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Abstract

A relationship between the harmonic series and the logarithm is presented.

The formula H(n)-log(n) for the Euler-Mascheroni constant is adopted accordingly.
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Figure 1: Illustration of H(n) and log(n) as part of H(n+n2)

Figure 2: Relationship between log(n) and its approximation H(n+n2)-H(n)

Mathematica Codes:

Limit[2*HarmonicNumber[n] - HarmonicNumber[n + n*n], n -> In�nity]
Limit[n*(HarmonicNumber[n + n*n] - HarmonicNumber[n] - Log[n]), n -> In�nity]
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Generalization:

The logarithm can be understood as part(s) of the harmonic series.
This is illustrated in Formula 1.
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And further illustrated in simpli�ed form in Formula 2.
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Note on the Gamma approximation quality by harmonic log approximations:

γ ≈ H(n)− (H(n+ n2)−H(n))

works better than any

γ ≈ H(n)− (H(n+ n3)−H(n+ n2))

γ ≈ H(n)− (H(n+ n4)−H(n+ n3))

γ ≈ H(n)− (H(n+ n5)−H(n+ n4))

...

γ ≈ H(n)− log(n)
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