The Stability and Radioactivity of Atomic Nucleus

Yibing Qiu yibing.qiu@hotmail.com

Abstract: put forward the causes and mechanism of radioactivity of unstable nucleus

Main Viewpoint & Result:

A Deuterium's nucleus consists of a proton and a neutron, which two protons and a π -meson, is stability; the nucleus of Helium-3 consists of two protons and a neutron, which three protons and a π -meson, is stability.

A Tritium's nucleus consists of a proton and two neutrons, which three protons and two π -mesons, it is unstable. But, since a Tritium's nucleus has only a proton, there is no exist Coulomb repulsion of protons inside a Tritium's nucleus, so we get Coulomb repulsion of protons is not the reality causes for nucleus instability and radioactivity.

The reality causes for nucleus instability and radioactivity is: Compared with a stable Helium-3, a Tritium's nucleus has a redundancy π -meson and excess energy, until freed the redundancy π -meson [π =e⁻(β)+Ne(γ)] and excess energy,

after attenuation become Helium-3, reaches stable state.

In short, radioactive nuclides, because it contains redundancy neutrons, or more accurately, because it contains redundancy π -mesons and excess energy; [2] the process that element discharged from unstable nucleus spontaneously rays (such as α -rays, β -rays, γ -rays, etc.), and the decay of the element formation in stable state, is the release of the redundancy π -mesons and the excess energy.

References

[1] <The Basic Structure and Properties of Hadrons> http://vixra.org/abs/1407.0015
[2] <π-Meson and the Structure of a Nucleus> http://vixra.org/abs/1405.0228