition of PraP l(ω).

D. Dezert-Smarandache’s Probability Transform

A recently proposed probability transformation by Dezert
and Smarandache, denoted DSmP , is introduced in [13].
DSmP distributes belief masses assigned to the non-singleton
elements of Ω proportionally, according to the belief masses
assigned to the singleton elements. The transformation is
defined in [13] using Dedekind lattices (i.e., the hyperpowerset
of a set of alternatives). It is defined in terms of the powerset
as

DSmPε(X) =
∑
Z⊆Ω

∑
ω̂∈X∩Z m(ω̂) + ε|X ∩ Z|∑

ω̂∈Z m(ω̂) + ε|Z|
m(Z),

(13)
where ε ∈ [0,∞] is a tuning parameter. As ε → 0, DSmP
approaches Sudano’s PrBel transform. As ε → ∞, DSmP
approaches BetP [13]. The authors of [13] suggest selecting
a small value for ε in order to minimize the amount of entropy
present in the probabilities resulting from transformation. With
this in mind, we used here ε = 0.001. Similar to BetP ,
DSmP satisfies all three Kolmogorov Axioms and only needs
to be computed for the singleton elements ω ∈ Ω.

E. Probability Information Content

The probability information content (PIC) was proposed
by Sudano in [14] as a method for comparing the perfor-
mance of various probability transformations. For a subjective
probability assignment P(ω) genereated by the probability
transformation P , the PIC is defined as as

PICP(ω) = 1 +
1

logM

∑
ω∈Ω

P(ω) logP(ω) (14)

where M = |Ω|. A lower PIC value represents a subjective
probability assignment where the alternatives are close to

1For binary decision tasks, PrP l and PraP l are equivalent [13]. Further-
more, the later defined DSmP transform provides a more mathematically
robust definition over PrBel [13].



TABLE II
AVERAGE BMA AFTER COMBINATION (H1 TRUE, LINE TASK).

Line Length Difference m(H0) m(H1) m(H0 ∪H1)

0.27 mm 0.22 0.47 0.31
0.59 mm 0.08 0.69 0.23
1.23 mm 0.01 0.87 0.11
1.87 mm 0.00 0.94 0.05

TABLE III
AVERAGE PIC FOR EACH PROBABILITY TRANSFORMATION (H1 TRUE,

LINE TASK).

Line Length Difference BetP PrP l PrNPl PrHyb DSmP

0.27 mm 0.56 0.63 0.51 0.68 0.83
0.59 mm 0.67 0.72 0.64 0.76 0.88
1.23 mm 0.85 0.87 0.84 0.89 0.95
1.87 mm 0.93 0.94 0.92 0.95 0.98

being equiprobable. A higher PIC value represents a subjective
probability assignment where one of the alternatives is close
to having probability one.

IV. SIMULATION OVERVIEW

The 2DSD parameter sets relating to human responses on
the line length discrimination task and the city population size
discrimination task were used to simulate the decision perfor-
mance of the five probability transformations of Section III
(i.e., BetP , PrP l, PrNPl, PrHyb, and DSmP ). Similar
to what we have done in [17], a pool of 24 human responses
were generated for each task using the parameter sets of the six
subjects given in [15, Tables 3 and 6] by simulating four pairs
of decisions and confidence assessments from each subject.
Subjects were simulated over the first four difficulty levels
given in Table I. For the line length discrimination task, we
let H1 denote the hypothesis that the second line presented
to the subject is longer than the first and let H0 denote the
hypothesis that the first line presented to the subject is longer
than the second. For the city population size discrimination
task, we let H1 denote the hypothesis that the second city
presented to the subject has a higher population than the first
and let H0 denote the hypothesis that the first city presented
has a higher population than the second. For each task, 10,000
trials were conducted for H1 being true and 10,000 trials for
H0 being true. During each trial, the human responses from
the subject pools were used to generate BMAs such that

mi(X) =


pi X = ai

1− pi X = Ω

0 otherwise
. (15)

Here the subject decisions are given as ai ∈ Ω = {H0, H1}
and confidence assessments as pi ∈ [0, 1] for each subject
i = 1, . . . , 24. The subject BMAs mi were combined two
at a time using Yager’s rule, as described by equations (7)
and (8). Since Yager’s rule is not associative, the combination
order was randomized by choosing from the subject pool uni-
formly. The final combined BMAs were then each transformed

TABLE IV
AVERAGE BMA AFTER COMBINATION (H1 TRUE, CITY TASK).

City Rank Difference m(H0) m(H1) m(H0 ∪H1)

1 - 9 0.25 0.42 0.33
10 - 18 0.17 0.53 0.30
19 - 29 0.10 0.64 0.26
30 - 43 0.06 0.72 0.21

TABLE V
AVERAGE PIC FOR EACH PROBABILITY TRANSFORMATION (H1 TRUE,

CITY TASK).

City Rank Difference BetP PrP l PrNPl PrHyb DSmP

1 - 9 0.49 0.57 0.43 0.64 0.80
10 - 18 0.53 0.61 0.48 0.67 0.82
19 - 29 0.60 0.67 0.56 0.73 0.85
30 - 43 0.68 0.73 0.64 0.78 0.89

into subjective probability assignments P1,...,24(·) for each
trial using the five probability transformations, BetP , PrP l,
PrNPl, PrHyb, and DSmP .

Using P1,...,24(H1), the fused decision a0 ∈ {H0, H1} was
determined such that

a0 =

{
H1 P1,...,24(H1) ≥ λ
H0 otherwise

, (16)

where the threshold λ is varied in [0, 1] for a desired detection
and false alarm rate pair. The fused false alarm and detection
rates are given as

FAR = P (P1,...,24(H1) ≥ λ|H0) , (17)

and
DET = P (P1,...,24(H1) ≥ λ|H1) . (18)

The threshold test of equation (16) was used to estimate false
alarm rates and detection rates for varying threshold values
λ using the 10,000 simulated responses with H1 true and
the 10,000 responses with H0 true (after applying Yager’s
rule and each of the five probability transforms). These sets
of false alarm and detection rates were then used to create
ROC curves, and measure the areas under the ROC curves
(AUCs) for each probability transform. Higher AUC values
are indicative of higher discriminating performance between
alternatives (i.e., higher detection rates for the same false alarm
error rates). For comparison, the combined BMAs and the PIC
values for each probability transformation were determined
(averaged over 10,000 trials).

V. RESULTS

Tables II and IV show the average BMA for the line length
discrimination task and the city population size discrimination
task when H1 is true (i.e., the second line is longer than
the first, or the second city has a larger population than the
first). The average BMAs for H0 being true were the same,
except that the values of m(H0) and m(H1) were reversed.



(a) Line length difference 0.27 mm (b) Line length difference 0.59 mm

(c) Line length difference 1.23 mm (d) Line length difference 1.87 mm

Fig. 1. Normalized area under the ROC curve (AUC) versus the number of sources present in combination, for each difficulty level of the line length
discrimination task. Different lines represent the five different probability transforms investigated by this work. Error bars shown for the 95% confidence
intervals. In each of the four difficulty levels, all five probability transforms are nearly overlapping.

As expected, Yager’s rule yielded combined BMAs which had
high levels of imprecision (i.e., m(H0∪H1) between 0.05 and
0.31 for the line length discrimination task and between 0.21
and 0.33 for the city population size discrimination task). As
the task becomes easier (i.e., increasing the length difference
between line pairs or increasing the population rank difference
between city pairs), more belief mass is placed on the singleton
elements. Tables III and V show the average PIC values after
applying each of the five probability transformations to the
combined BMAs resulting from the line length discrimination
task and the city population size discrimination task. Higher
PIC values are usually considered better [13], [14], [24]. The
results in Tables III and V show increasing PIC values as
task difficulty decreases, which seems reasonable. For each
difficulty level, the PIC values follow the same trend with
PrNPl having the lowest PIC and DSmP having the highest
PIC. These trends supports the notion that DSmP produces

subjective probabilities which are the most committed towards
one of the alternatives (i.e., having the lowest entropy) [13].

Figure 1 shows the normalized AUCs versus the number of
human responses present in combination for all five probability
transforms on the line length discrimination task. Figure 3
shows the same quantities for the city population size discrim-
ination task. Each subplot of figures 1 and 3 shows normalized
AUCs for the four task difficulty levels simulated here. In all
cases, the error bars represent the 95% confidence intervals.
As expected, normalized AUC values increase as the task
becomes easier. For any given difficulty level however, all five
probability transformations exhibited statistically insignificant
differences between normalized AUC values. The overall
discriminating performance of all probability transforms is in
fact the same.

The ROC curves after combination for all five probabil-
ity transforms are shown in Figure 2 for the line length



(a) Line length difference 0.27 mm (b) Line length difference 0.59 mm

(c) Line length difference 1.23 mm (d) Line length difference 1.87 mm

Fig. 2. ROC curves for each difficulty level of the line length discrimination task, showing false alarm rates up less than 0.30. Different lines represent the
five different probability transforms investigated.

discrimination task and in Figure 4 for the city population
size task. Each subplot of figures 2 and 4 shows ROCs
for the four task difficulty levels. The ranges of the graph
axes correspond to “reasonable” false alarm rates (i.e., up to
0.30). Again, the overall shape of the ROC for all probability
transforms improves as the tasks become easier (supporting
the results shown in Figure 3). For lower false alarm rates
(e.g., less than 0.07), BetP , PrP l, PrNPl, and PrHyb
produce similar detection rates, which are all higher than
those produced by DSmP . For higher false alarm rates (e.g.,
greater than 0.10), DSmP produces higher detection rates
over the remaining four probability transforms. As false alarm
rates become even higher (e.g., greater than 0.25), similar
performance is observed for all probability transforms. For the
hardest and easiest variations of both tasks, these performance
gains become less apparent. These observations support the
conclusions reached by [25]; depending on the acceptable error
rate for a specific task, a higher PIC value may not necessarily

indicate higher detection rates.

VI. CONCLUSIONS

Using models of human responses from cognitive psychol-
ogy, we have shown that there exist cases when the probability
information content (PIC) does not always indicate “better”
probability transforms. In the example presented here, two-
stage dynamic signal detection (2DSD) was used to show
that increasing PIC values may not necessarily lead to bet-
ter discriminability performance of a probability transform.
Specifically, it was found that all five probability transforms
(i.e., BetP , PrP l, PrNPl, PrHyb, and DSmP ) yielded
the same discriminability performance (i.e., normalized AUC
values) regardless of the number of sources included in
the combination. Furthermore, the results indicate that some
probability transforms yield higher detection rates over others,
depending on the false alarm rate required. For lower false
alarm rates (e.g., less than 0.07), the BetP , PrP l, PrNPl,



(a) City rank difference 1 - 9 (b) City rank difference 10 - 18

(c) City rank difference 19 - 29 (d) City rank difference 30 - 43

Fig. 3. Normalized area under the ROC curve (AUC) versus the number of sources present in combination, for each difficulty level of the city population
size discrimination task. Different lines represent the five different probability transforms investigated by this work. Error bars shown for the 95% confidence
intervals. In each of the four difficulty levels, all five probability transforms are nearly overlapping.

and PrHyb transforms yielded higher detection rates than
DSmP . For higher false alarm rates (e.g., greater than 0.10),
this trend was reversed. These findings support the arguments
presented in [25], and suggest that simulation and testing
should be performed before the components of a specific
fusion system are selected.
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