Calculating Discrete Time Location Force

By Binyamin Tsadik Bair-Moshe

The wave emitted from a particle

$$
\Psi=\sum_{k=0}^{\infty} \varphi(k, t)
$$

For a particular value of k

$$
\varphi_{1}=\frac{A \cdot \operatorname{Sin}(\omega t)}{r^{2}}
$$

Interacts with a second wave at its source

$$
\varphi_{2}=A \cdot \operatorname{Sin}(\omega t+\phi)
$$

Where

$$
\begin{gathered}
\phi(t)=\frac{2 \pi \cdot\left(r_{1}+\dot{r} \cdot t+\frac{1}{2} \ddot{r} \cdot t^{2}\right)}{\lambda} \\
\omega=2 \pi \cdot f=\frac{2 \pi \cdot c}{\lambda} \\
\phi(t)=\frac{\omega \cdot\left(r_{1}+\dot{r} \cdot t+\frac{1}{2} \ddot{r} \cdot t^{2}\right)}{c}
\end{gathered}
$$

A force interaction would then be

$$
F=-\varphi_{1} \cdot \varphi_{2}
$$

And the average force would be

$$
F_{\tau}=\frac{-A^{2}}{\tau} \int_{0}^{\tau} \frac{\operatorname{Sin}(\omega t) \cdot \operatorname{Sin}(\omega t+\phi)}{r^{2}} d t
$$

Where

$$
\begin{gathered}
\omega \cdot \tau=2 \pi \\
F_{\tau}=\frac{-\omega A^{2}}{2 \pi} \int_{0}^{\tau} \frac{\operatorname{Sin}(\omega t) \cdot \operatorname{Sin}(\omega t+\phi)}{r^{2}} d t
\end{gathered}
$$

If ϕ is taken as a constant, the average force over 1 period would be

$$
\begin{gathered}
F_{\tau}=\frac{-\omega A^{2}}{2 r^{2}} \operatorname{Cos}(\phi) \\
F_{\tau}=\frac{-\omega A^{2}}{2 r^{2}} \cdot \operatorname{Cos}\left(\frac{\omega r}{c}\right)
\end{gathered}
$$

Energy is therefore

$$
\begin{gathered}
E_{\tau}=\frac{-\omega A^{2}}{2} \int \frac{1}{r^{2}} \cdot \operatorname{Cos}\left(\frac{\omega}{c} \cdot r\right) \cdot d r \\
E_{\tau}=\frac{i \cdot \omega^{2} \cdot A^{2}}{4 \cdot c} \cdot\left[\Gamma\left(-1, i \cdot \frac{\omega}{c} r\right)-\Gamma\left(-1,-i \cdot \frac{\omega}{c} r\right)\right]
\end{gathered}
$$

The total average force on the particle is

$$
\mathrm{F}_{\text {total }}=\frac{-1}{2 r^{2}} \sum_{k=1}^{n} \omega_{k} \cdot A_{k}^{2} \cdot \operatorname{Cos}\left(\frac{\omega_{k} r}{c}+\phi_{k}\right)
$$

Where

$$
\begin{aligned}
& \omega_{k}=\frac{\omega_{\max }}{k} \\
& \phi_{k}=\frac{2 \pi}{k} \cdot l \\
& l=0,1,2,3 \ldots
\end{aligned}
$$

The particle will constantly be trying to find a location in space where

$$
\mathrm{E}_{\text {total }} \rightarrow 0
$$

And therefore

$$
\Delta \mathrm{F}_{\text {total }} \rightarrow 0
$$

This location is the Discrete Time Location.

Sample values within DTL for basic particles

Electrons

$$
\begin{gathered}
A_{1}=b_{1} \\
A_{2}=b_{2} ; \phi_{2}=0 \\
A_{3+}=0
\end{gathered}
$$

Positrons

$$
\begin{gathered}
A_{1}=b_{1} \\
A_{2}=b_{2} ; \phi_{2}=\pi \\
A_{3+}=0
\end{gathered}
$$

Quarks

$$
\begin{gathered}
A_{1}=b_{x} \\
A_{2}= \pm \frac{b_{2}}{3}, \pm 2 \cdot \frac{b_{2}}{3} ; \phi_{2}=0, \pi \\
A_{3}=b_{3} ; \phi_{2}=0,2 \frac{\pi}{3}, 4 \frac{\pi}{3}
\end{gathered}
$$

*note it may turn out that because of the wave balance, all values of A_{k} are identical and the $\frac{\omega_{k} r}{c}$ component may be what is controlling the macroscopic understanding of constants.

