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Abstract 

This informal report surveys several lesser-known limitations of Wilson’s Renormalization Group program. The 

account is not intended to be either rigorous or complete as our sole purpose is to stimulate further discussions and 

research. 
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It is widely recognized that a key program built in the structure of the Standard Model of high-

energy physics (SM) is the Renormalization Group (RG), whose function is to preserve self-

consistency and describe how parameters of the theory evolve with the energy scale. The Wilson 

treatment of critical phenomena using the perturbative Renormalization Group program (RG) [1, 

11] develops from the premise that quantum fields present in the theory ( )  depend on the 

running scale   and can be segregated into a pair of un-coupled components 

 ( ) :l
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Here, 
UV  stands for the cutoff scale in the ultraviolet sector, the parameter “ s ” is an arbitrary 

scaling factor ( s  > 1), ( )l

 and ( )s

  are the long and short wavelength excitations and 

correspond, respectively, to the light and heavy particles carried by  . Starting with an 

effective field theory (EFT) defined at
UV , the core idea of Wilson’s approach is to integrate out 

all heavy particles contained in the “momentum shell” (2) and form a new EFT with the 

remaining fields below the separation scale UV

s


. Since   is considered a running parameter, 

iterating this process yields a flow of EFT’s from 
UV  toward their low-energy limit. It is 

customary to refer to this iterative process as a RG flow (or RG trajectory). A key property of 

local EFT’s is that the low-energy endpoint of the RG flow must describe phenomena that are 

fully decoupled from physical processes occurring near the high-energy limit
UV . This property 

conveys the basic idea behind the concept of scale invariance [10]. 

Despite being accepted as a paradigm for securing consistency of the SM, Wilson’s 

renormalization model presents several lesser-known aspects and limitations which are often 

neglected in standard textbooks.  Namely, 

 The RG flow is not laminar in general, turbulent behavior is a possibility that cannot be 

excluded [1-2, 4-5]. 

 The hypothesis of local (next-neighbor) coupling of fields across the RG flow may be 

violated in the presence of un-damped excitations perturbing the conventional “smooth” 

evolution towards fixed points.  

 The RG flow may display complex structure and non-trivial dynamics near fixed points, 

including ergodic behavior, limit cycles and strange attractors [1, 5-7, 12]. 
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 Decoupling of long and short wavelength excitations (1) and (2) may not be possible in 

general when non-local couplings come into play. Typical examples are RG flows with 

temporal memory (non-Markovian flows) or long-range spatial interactions that may 

surface in the mid to the deep TeV region of high-energy physics [13-14]. 

 The RG flow is neither linear nor perturbative in general [2].  

 Under sizable deviations from four dimensions 4 D   ,  ~ O(1), the epsilon 

expansion advocated by the Wilson model leads to the emergence of negative norm states 

[3]. Likewise, Lorentz symmetry turns out to be ill-defined as a result of the intrinsic 

non-differentiability of fractal trajectories [9-10]. The condition   << 1, defined within 

the framework of the so-called minimal fractal manifold (MFM), is the only sensible 

setting where fractal geometry asymptotically approaches all consistency requirements 

mandated by EFT and the SM [8-10]. 
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