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The Fourth Electromagnetic 
Induction  

 
Abstract 

Different variants of electromagnetic induction are considered. 
The type of induction caused by changes of electromagnetic 
induction flow is separated. The dependence of this induction on 
the flow density of electromagnetic energy emf and on the 

parameters of the wire is explored. 
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1. Introduction 
There is the following known law of electromagnetic induction 
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where   is the magnetic flow, e  - emf. It is known also [1], that this 
electromagnetic magnetic induction – the appearance of emf in the 
conductor, may appear as a consequence of the following two laws:   
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In accordance to this fact two types of electromagnetic induction 
can be determined –  

the first type - case (3), when emf in the conductor appears as a 
consequence of the magnetic flow change, - electromagnetic induction 
caused by the electromagnetic flow change;  

the second type - case (2), when emf in the conductor appears 
under the influence of the Lorentz magnetic force due to the mutual 
displacement of the wire and the magnetic field, without changes in the 
magnetic flow, - electromagnetic induction caused by the Lorentz force.  
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There is also a known third type of electromagnetic induction, 
which appears in a unipolar Faraday generator – unipolar electromagnetic 
induction. In this generator the motor rotates a permanent magnet, and on 
the radius of the magnet appears emf, which is determined according to 
the formula of the form 

22BLe  ,      (4) 

where 

B - is the induction of the permanent magnet, 

L  - the length of magnet’s radius, 
  - the angular velocity of rotation. 
This formula was obtained by different methods: in [2] using the 

relativity theory, and in [3] based of the law of momentum conservation. 
There is also a widely known fact, that the current is inducted in a 

conductor located in the flow of electromagnetic wave energy flow. Let 
us give the electromagnetic induction caused by the change of electromagnetic energy 
flow the name of the fourth type of electromagnetic induction. Further we 
shall determine the emf of this induction depending on the flow density. 

In [4] the following fact is proved: if the body is located in a 
uniform flow of electromagnetic energy 

HES  ,       (5) 
then the following force acts on it (hereinafter the SI system is being 
used) 
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where 

V  - the volume of the body in which the electromagnetic field 
interacts with the charges and currents, 

  - the relative permittivity of the body, 
  - the relative magnetic permeability of the body, 

c  - The speed of light in vacuum. 
In the electromagnetic energy flow an electron may be found. We 

can assume that this flow inside the electron’s body is always uniform 
(due to its small size). Then the electron will be subjected to the force (6). 

 

2. The Own Energy Flow 
It is known that the power of the heat loss in the wire equal to the 

flux of the Poynting vector through the surface of the wire, and the 
density of the flow is determined by the electrical and magnetic tensity 
generated on the surface of the wire by the current in the wire. 
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Let us consider now the part of the wire in which an alternative 
current is flowing with a certain density  

)sin( tjj o  .       (8) 

Then the current and intensity in the wire are 
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jE  ,       (10) 

  djdJH 25.0  ,     (11) 

and the density of electromagnetic flow entering the wire from all the sides 
(we shall call this flow “the own flow”) is   

2
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Here 

d  - the diameter of the wire,  
  - the resistivity of the wire. 

The flow of electromagnetic energy entering a wire of length L , is 

dLSSL  .      (13) 

Then 
22
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The thermal power dissipated in the wire of volume 
225.0 LdV        (15) 

is determined in the same way. 
In this case the force (6) takes the form 
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This force acts on all the charges (electrons) in is directed towards 
current (i.e., it does not act on the wire as a whole). It allows to overcome 
the resistance to movement, or more precisely, it performs the work that 
is converted into heat. 

Let the current density is 

)sin( tjj o  .      (17) 
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With sufficiently low frequencies 
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we may assume that 
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i.e. the average force is 

  cVjdF o  225.0 2     (21) 

 

3. The External Energy Flow 
Now we shall consider the case when the wire is located in the 

region of outside, external flow of electromagnetic energy, i.e. the flow 
created in the absence of current in this wire  

Let us now assume that the external electric energy flow permeates 
the wire along the diameter (rather not enters into it from all sides, as in 
the previous case). Let the density of the external flow be equal to 

)(sin2 tSS o  .      (22) 

In this case (6) takes the form 
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For sufficiently low frequencies (19) we may assume that 

 t
c

VS
F o 

 2sin     (25) 

i.e. the average force is 

cVSF o 2     (26) 

From comparing (21) and (26) it follows that the force (26) exceeds 
the force (21) when 

225.0 oo jdS  ,     (27) 

and the current excited by the external flow is, 
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Given that 
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from (28) we find: 
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This is the current induced by the flow of energy in the wire, 

permeated by the flow of energy oS . This energy flow in the air is 

determined as 
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where oo HE ,  – are the intensity of external field where the wire is 

located. As the flow density does not change at its transition from the air 
into the wire, so from (29, 31) we find: 
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Combining (30) and (33), we get: 
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Let us find the emf generated in the wire: 
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Combining (35) and (34), we find: 
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Given that 4.194 oo  , we get  
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Thus, in the wire located in the flow (31), emf (37) is generated. 
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