Formula involving primorials that produces from any prime p probably an infinity of semiprimes qr such that $r-q+1=n p$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make a conjecture involving primorials which states that from any odd prime p can be obtained, through a certain formula, an infinity of semiprimes $q^{*} r$ such that $r+q-1=n * p$, where n nonnull positive integer.

Conjecture:

For any odd prime p there exist an infinity of positive integers m such that $p+m^{*} \pi=q^{*} r$, where π is the product of all primes less than p and q, r are primes such that r - $q=n * p$, where n is non-null positive integer.

Note that, for $p=3$, the conjecture states that there exist an infinity of positive integers m such that $3+$ $2 * m=q^{*} r$, where q and r primes and $r-q=n * p$, where n is non-null positive integer; for $p=5$, the conjecture states that there exist an infinity of positive integers m such that $5+6 * m=q^{*} r$ (...); for $p=7$, the conjecture states that there exist an infinity of positive integers m such that $7+30 * m=q^{*} r(. .$.$) f for p$ = 11, the conjecture states that there exist an infinity of positive integers m such that $11+210 * m=q^{*} r(\ldots)$ etc.

Note also that m can be or not divisible by p.

Examples:

For $p=3$ we have the following relations:
: $3+2 \star 11=25=5 * 5$, where $5+5-1=9=3 * 3$;
$: 3+2 * 18=39=3 * 13$, where $3+13-1=15=3 * 5$;
The sequence of m is: 11, 18 (...). Note that m can be or not divisible by p.

For $p=5$ we have the following relations:
: $\quad 5+6 * 25=155=5 * 31$, where $5+31-1=35=7 * 5$;
$: \quad 5+6 * 33=203=7 * 29$, where $7+29-1=35=7 * 5$; The sequence of m is: 25,33 (...)

```
For p = 7 we have the following relations:
: 7 + 30*34 = 1027 = 13*79, where 13 + 79 - 1 = 91 = 7*13;
: 7 + 30*49 = 1477 = 7*211, where 7 + 211 - 1 = 217 = 7*31.
    The sequence of m is: 34, 49 (...)
For p = 13 we have the following relations:
: 13 + 2310*5 = 11563 = 31*373, where 31 + 373-1 = 403 =
    31*13;
    13 + 2310*17 = 39283 = 163*241, where 163 + 241 - 1 = 403
    = 31*13.
    The sequence of m is: 5, 17 (...)
For p = 17 we have the following relation:
: 17 + 30030*4 = 120137 = 19*6323, where 19 + 6323 - 1 =
    6341 = 373*17.
    The sequence of m is: 4 (...)
```

