Conjecture that states that any Carmichael number is a cm-composite

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In two of my previous papers I defined the notions of c-prime respectively m-prime. In this paper I will define the notion of cm -prime and the notions of $\mathrm{c}-$ composite, m-composite and cm-composite and I will conjecture that any Carmichael number is a cm-composite.

Introduction:

Though, as I mentioned in Abstract, I already defined the notions of c-prime and m-prime in previous papers, in order to be, this paper, self-contained, I shall define them here too.

Definition 1:

We name a c-prime a positive odd integer which is either prime either semiprime of the form $p(1) * q(1), p(1)<$ $q(1)$, with the property that the number $q(1)-p(1)+1$ is either prime either semiprime $p(2) * q(2)$ with the property that the number $q(2)-p(2)+1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 4979 is a c-prime because $4979=13 * 383$, where $383-13+1=371=7 * 53$, where $53-7+1=47$, a prime.

Definition 2:

We name a m-prime a positive odd integer which is either prime either semiprime of the form $p(1) * q(1)$, with the property that the number $p(1)+q(1)-1$ is either prime either semiprime $p(2) * q(2)$ with the property that the number $p(2)+q(2)-1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 5411 is a m-prime because $5411=7 * 773$, where 7 $+773-1=779=19 * 41$, where $19+41-1=59$ a prime.

Definition 3:

We name a cm-prime a positive odd integer which is either prime either semiprime of the form $p(1) * q(1), p(1)<$ q(1), with the following two properties:
: the number $q(1)-p(1)+1$ is either prime either semiprime $p(2) * q(2)$ with the property that the number $q(2)-p(2)+1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime);
: the number $p(2)+q(2)-1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 5411 is a c-prime because $5411=7 * 773$, where $773-7+1=767=13 * 59$, where $59-13+1=47$, a prime, but is also a m-prime because $7+773-1=779=$ 19*41, where $19+41-1=59$, a prime. So, being in the same time a c-prime and a m-prime, we say that the number 5411 is a cm-prime.

Definition 4:

We name a c-composite the composite number $n=$ $p(1) * p(2) * \ldots * p(m)$, where $p(1), p(2), \ldots, p(m)$ are the prime factors of n, which has often the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the number $\mathrm{p}(\mathrm{k})$ - $\mathrm{p}(\mathrm{h})+1$ is a c-prime.

Definition 5:

We name a m-composite the composite number $n=$ $p(1) * p(2) * \ldots * p(m)$, where $p(1), p(2), \ldots, p(m)$ are the prime factors of n, which has often the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the number $\mathrm{p}(\mathrm{k})+\mathrm{p}(\mathrm{h})-1$ is a m-prime.

Definition 6:

We name a cm-composite the composite number $n=$ $p(1) * p(2) * \ldots * p(m)$, where $p(1), p(2), \ldots, p(m)$ are the prime factors of n, which has the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the number $p(k)-p(h)+1$ is a c-prime and the number $p(k)+p(h)-$ 1 is a m-prime.

Note: We will consider the number 1 to be a prime in the six definitions from above; we will not discuss the controversed nature of number 1, just not to repeat in definitions "a prime or number $1^{\prime \prime}$.

Conjecture: Any Carmichael number is a cm-composite.

Verifying the conjecture (for the first 11 Carmichael numbers):

For $561=3 * 11 * 17$ we have:

$$
: \quad \text { the number } 3 \star 17-11+1=41 \text {, a prime; }
$$

: the number $3 * 17+11-1=61$, a prime.
For $1105=5 * 13 * 17$ we have:
: the number $5 * 17-13+1=73$, a prime;
: the number $5 * 17+13-1=97$, a prime.
For $1729=7 * 13 * 19$ we have:
: the number $7 \star 13-19+1=73$, a prime;
: the number $7 \star 13+19-1=109$, a prime.
For $2465=5 * 17 * 29$ we have:
: the number $5 * 17-29+1=57=3 * 19$, a c-prime because $19-3+1=17$, a prime;
: the number $5 \star 17+29-1=113$, a prime.
For $2821=7 * 13 * 31$ we have:
: the number $7 * 31-13+1=205=5 * 41$, a c-prime
because $41-5+1=37$, a prime;
: the number $7 * 31+13-1=229$, a prime.
For $6601=7 * 23 * 41$ we have:
: the number $23 * 41-7+1=937$, a prime;
: the number $23 * 41+7-1=949=13 * 73$, a m-prime because $13+73-1=85=5 * 17$ and $5+17-1=21$ $=3 * 7$ and $3+7-1=9=3 * 3$ and $3+3-1=5$, a prime.
For $8911=7 * 19 * 67$ we have:
: the number $7 \star 19-67+1=67$, a prime;
: the number $7 \star 19+67-1=199$, a prime.
For $10585=5 * 29 * 73$ we have:
: the number $5 * 29-73+1=73$, a prime;
: the number $5 * 29+73-1=217=7 * 31$, a m-prime because $7+31-1=37$, a prime.
For $15841=7 * 31 * 73$ we have:
: the number $7 \star 31-73+1=145=5 * 29$, a c-prime because $29-5+1=25$ and $5-5+1=1$;
: the number $7 * 31+73-1=289$, a m-prime because 17 $+17-1=33=3 * 11$ and $3+11-1=13$, a prime.
For $29341=13 * 37 * 61$ we have:
: the number $13 * 37-61+1=421$, a prime;
: the number $13 * 37+61-1=541$, a prime.
For $41041=7 * 11 * 13 * 41$ we have:
: the number $11 * 41-7 * 13+1=361$, a c-prime because $19-19+1=1$;
: the number $11 * 41+7 * 13-1=541$, a prime.

