A note on the harmonic series and the logarithm

Martin Schlueter

Abstract

A relationship between the harmonic series and the logarithm is presented. The formula H(n)-log(n) for the Euler-Mascheroni constant is adopted accordingly.

$$\gamma = (\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}) - (\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n^2})$$

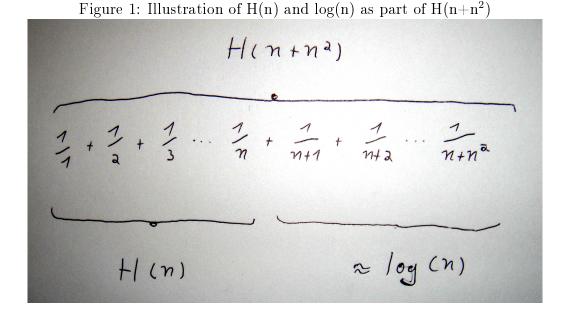


Figure 2: Relationship between log(n) and its approximation $H(n+n^2)-H(n)$

Lim n->∞	$n \cdot \left(\frac{f(n+n^{2}) - f(n)}{2} \right)$	-	loy (n)	11	7 2
	$\approx \log(n)$				

Mathematica Codes:

 $\begin{array}{l} {\rm Limit}[2^*{\rm HarmonicNumber}[n] \ - \ {\rm HarmonicNumber}[n \ + \ n^*n], \ n \ -> \ {\rm Infinity}] \\ {\rm Limit}[n^*({\rm HarmonicNumber}[n \ + \ n^*n] \ - \ {\rm HarmonicNumber}[n] \ - \ {\rm Log}[n]), \ n \ -> \ {\rm Infinity}] \end{array}$

(CC) BY-NC-ND This document is licensed under a Creative Commons (CC BY-NC-ND)