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Abstract

A relationship between the harmonic series and the logarithm is presented.
The formula H(n)-log(n) for the Euler-Mascheroni constant is adopted accordingly.
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Figure 1: Tllustration of H(n) and log(n) as part of H(n-+n?)

and its approximation H(n+{n*)-H(n)

Figure 2: Relationship between log(n)

Mathematica Codes:

Limit[2*HarmonicNumber|n| - HarmonicNumber|[n + n*n|, n -> Infinity|
Limit[n*(HarmonicNumber|n + n*n| - HarmonicNumber|n| - Log|n|), n -> Infinity|
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Generalization:

The logarithm can be understood as part(s) of the harmonic series.
This is illustrated in Formula 1.
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And further illustrated in simplified form in Formula 2.
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Hy ~ log(N) ~ log(N) ~ log(N) = log(N)

Note on the Gamma approximation quality by harmonic log approximations:

v~ H(n) — (H(n+n?) — H(n))
works better than any

v~ H(n) = (H(n +n®) = H(n+n?))
vy~ H(n)— (H(n+n*)— H(n+n?))

7~ H(n) = (H(n+n%) — H(n +n))

v~ H(n) — log(n)
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