Formula involving primorials that produces from any prime p probably an infinity of semiprimes qr such that r-q+1=np

Marius Coman email: mariuscoman13@gmail.com

Abstract. In this paper I make a conjecture involving primorials which states that from any odd prime p can be obtained, through a certain formula, an infinity of semiprimes q^*r such that $r + q - 1 = n^*p$, where n non-null positive integer.

Conjecture:

For any odd prime p there exist an infinity of positive integers m such that $p + m^*\pi = q^*r$, where π is the product of all primes less than p and q, r are primes such that r $-q = n^*p$, where n is non-null positive integer.

Note that, for p = 3, the conjecture states that there exist an infinity of positive integers m such that 3 + 2*m = q*r, where q and r primes and r - q = n*p, where n is non-null positive integer; for p = 5, the conjecture states that there exist an infinity of positive integers m such that 5 + 6*m = q*r (...); for p = 7, the conjecture states that there exist an infinity of positive integers m such that 7 + 30*m = q*r (...); for p = 11, the conjecture states that there exist an infinity of positive integers m such that 11 + 210*m = q*r (...) etc.

Note also that m can be or not divisible by p.

Examples:

```
For p = 3 we have the following relations:

: 3 + 2*11 = 25 = 5*5, where 5 + 5 - 1 = 9 = 3*3;

: 3 + 2*18 = 39 = 3*13, where 3 + 13 - 1 = 15 = 3*5;

The sequence of m is: 11, 18 (...). Note that m can be or

not divisible by p.

For p = 5 we have the following relations:
```

```
: 5 + 6*25 = 155 = 5*31, where 5 + 31 - 1 = 35 = 7*5;

: 5 + 6*33 = 203 = 7*29, where 7 + 29 - 1 = 35 = 7*5;

The sequence of m is: 25, 33 (...)
```

For p = 7 we have the following relations: $7 + 30 \times 34 = 1027 = 13 \times 79$, where $13 + 79 - 1 = 91 = 7 \times 13$; : 7 + 30*49 = 1477 = 7*211, where 7 + 211 - 1 = 217 = 7*31. : The sequence of m is: $34, 49 (\ldots)$ For p = 13 we have the following relations: 13 + 2310*5 = 11563 = 31*373, where 31 + 373 - 1 = 403 =: 31*13; 13 + 2310*17 = 39283 = 163*241, where 163 + 241 - 1 = 403: = 31*13. The sequence of m is: 5, 17 (\ldots) For p = 17 we have the following relation: 17 + 30030*4 = 120137 = 19*6323, where 19 + 6323 - 1 =: $6341 = 373 \times 17$. The sequence of m is: $4 (\ldots)$