A note on the harmonic series and the logarithm

Martin Schlueter

http://allharmonic.wordpress.com

Abstract

A relationship between the harmonic series and the logarithm is presented. The formula $\mathrm{H}(\mathrm{n})-\log (\mathrm{n})$ for the Euler-Mascheroni constant is adopted accordingly. $$
\gamma=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{n}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots \frac{1}{n+n^{2}}\right)
$$

Figure 1: Illustration of $\mathrm{H}(\mathrm{n})$ and $\log (\mathrm{n})$ as part of $\mathrm{H}\left(\mathrm{n}+\mathrm{n}^{2}\right)$

Figure 2: Relationship between $\log (\mathrm{n})$ and its approximation $\mathrm{H}\left(\mathrm{n}+\mathrm{n}^{2}\right)-\mathrm{H}(\mathrm{n})$

Mathematic Codes:
Limit[2*HarmonicNumber[n] - HarmonicNumber[n $+n * n$], $n->$ Infinity]
Limit[n*(HarmonicNumber[n $\left.+n^{*} n\right]$ - HarmonicNumber[$\left.n\right]-\log [n]$), $n->$ Infinity]

Generalization:

The logarithm can be understood as part(s) of the harmonic series.
This is illustrated in Formula 1.

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \underbrace{\frac{1}{1}+\frac{1}{2}+\frac{1}{3} \cdots \frac{1}{N}}_{H_{N}}+\underbrace{\frac{1}{N+1} \cdots \frac{1}{N+N^{2}}}_{\approx \log (N)}+\cdots+\underbrace{\frac{1}{N+N^{N-1}+1} \cdots \frac{1}{N+N^{N}}}_{=\log (N)} \tag{1}
\end{equation*}
$$

And further illustrated in simplified form in Formula 2.

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \underbrace{\frac{1}{1}+\cdots \frac{1}{N^{1}}}_{H_{N}}+\underbrace{\cdots \frac{1}{N^{2}}}_{\approx \log (N)}+\underbrace{\cdots \frac{1}{N^{3}}}_{\approx \log (N)}+\underbrace{\cdots \frac{1}{N^{4}}}_{\approx \log (N)}+\cdots+\underbrace{\cdots \frac{1}{N^{N}}}_{=\log (N)} \tag{2}
\end{equation*}
$$

Note on the Gamma approximation quality by harmonic log approximations:
$\gamma \approx H(n)-\left(H\left(n+n^{2}\right)-H(n)\right)$
works better than any

$$
\begin{aligned}
& \gamma \approx H(n)-\left(H\left(n+n^{3}\right)-H\left(n+n^{2}\right)\right) \\
& \gamma \approx H(n)-\left(H\left(n+n^{4}\right)-H\left(n+n^{3}\right)\right) \\
& \gamma \approx H(n)-\left(H\left(n+n^{5}\right)-H\left(n+n^{4}\right)\right) \\
& \vdots \\
& \gamma \approx H(n)-\log (n)
\end{aligned}
$$

