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We propose the generalized relation to unify all the uncertainty relations (URs) with dimensions by the dimensional analysis. Here we 

find and prove the general expression of URs which the products of two non-commutative physical quantities with dimensions are 

equivalent to the power products of the reduced Planck constant ħ, gravitational constant G, speed of light in vacuum c, Boltzmann 

constant κ and elementary charge e, and the basic relation that any physical quantity with dimension has a corresponding Planck scale. 

Many physical quantities have the same Planck scale because of same dimensions. All Planck scales are classified by two methods, 

one is the basic Planck scale and derived Planck scale, and another is Femi-Planck scale, Bose-Planck scale and Other-Planck scale. 

The corresponding Planck scale of any physical quantity is proved to be equivalent to the power products of the Planck length LP , 

Planck time tP , Planck mass MP , Planck temperature TP  and elementary charge Qe  (or Planck charge). The generalized relation is 

found and proved that the power products of non-commutative physical quantities are equivalent to the ones of corresponding Planck 

scales. We also find the Big Bang UR between its temperature and volume by the generalized relation, and the Schwarzschild black 

holes (SBH) UR between its mass and volume. These URs suggest no singularity at Big Bang and in SBH with the quantum effect. 

We show that the generalized relation is generalized, interesting and significant.  

 

 

1. Introduction 

The Heisenberg uncertainty principle [1] made great progress 

in the application [2, 3], development [4, 5] and experiment [6, 7]. 

These founded the firm foundation for it and extended its 

connotation. Now there are many uncertainty relations (URs) with 

dimensions:  

ΔpΔr ≥ ħ [1]; ΔEΔt ≥ ħ [1]; δt = β tP
2/3

𝑡1/3 [8]; η／s ≥ 4πħ／

κ [9]; ΔTΔX ～ LS
2  ～ LP

2 ／c [10]; δxδyδt ～ LP
3 ／c [11]; 𝐿𝜇𝜈～

 LP𝐿  [12]; ε(Q)η(P) ＋ ε(Q)ζ(P) ＋ ζ(Q)η(P) ≥ ħ ／ 2 [7]; 

(δt)(δ𝑟)3 ≥ π𝑟2LP
2 ／c [13], etc.  

where Δp is the momentum fluctuation, Δr is the position 

momentum, ħ is the reduced Planck constant; ΔE is the energy 

fluctuation, Δt is the time fluctuation; δt is the time fluctuation, β 

is an order one constant, tP  =  ħG/c5 is Planck time, G is the 

gravitational constant, c is the speed of light in vacuum, t is the 

time; η is the ratio of shear viscosity of a given fluid perfect, s is 

its volume density of entropy, κ is the Boltzmann constant; ΔT is 

the time-like, ΔX is its space-like, LS  is the string scale, 

LP  =   ħG/c3  is Planck length; δx, δy, δt are the position 

fluctuation and time fluctuation separately; 𝐿𝜇𝜈  is the transverse 

length, L is the radial length; Q is the position of a mass, ε(Q) is 

the root-mean-square error, P is its momentum, η(P) is the 

root-mean-square disturbance, ζ(P) is the standard deviation; δt 

and δr are the sever space-time fluctuations of the constituents of 

the system at small scales, and r is the radius of globular computer. 

So there are two problems: (i) Why hasn't G on some 

formulas rights hand? (ii) Whether has the unitive form for them? 

In this paper, we answer that G disappears because of being 

reduced fitly and the unitive form is the generalized relation. 

Moreover, for the origin and development of Planck length, 

Planck time, Planck mass  MP =   ħc/G , Planck energy 

EP =   ħc5/G  and Planck temperature  TP  =   ħc5/κ2G , please 

refer to the literature [14-18]. 

This paper is organized as follows. In Sec. 2, we derive the 

general expression of URs and basic relation, and prove them. In 

Sec. 3, we obtain the Planck scales and classify them. In Sec. 4, 

we prove the corresponding Planck scale of any physical quantity 

being rewritten as the power products of basic Planck scales; find 

and prove the generalized relation, and prove the URs in Sec. 1. In 

Sec. 5, we find the Big Bang UR and SBH UR. We conclude in 

Sec. 6. 

 

2. General expression of URs and Basic 

Relation 

In this section, we discover the normal form of URs, derive 

the general expression of URs and basic relation, and prove them. 

 

2.1 General expression of URs 

Observing these URs, we can discover the physical constants 

such as ħ, G, c and κ on the right hand and the physical quantities 
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on left hand. We rewrite them as 

ΔpΔr ≥ ħ1; ΔEΔt ≥ ħ1; δt／β𝑡1/3 = tP
2/3

= ħ1/3G1/3c−5/3; η

／4πs ≥ ħκ−1; ΔTΔX ～ LS
2  ～ LP

2 ／c = ħGc−4; δxδyδt ～ LP
3 ／c 

= ħ3/2G3/2c−11/2 ; 𝐿𝜇𝜈／ 𝐿～ LP  = ħ1/4G1/4c−3/4; 2[ε(Q)η(P)

＋ε(Q)ζ(P)＋ζ(Q)η(P) ] ≥ ħ1; (δt)(δ𝑟)3／ π𝑟2  ≥  LP
2 ／c = ħGc−4, 

etc.  

Therefore the physical constants appear power products on the 

right hand. These are their normal form. Considering two 

non-commutative physical quantities with dimensions, we obtain 

the general expression of URs 

AB ～ ħ𝑥G𝑦c𝑧κ𝑤e𝑢               (1) 

where A and B are non-commutative physical quantities, x, y, z, w 

and u are the unknown number, and e is the elementary charge. 

Applying the dimensional analysis [19] (here we use the five units, 

that is LMtTQ units [20]1), the dimensions of A and B are 

expressed as 

[A] =  L 𝛼1 M 𝛽1 t 𝛾1 T 𝛿1 Q 휀1         

[B] =  L 𝛼2 M 𝛽2 t 𝛾2 T 𝛿2 Q 휀2      (2) 

where L, M, t, T and Q are the dimensions of length, mass, time, 

temperature and electric charge separately, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 

𝛾2 , 𝛿1 , 𝛿2 , 휀1  and 휀2  are the known real number. The 

dimensions of  ħ𝑥G𝑦c𝑧κ𝑤e𝑢  are 

[ħ𝑥G𝑦c𝑧κ𝑤e𝑢 ] = {[L2][M][t−1]}𝑥{[L3][M−1][t−2]}𝑦{[L][t−1]}𝑧  

× {[L2][M][t−2][T−1]}𝑤{[Q]}𝑢            (3) 

By the dimensional analysis, we obtain 

    L 𝛼1 M 𝛽1 t 𝛾1 T 𝛿1 Q 휀1   L 𝛼2 M 𝛽2 t 𝛾2 T 𝛿2 Q 휀2        

= {[L2][M][t−1]}𝑥{[L3][M−1][t−2]}𝑦 {[L][t−1]}𝑧             

× {[L2][M][t−2][T−1]}𝑤{[Q]}𝑢                      (4) 

Solving the equation (4), we gain 

x = [(𝛼1＋𝛼2)＋(𝛽1＋𝛽2)＋(𝛾1＋𝛾2)＋(𝛿1＋𝛿2)]／2,  

y = [(𝛼1＋𝛼2)－(𝛽1＋𝛽2)＋(𝛾1＋𝛾2)－(𝛿1＋𝛿2)]／2 

z = －[3(𝛼1＋𝛼2)－(𝛽1＋𝛽2)＋5(𝛾1＋𝛾2)－5(𝛿1＋𝛿2)]／2,  

w = －(𝛿1＋𝛿2), u = (휀1＋휀2)                    (5) 

Thus we find the general expression of URs  

AB ～[ħ  𝛼1+ 𝛼2 +  𝛽1+ 𝛽2 + 𝛾1+𝛾2 + 𝛿1+ 𝛿2  ]
1
2 

× [G  𝛼1+ 𝛼2 −  𝛽1+ 𝛽2 + 𝛾1+𝛾2 − 𝛿1+ 𝛿2  ]
1
2 

× [c− 3 𝛼1+ 𝛼2 −  𝛽1+ 𝛽2 +5 𝛾1+𝛾2 −5 𝛿1+ 𝛿2  ]
1
2 

× κ−(𝛿1+𝛿2)e(휀1+휀2)                               (6) 

It shows that the products of two non-commutative physical 

quantities with dimensions are equivalent to the power products of 

the reduced Planck constant, gravitational constant, speed of light 

in vacuum, Boltzmann constant and elementary charge. 

 

2.2 Basic relation 

Ordering 𝛼1 = 𝛼2 = 𝛼 , 𝛽1 = 𝛽2 = 𝛽 , 𝛾1 = 𝛾2 = 𝛾 , 𝛿1 = 𝛿2 = 𝛿 , 

                                                        
1
 Chien Wei-Zang used L, M, T, θ and Q indicated the dimensions of length, 

mass, time, temperature and electric charge separately in [20]. 

and 휀1= 휀2= 휀 in the general expression of URs (6), that is A and 

B having the same dimensions 

[A] = [B] =  L 𝛼  M 𝛽  t 𝛾  T 𝛿  Q 휀           (7) 

We obtain 

 ħ 𝛼+𝛽+𝛾+𝛿 G 𝛼−𝛽+𝛾−𝛿 c− 3𝛼−𝛽+5𝛾−5𝛿 κ−2𝛿e2휀   

= AP BP  = AP
2 = BP

2                                  (8) 

where AP  and BP  are the corresponding Planck scale of A and B 

separately. Extracting the square root, we find the basic relation 

A ～AP  = [ħ 𝛼+𝛽+𝛾+𝛿 G 𝛼−𝛽+𝛾−𝛿 c− 3𝛼−𝛽+5𝛾−5𝛿 κ−2𝛿e2휀 ]
1
2 (9) 

The basic relation (9) shows that any physical quantity with 

dimension has a corresponding Planck scale which is equivalent to 

the power products of ħ, G, c, κ and e. 

 

2.3 Proving Basic relation 

We prove the basic relation (9) now. Considering n 

non-commutative physical quantities with dimensions, we have 

 𝐴i
n
i=1  ～  ħ𝑥G𝑦c𝑧κ𝑤e𝑢 , i = 1, 2, 3… n (10) 

where 𝐴i  is the physical quantity, 𝐴i  and 𝐴i+1  are non- 

commutative. The dimensions of  𝐴i
n
i=1  are 

[ 𝐴i
n
i=1 ] =   L  𝛼 i

n
i  M  𝛽i

n
i  t  𝛾 i

n
i  T  𝛿i

n
i  Q  휀i

n
i  (11) 

where 𝛼i , 𝛽i , 𝛾i , 𝛿i  and 휀i  are known real number. By the 

dimensional analysis, we obtain 

           L  𝛼 i
n
i  M  𝛽i

n
i  t  𝛾 i

n
i  T  𝛿i

n
i  Q  휀i

n
i    

= {[L2][M][t−1]}𝑥{[L3][M−1][t−2]}𝑦{[L][t−1]}𝑧  

× {[L2][M][t−2][T−1]}𝑤{[Q]}𝑢                (12) 

Solving (12), we gain 

x = [( 𝛼i
n
i )＋( 𝛽i

n
i )＋( 𝛾i

n
i )＋( 𝛿i

n
i )]／2,  

y = [( 𝛼i
n
i )－( 𝛽i

n
i )＋( 𝛾i

n
i )－( 𝛿i

n
i )]／2, 

z = －[3( 𝛼i
n
i )－( 𝛽i

n
i )＋5( 𝛾i

n
i )－5( 𝛿i

n
i )]／2,  

w = －( 𝛿i
n
i ), u =  휀i

n
i                  (13) 

So we find 

 𝐴i
n
i=1  ～ [ħ

   𝛼 i
n
i  +   𝛽i

n
i  +  𝛾 i

n
i  +  𝛿i

n
i   

]
1
2  

         × [G
   𝛼 i

n
i  −   𝛽i

n
i  +  𝛾 i

n
i  −  𝛿i

n
i   

]
1
2     

         × [c
− 3  𝛼 i

n
i  −  𝛽i

n
i  +5  𝛾 i

n
i  −5  𝛿i

n
i   

]
1
2  

× κ−( 𝛿i
n
i )e( 휀i

n
i )                           (14) 

Certainly when n = 2, it become the general expression of URs (6); 

when n = 1, we obtain (9). Ordering 𝛼i  = 𝛼i+1= 𝛼, 𝛽i  = 𝛽i+1=𝛽, 

𝛾i  = 𝛾i+1=𝛾, 𝛿i  = 𝛿i+1= 𝛿 and 휀i  = 휀i+1= 휀 in (14), 𝐴i and 𝐴i+1 

having the same dimensions, we obtain 

[ħn 𝛼+𝛽+𝛾+𝛿 ]
1
2[Gn 𝛼−𝛽+𝛾−𝛿 ]

1
2[c−n 3𝛼−𝛽+5𝛾−5𝛿 ]

1
2κ−n𝛿en휀  

= AP
𝑛                                             (15) 

Extracting the nth-root, we gain (9) again. 

 

3. Planck Scales 

In this section, we obtain the Planck scales, and classify them. 
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3.1 Basic Planck scale 

Ordering α = 1, β = γ = δ = ε = 0 in (7) and (9), we obtain 

Planck length immediately 

            LP  =  ħG/c3 

Instructing γ =1, α = β = δ = ε = 0, obtain Planck time 

            tP  =  ħG/c5 

Ordering β = 1, α = γ = δ = ε = 0, obtain Planck mass 

            MP  =  ħc/G 

Instructing δ = 1, α = β = γ = ε = 0, obtain Planck temperature 

            TP  =  ħc5/κ2G 

Ordering ε = 1, α = β = γ = δ = 0, obtain elementary charge 

(or Planck charge) 

            QP  = Qe  = e 

If using [Q]2 = [L]3[M][T]−2, obtain 

QP  =  ħc ～ e 

These are the basic Planck scale [14]. 

 

3.2 Derived Planck scale 

From (7) and (9), we gain the derived Planck scale [14] 

which except the basic one. For example  

Planck energy EP  

[EP] = [L2][M][T−2], EP  =  ħc5/G 

Planck momentum PP  

[PP] = [L][M][T−1], PP  =  ħc3/G 

Planck curvature tensor RμνP  

[RμνP] = [L−2], RμνP= c3／ħG 

Because many physical quantities have the same dimensions, 

they have the same Planck scale, for example 

Planck energy density ρP  

[ρP] = [L−1][M][T−2], ρP  = c7／ħG2 

Planck pressure pP  

[pP] = [L−1][M][T−2], pP  = c7／ħG2 

Planck force per unit area fP  

[fP] = [L−1][M][T−2], fP  = c7／ħG2 

Planck energy- momentum tensor TμνP  

[TμνP] = [L−1][M][T−2], TμνP= c7／ħG2 

Etc. 

 

3.3 Classifications 

We classify all the Planck scales by two methods. First are 

basic Planck scale and derived Planck scale [14]. Second are that 

One’s power is the half integer, call it Femi-Planck scale, such as 

LP , tP , MP , TP , EP , PP , etc; another is the integer, call it 

Bose-Planck scale, such as Qe , ρP , pP , fP , RμνP , TμνP , etc; 

others call Other-Planck scale, such as the Planck wave function 

ψP  

[ψP] = [L−3/2], ψP  = (ħG／c3)−3/4 

 

4. Generalized Relation 

In this section, we prove that basic relation (9) is rewritten as 

the power products of basic Planck scales; find and prove the 

generalized relation, and prove the URs in Sec. 1,. 

 

4.1 Proof 

The basic relation (9) can be rewritten as 

AP  = LP
𝛼 MP

𝛽
tP
𝛾

TP
𝛿Qe

휀                (16) 

From (9), we obtain 

AP  = [ħ𝛼G𝛼c−3𝛼 ]
1
2[ħ𝛽G−𝛽c𝛽 ]

1
2[ħ𝛾G𝛾c−5𝛾 ]

1
2[ħ𝛿G−𝛿c5𝛿 ]

1
2κ−𝛿e휀  

= [ ħG/c3]𝛼 [ ħc/G]𝛽 [ ħG/c5]𝛾 [ ħc5/κ2G ]𝛿e휀   

= LP
𝛼 MP

𝛽
tP
𝛾

TP
𝛿Qe

휀  

Therefore the corresponding Planck scale of any physical quantity 

is equivalent to the power products of Planck length, Planck mass, 

Planck time, Planck temperature and elementary charge. 

 

4.2 Generalized relation 

Considering all the non-commutative physical quantities, we 

find the generalized relation 

 𝐴i
𝑎in

i=1  ～  AiP
𝑎in

i=1 ;  i = 1, 2, 3… n (17) 

where 𝐴i  is the physical quantity, 𝐴i  and 𝐴i+1  are 

non-commutative, 𝑎i  is the real number, and  𝐴iP  is the 

corresponding Planck scale of 𝐴i . It shows that the power 

products of non-commutative physical quantities are equivalent to 

the ones of corresponding Planck scales.  

 

4.3 Proving generalized relation 

We prove the generalized relation by the same way in 2.3. 

Considering n non-commutative physical quantities with 𝑎i 

power, we have 

 𝐴i
𝑎in

i=1  ～  ħ𝑥G𝑦c𝑧κ𝑤e𝑢            (18) 

The dimensions of  𝐴i
𝑎in

i=1  are 

[ 𝐴i
𝑎in

i=1 ] =  L  𝑎i𝛼 i
n
i  M  𝑎i𝛽i

n
i  t  𝑎i𝛾 i

n
i  T  𝑎i𝛿i

n
i  Q  𝑎i휀i

n
i  (19) 

Using the dimensional analysis, we obtain 

       L  𝑎i𝛼 i
n
i  M  𝑎i𝛽i

n
i  t  𝑎i𝛾 i

n
i  T  𝑎i𝛿i

n
i  Q  𝑎i휀i

n
i  

= {[L2][M][t−1]}𝑥{[L3][M−1][t−2]}𝑦{[L][t−1]}𝑧  

× {[L2][M][t−2][T−1]}𝑤{[Q]}𝑢                     (20) 

Solving (20), we have 

x = [( 𝑎i𝛼i
n
i )＋( 𝑎i𝛽i

n
i )＋( 𝑎i𝛾i

n
i )＋( 𝑎i𝛿i

n
i )]／2,  

y = [( 𝑎i𝛼i
n
i )－( 𝑎i𝛽i

n
i )＋( 𝑎i𝛾i

n
i )－( 𝑎i𝛿i

n
i )]／2, 

z = －[3( 𝑎i𝛼i
n
i )－( 𝑎i𝛽i

n
i )＋5( 𝑎i𝛾i

n
i )－5( 𝑎i𝛿i

n
i )]／2,  

w = －( 𝑎i𝛿i
n
i ), u =  𝑎i휀i

n
i                     (21) 

Thus we gain 

 𝐴i
𝑎in

i=1  ～[ħ
   𝑎i𝛼 i

n
i  +   𝑎i𝛽i

n
i  +  𝑎i𝛾 i

n
i  +  𝑎i𝛿i

n
i   

]
1
2  

         × [G
   𝑎i𝛼 i

n
i  −   𝑎i𝛽i

n
i  +  𝑎i𝛾 i

n
i  −  𝑎i𝛿i

n
i   

]
1
2      
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         × [c
− 3  𝑎i𝛼 i

n
i  −  𝑎i𝛽i

n
i  +5  𝑎i𝛾 i

n
i  −5  𝑎i𝛿i

n
i   

]
1
2 

         × κ−( 𝑎i𝛿i
n
i )e( 𝑎i휀i

n
i ) 

= [ ħG/c3] 𝑎i𝛼 i
n
i [ ħc/G] 𝑎i𝛽i

n
i [ ħG/c5] 𝑎 i𝛾 i

n
i  

         × [ ħc5/κ2G] 𝑎 i𝛿 i
n
i e 𝑎i휀i

n
i  

= LP

 𝑎i𝛼 i
n
i MP

 𝑎i𝛽i
n
i tP

 𝑎i𝛾 i
n
i TP

 𝑎i𝛿i
n
i Qe

 𝑎i휀i
n
i  

=  LP
𝑎i𝛼 i MP

𝑎i𝛽i tP
𝑎i𝛾 i TP

𝑎i𝛿i Qe
𝑎i휀in

i=1  =  AiP
𝑎in

i=1        (22) 

where AiP  = LP
𝛼 i MP

𝛽i tP
𝛾 i TP

𝛿i Qe
휀i .  

 

4.4 Proving URs 

Applying the generalized relation (17), we can prove the URs 

in Sec.1. 

ΔpΔr ～ PPLP =  ħc3/G ħG/c3 = ħ; ΔEΔt ～ EPtP = 

 ħc5/G ħG/c5 = ħ; δt／𝑡1/3～tP／ tP
1/3

= tP
2/3

; η／s ～ ηP／

sP  = c9/ħG3／ c9κ2/ħ3G3 = ħ／κ; ΔTΔX～ tPLP  ～ħG／c4 = 

LP
2 ／ c ～ LS

2 ; δxδyδt ～ LP
2 tP  =  LP

3 ／ c; 𝐿𝜇𝜈 ／  𝐿 ～ LP ／

 LP  =   LP ; ε(Q)η(P) ＋ ε(Q)ζ(P) ＋ ζ(Q)η(P) ～

 ħG/c3 ħc3/G  = ħ; (δt)(δ𝑟)3 ／𝑟2 ～tPLP
3 ／LP

2 = LP
2 ／c, etc. 

where  ηP  = c9/ħG3 is the Planck ratio of shear viscosity of a 

given fluid perfect, and sP  = c9κ2/ħ3G3 is its Planck volume 

density of entropy (from basic relation (9)). Thus we find that 

there hasn’t G on some formulas right hand because it is reduced 

fitly. 

 

5. No singularity at Big Bang and SBH 

In this section, we find the Big Bang UR and SBH UR by the 

generalized relation. 

 

5.1 Big Bang UR 

S.W. Hawking and R. Penrose proved that the universe 

originated the Big Bang singularity [21]. Many literatures 

discussed no singularity at the Big Bang and black holes with the 

quantum effect, please refer to [18] [22-25]. The one of the 

characteristic of Big Bang singularity is zero volume and 

limitless high temperature. 

Then we can find the relation of Big Bang temperature and 

its volume by the generalized relation (17) 

𝑇𝐵𝑉𝐵  ～ TPVP  = TPLP
3  = ħ2G／κc2       (23) 

where 𝑇𝐵  is the Big Bang temperature,  𝑉𝐵  is its volume, and 

VP  = LP
3  is the Planck volume. This is the Big Bang UR. It shows 

that it is impossible to measure the Big Bang temperature and its 

volume simultaneously. When ħ → 0, we obtain 

𝑇𝐵𝑉𝐵  ～ 0                          (24) 

Because 𝑇𝐵  > 0, we gain 𝑉𝐵  ～ 0, the Big Bang volume is zero, 

thus the Big Bang singularity appears without the quantum effect. 

We suggest no singularity at the Big Bang with quantum effect. 

Substituting a = cκT／2πħ [26] into (23), we obtain 

𝑎𝐵𝑉𝐵  ～ 𝑎pVp  = ħG／2πc              (25) 

where 𝑎𝐵  is the Big Bang acceleration, and 𝑎p  =  c7/ħG is the 

Planck acceleration. It is the UR between Big Bang acceleration 

and its volume. 

 

5.2 SBH UR 

Similarly considering the mass and volume of SBH, we find 

𝑀𝐻𝑉𝐻  ～ MPVP  = MP LP
3  = ħ2G／c4     (26) 

where 𝑀𝐻  is the SBH mass, and 𝑉𝐻  is its volume. It is the SBH 

UR. Also it is impossible to measure the SBH mass and volume 

simultaneously. When ħ → 0, we obtain 

𝑀𝐻𝑉𝐻  ～ 0                         (27) 

Because 𝑀𝐻  > 0, we have 𝑉𝐻～ 0, the volume is zero, the SBH 

singularity appears without quantum effect also. We also suggest 

no singularity in SBH with quantum effect. Taking M = ρV to 

(26), we gain  

𝑀𝐻
2／𝜌𝐻  ～ ħ2G／c4, 𝜌𝐻𝑉𝐻

2 ～ ħ2G／c4 (28) 

where 𝜌𝐻  is the mass density of SBH. These are the URs 

between the mass density of SBH and its mass or volume. 

 

6. Conclusion 

In this paper, we investigate the URs with dimensions by the 

dimensional analysis. We find the following results. 

1) The normal form of URs is discovered. The physical 

quantities are on the left hand of URs, and the physical constants 

such as the reduced Planck constant ħ, gravitational constant G, 

speed of light in vacuum c and Boltzmann constant κ are on the 

right hand. These physical constants which are rewritten appear 

the power products. 

2) The general expression of URs are found and proved. It 

shows that the products of two non-commutative physical 

quantities with dimensions are equivalent to the power products of 

ħ, G, c, κ and elementary charge e. 

3) The basic relation is found and proved. Any physical 

quantity with dimension has a corresponding Planck scale which is 

equivalent to the power products of ħ, G, c, κ and e. 

4) The Planck length LP , Planck time tP , Planck mass MP , 

Planck temperature TP , elementary charge Qe  (or Planck charge), 

Planck energy  EP , Planck momentum  PP , Planck curvature 

tensor RμνP , Planck energy density ρP , Planck pressure pP , Planck 

force per unit area fP , Planck energy-momentum tensor TμνP  etc 

are obtained again. Many physical quantities have the same Planck 

scale because of the same dimensions such as ρP , pP , fP  and 

TμνP . 

5) All the Planck scales are classified by two methods. First 

are the basic Planck scale including LP , tP , MP , TP  and  Qe , and 

derived Planck scale such as EP , PP , ρP , pP , fP , RμνP , TμνP , 

Planck wave function ψP  etc. Second are the Femi-Planck scale 
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which power is the half integer such as LP , tP , MP , TP , EP , PP , 

etc, the Bose-Planck scale which power is the integer such as Qe , 

ρP , pP , fP , RμνP , TμνP , etc and the Other-Planck scale which 

power is others such as ψP . 

6) The corresponding Planck scale of any physical quantity is 

proved to be equivalent to the power products of LP , tP , MP , TP  

and Qe .  

7) The generalized relation is found and proved. It shows that 

the power products of the non-commutative physical quantities are 

equivalent to the ones of corresponding Planck scales. The URs in 

Sec. 1 are proved by the generalized relation. G disappears on 

some URs because of being reduced fitly. 

8) The Big Bang UR between its temperature 𝑇𝐵  and 

volume 𝑉𝐵  is found by the generalized relation. It suggests no 

singularity at the Big Bang with the quantum effect. The UR 

between Big Bang acceleration 𝑎𝐵  and 𝑉𝐵  is obtained. 

Similarly the SBH UR between its mass 𝑀𝐻  and volume 𝑉𝐻  is 

found; also no singularity is in SBH with quantum effect. The 

URs between the mass density 𝜌𝐻  of SBH and 𝑀𝐻  or 𝑉𝐻  is 

gained. 

9) The generalized relation unifies all URs with dimensions. It 

is generalized, interesting and significant; any UR is its special 

case. Because depends on the dimensions, generalized relation 

can’t obtain the factor and relation without dimensions. 
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