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The Eigen-complete Difference Ratio of classes of Graphs- Domination,
Asymptotes and Area

Paul August Winter* and Samson Ojako Dickson

AbstractThe energy of a graph is related to the sum of  -electron energy in a moleculerepresented by a molecular graph and originated by the HMO (Hückel molecular orbital)theory.  Advances to this theory have taken place which includes the difference of theenergy of graphs and the energy formation difference between and graph and itsdecomposable parts. Although the complete graph does not have the highest energy of allgraphs, it is significant in terms of its easily accessible graph theoretical properties  and hasa high level of connectivity and robustness, for example. In this paper we introduce a ratio,the eigen-complete difference ratio, involving the difference in energy between thecomplete graph and any other connected graph G, which allows for the investigation of theeffect of energy of G with respect to the complete graph when a large number of verticesare involved. This is referred to as the eigen-complete difference domination effect. Thisdomination effect is greatest negatively (positively), for a strongly regular graph (stargraphs with rays of length one), respectively, and zero for the lollipop graph. When thisratio is a function f(n), of the order of a graph, we attach the average degree of G to theRiemann integral to investigate the eigen-complete difference area aspect of classes ofgraphs. We applied these eigen-complete aspects to complements of classes of graphs.AMS Classification: 05C50*Corresponding author: email: winterp@ukzn.ac.zaKey words: Graph energy, energy difference between graphs, ratios, domination,asymptotes, areas



2 1. IntroductionIn this paper graphs G will be on n vertices. We shall adopt the definitions andnotation of Harris, Hirst, and Mossinghoff. It is assumed that G is simple, thatis, it does not contain loops or parallel edges.The energy of a graph is the sum of the absolute values of the eigenvalues ofthe adjacency matrix of the graph in consideration. This quantity is studied inthe context of spectral graph theory. In short, for an n -vertex graph G withadjacency matrix A having eigenvalues n  21 , the energy )(GE isdefined as:   
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It is related to the sum of  -electron energy in a molecule represented by amolecular graph. If we know some chemistry, then we might fully appreciatethe origin of graph energy. In a private communication, Gutman (see Gutman)claimed that the HMO (Hückel molecular orbital) theory is nowadayssuperseded by new theories that provide better explanations and which donot make unnecessary assumptions.Graph energy became a very popular topic of mathematical research; this isevident in the reviews and recent papers.In the paper “Energy of Graphs” by Brualdi the difference of the energy of twographs G and H on the same number n of vertices was presented.Although the complete graph nK does not have the maximum energy of allgraphs (see Haemers), it is a very important and well-studied class of graphs –for example it has a high degree of connectiveness and robustness. Thus onewould like to compare its energy with the energy of any other graph G interms of how close their energies are, and how the energy of G compares withthe energy of nK where a large number of vertices are involved. This energy



3idea can be translated to that of molecules made up of atoms with bonds,where we map the atoms to vertices and bonds to edges, and the dominationeffect will allow for the investigation of how other molecular energiescompare with that of a molecule with all possible bonds between atoms.The eigen-complete difference ratio allowed for the investigation of the
domination effect of the energy of graphs on the energy of the complete graphwhen a large number of vertices are involved. We found that this dominationeffect is the greatest negatively (positively) for a strongly regular graph (stargraphs with rays of length one), respectively. and is zero for the lollipopgraph.
Ratios and graphs

Ratios have been an important aspect of graph theoretical definitions.Examples of ratios are:  expanders, (see Alon and Spencer ), the central ratioof a graph (see Buckley), eigen-pair ratio of classes of graphs (see Winter andJessop), Independence and Hall ratios (see Gábor), tree-cover ratio of graphs(see Winter and Adewusi),  eigen-energy formation ratio of graphs (seeWinter and Sarvate), t-compete sequence ratio (see Winter, Jessop andAdewusi) and the chromatic-cover ratio of graphs (see Winter).
We now introduce the idea of ratio, asymptotes and areas involving energydifference between the complete graph and G, similar to that of Winter andAdewusi, Winter  and Jessop, Winter and Sarvate, Winter, Jessop andAdewusi, and Winter.

2. Eigen-complete difference ratio- asymptotes, domination effect and areaLet nK be the complete graph on n vertices.Definition 2.1
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The difference between the energy of nK and a connected graph G on thesame number of vertices n is given by:
)()( GEKED n

G
n And is called the eigen-complete difference associated with G.If the graph G in belongs to a class  of graphs of order n, then the complete-

energy difference associated with  is defined as:

 GGEKED nn );()( .Dividing the complete-energy difference by the energy of nK will give an“average” of the complete-energy difference with respect to G. This providesmotivation for the following definition:Definition 2.2The eigen-complete difference ratio with respect to )(G , respectively, isdefined as:
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Definition 2.3If the eigen-complete difference ratio is a function f(n) of the order of G ,then its horizontal asymptote results in the eigen-complete difference
asymptote:
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This asymptote allows for the investigation of the effect of the energy of agraph G on the complete graph when a large number of vertices are involved,referred to as the domination eigen-complete difference effect.



5Definition 2.4Attaching the average degree of graph G, with m’ edges, to the Riemannintegral of 
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'2 ;  with 0kDArat where k is the smallestorder of G .The average degree is referred to as the length of the area, while the integralpart is the height of the area.
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6 3. Examples
3.1The complete split-bipartite graph
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3.2 The star graph 1,1 nK with n-1 rays of length1.The energy of this star graph is 12 n so that:
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3.4 The line graph of nK
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3.5 Strongly regular graphs
Koolen and Moulton have proved that the energy of a graph on n vertices is atmost n(1+ n )/2, and that equality holds if and only if the graph is stronglyregular with parameters (n,(n+ n )/2,(n+2 n )/4,(n+2 n )/4). Such graphsare equivalent to a certain type of Hadamard matrices. Here we surveyconstructions of these Hadamard matrices and the related strongly regulargraphs (see Haemers).
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3.6 Lollipop graphThe proof of the following theorem can be found in Haemers, Liu and Zhang:
Theorem 1Let G be a graph with an end vertex 1x adjacent to vertex 2x , and let 'G be thesubgraph of G induced by removing the vertex 1x . and let ''G be the subgraphof G induced by removing the vertex 2x .   Then:
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12Where )()( GAP is the characteristic polynomial ))(det( IGA  , and )(GA theadjacency matrix of G .
Example with complete graph joined to end vertexSo if LP(G) is the complete graph on n-1vertices (the base of the lollipopgraph) joined to a single end vertex 2x by an edge 21xx , we have:
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13Theorem 2The energy of the lollipop graph with base the complete graph on n-1 verticesis:
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The above lemmas can be used to verify the following theorem:



16Theorem 4
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Conjecture 1Except for strongly regular graphs, the eigen-complete difference asymptotelies on the interval [-1,1].
4. Eigen-complete different ratios of complements of classes of graphs4.1 The complete-split bipartite graphThe complement of
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Corollary 2The equation in the above theorem yields the following quadratic  sequence:
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,...23,...,6,2,0 2  nnWith second difference sequence with common difference 2:2,4,6,….,2n-2,…
4.2 Star graphs with rays of length 1The compliment of the star graph with rays of length one  (on at least threevertices) is a complete graph on n-1 vertices together with an isolated vertex.Its energy is therefore:
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5. ConclusionIn this paper we used the idea of energy difference between two graphs andthe significance of the complete graph to formulate the eigen-completedifference ratio which allowed for the investigation of the domination effectthat the energy of graphs have with respect to the complete graph when alarge number of vertices are involved. This idea can be adopted by moleculeswith a large number of atoms where the need to examine molecules whoseenergy may dominate the molecule that is very well bonded. We found that astrongly regular graph dominated in the largest negative way, while the stargraph with rays of length one had a domination effect of one- the largestpossible positive domination effect. The lollipop graph with base the completegraph had domination effect of zero.We attached the average degree to the Riemann integral of this eigen-complete ratio to determine eigen-complete areas associated with classes ofgraphs and applied the above ideas to the complement of classes of graphs.We showed that the eigen-complete difference ratios of the complete-split



21bipartite graph and its complement  are related by a differential equation withan associated quadratic sequence with second difference being a sequencewith common difference of two.
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