A note on the harmonic series and the logarithm

Martin Schlueter

Abstract

A relationship between the harmonic series and the logarithm is presented. The formula $\mathrm{H}(\mathrm{n})-\log (\mathrm{n})$ for the Euler-Mascheroni constant is adopted accordingly. $$
\gamma=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{n}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots \frac{1}{n+n^{2}}\right)
$$

Figure 1: Illustration of $H(n)$ and $\log (n)$ as part of $H\left(n+n^{2}\right)$

Figure 2: Relationship between $\log (\mathrm{n})$ and its approximation $\mathrm{H}\left(\mathrm{n}+\mathrm{n}^{2}\right)-\mathrm{H}(\mathrm{n})$

Mathematic Codes:
Limit[2*HarmonicNumber[n] - HarmonicNumber[n $+n * n$], $n->$ Infinity]
Limit[n*(HarmonicNumber[n $+n^{*} n$] - HarmonicNumber[$\left.n\right]-\log [n]$), $n->$ Infinity]

