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Abstract

The linear field equations are solved for the metrical component goy. The
solution is applied to the question of gravitational energy transport. The
Hulse-Taylor binary pulsar is treated in terms of the new theory. Finally, the
detection of gravitational waves is discussed.



1. Introduction

The founders of the theory of special relativity did not use 4-vectors in their
work. Lorentz, Poincare, Einstein, Planck and others made use of scalars
(time interval, energy, scalar potential) and 3-vectors (spatial displacement,
momentum, vector potential).! [1] The distinction is seen clearly in the
definition of energy and momentum
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as well as in the power formula
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Energy has no directional character whatsoever.
The interval

ds* = *dt* — dr® (3)

is invariant under a Lorentz transformation. At any point P, the vector dr is
projected onto an orthonormal 3-frame: i-dr, j-dr, k-dr. These projections,
together with the time interval dt, are then transformed into new values,
which are observed in a relatively moving 3-frame. No system of coordinates
is involved with this procedure. Such frame transformations may take place
in the presence of gravitation.

2. Scalar, 3-vector gravity [2]

Gravitation is described by means of the structure in a coordinate system
{z#}. To this end, displacements in time and space are expressed in the form

cdt = eg(z)dx® dr = e;(z)dx’ (4)

where e, = (eg, €;) is a scalar, 3-vector basis. Substitution into (3) gives

ds® = (epd2’)® —e; - e;da'da’

= gudztdx” (5)

'Minkowski invented the 4-vector in 1909, long after the completion of special relativity.



where
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Guv = 0 gij (6)
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is the scalar, 3-vector metric. An observer is free to introduce new coordinates
{z#}. In order to retain the distinction between scalars and 3-vectors, the
coordinate transformations are restricted to the form

’
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Displacements (4) will then be invariant, while the metric transforms as a
tensor
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The Christofel coefficients
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yield the Ricci tensor

Ry, = 0,1, — O\, + T, 10, —T3,1%, (10)
The gravitational field equations
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derive from the Einstein-Hilbert action

(Ryw — ;gwR) + T =0 (11)
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There are seven field equations, corresponding to the seven variations dg"” =
(69, 6g%). Components Ry; and To(zm do not appear.?

2The Birkhoff theorem in general relativity follows from the three equations involving
Ro;. [3] These equations do not exist in the new theory, and the theorem is no longer
relevant. This will have important consequences for gravitational radiation.



3. The gravitational field strength tensor

The structure of the basis system is expressed by the formula

Vueu - 6)\@2” (13)

By definition, @Y, = @}, = 0, so that (13) separates into scalar and 3-vector
parts

V1/60 = eOng (14>

szei = engz/ (15>

In terms of the metrical functions (6),

Orgoo = 2900@8,\ (16>
Qgi; = ginQ + ginQio (17)
Ohgii = GinQjy, + ginQi, (18)

If Q% = Qj; and if the two terms in (17) are assumed to be equal, then
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Qor = Ty = 5900@900 (19)
jo = Ljo= 29 DoGn; (20)
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Together, they comprise the formula

Q=T+ 39" 9uQ, (22)

where

Qﬁ»\] = Q) — @\ (23)

The non-zero components of Qﬁj/\} are
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They transform as tensor components
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This field strength tensor serves to define the gravitational energy tensor
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where Q,, = Q[ ol For a static Newtonian potential 1)

goo = 1+ g@b (27)
so that Q’[fj/\] is given by
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It follows that
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which is the Newtonian stress-energy tensor.
The field strength tensor also plays a crucial role in particle dynamics.
The planetary equations of motion

— 4+ T et =0 (32)
follow from the variation

5/ \ guutur ds =0 (33)

where ut = dx# /ds. Gravitational force and power are calculated by express-
ing the energy and momentum (1) in terms of coordinates

E = mc*equ’ p = mc e;u’ (34)



The rate of change of e, u" is
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where de, = eAQf;l,dx”. Substitute (22) and then make use of the equation

of motion (32) to obtain
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Separate this formula into scalar and 3-vector parts, then substitute the

tensor components (24) to find that the energy and momentum change as
follows:
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These equations are invariant under the coordinate transformations (7). They
express the power and force which are exerted by the gravitational field. In
the Newtonian limit (27), u® =1 and u™ = v"/c so that
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4. The linear field equations

If the coordinate system is nearly rectangular, then the metric tensor may
be expanded

Guv = Nuw + h/u/ (40)

where the absolute values of h,, are small compared with unity. The largest
terms in the Ricci tensor (10) are

1
By = 5 {0 000phyus + 0,0, = 0,000, = 0,01} (41)

with time and space components



1
Ryy = 5{a"anhoo+aoaohg} (42)

1
Riy = o {0 0s0phij + 0,0;(h§ + 7) — 0,0.h7 — 0,0,h7 ) (43)

The single condition

h = i (44)
gives
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Rewrite the field equations in the form
14 87TG m)v 1 v m
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in order to obtain
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This equation is solved by

hg(x, t) =
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where the retarded solution is chosen.

If the material energy tensor is T\™" = pc?u,u”, then T = pc? and
(Tém)0 — Tmny = (pc? — 27™"). In regions very far from the source, (48)
takes the form

2G
Mxt) = =57 [(pe? = 210 | 2 (49)
ctr
The first integral is the rest energy, while the second may be transformed by
means of the identity [4]

/T” dPPr = 3 /x’:cj OO T B (50)



The conservation law 9,7" = 0 gives 9y0,T* = 9,097, and it follows
that?

1
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Expression (49) becomes

2G d?I
hg(x, t) = —7<M 2 dt2 |ret) (53>
In regions far from the source, the equations R,, = 0 yield plane wave so-
lutions. It was shown in [2] that along the x3-axis, the following components

satisfy the wave equation

W=k Rl = k2 b= (54)
while h3 = h} = 0. The gravitational energy current is given by (26)

Téf) = (Q[On]Q RA: O]Q[Oz])
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The presence of gg is especially significant: there can be no flux of gravita-
tional energy without a spatially dependent component gg. For the plane

waves
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Therefore, the longitudinal field accounts for all of the energy transport in
the wave zone. In formula (53), the rate of change of rest mass is negligible,
leaving

5 = dohg)? (ks = —ko) (56)

and 26 &1
W B (57)

3Within the source, the gravitational components T(9#" are much smaller than the
T and may be ignored.



Substitution into (56) gives
1dP _c s _ G (d 2 (58)
r2dQ 270 8ar2ed \ dt’

and the total power

dE G (&I’
A il 99
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In a binary system, d*I/dt? is given by [4]
3] 2 .
L 2mams e sinf 6 (60)
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Substitution into (59) gives the energy loss

dE 2Gmim3 5 . 5,
—E = m@ S1n 90 (61)

while the average over one period is

dt cad
Inserting the stated parameter values for the Hulse-Taylor pulsar, this for-
mula yields a rate T /T which is smaller than the observed rate by a factor
of 30. The disparity could be due to uncertainty in the orbital parameters.
However, an additional process might contribute to the energy loss, such
as the emission of energetic particles. In this regard, the Crab pulsar was
recently found to be far more energetic than previously thought possible. [5]

<_dE> _ Gm3im3(my + mo) (1 + 22)(1 _ )T (62)

5. Concluding remarks

A supernova explosion should generate an intense burst of spherical gravita-
tional waves. According to (38), the radiation field (54) will produce a force
given by

2
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Therefore, a detector which is at rest cannot respond to a transverse wave.
Its acceleration will be along the direction of propagation

d?a? c? c?
dt2 - —5 83]100 - 5 a()hoo (64)

In view of what has been learned during the experiments at LIGO, GEO and
VIRGO, it would be desirable to conduct a search for longitudinal waves.
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