Formula based on squares of primes which conducts to primes, c-primes and m-primes

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In my previous paper "Conjecture that states that any Carmichael number is a cm-composite" I defined the notions of c-prime, m-prime, cm-prime, odd positive integers that can be either primes either semiprimes having certain properties, and also the notions of ccomposite, m-composite, cm-composite, odd positive integers with two or more prime factors having certain properties. In this paper I present a formula based on squares of primes which seems to lead often (I conjecture that always) to primes, c-primes, m-primes, cm-primes or c-composites, m-composites, cm-composites.

Note:

For start I would like to revise the definitions of ccomposites, m-composites and cm-composites given by me in the paper mentioned in Abstract, in order to give them a more general meaning.

Definition 1:

We name a c-composite the composite number $n=$ $p(1) * p(2) * \ldots * p(m)$ where $p(1), p(2), \ldots, p(m)$ are the prime factors of n, which has often the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the number $p(k)-p(h)+1$ allows iterative the operation mentioned until eventually is reached a prime or the unit.

Example: $245761=53 * 4637$ is a c-composite because 4637 $-53+1=4585=5 * 7 * 131$ and $131-5 * 7+1=97$, a prime.

Definition 2:

We name a m-composite the composite number $n=$ $p(1) * p(2)^{*} \ldots{ }^{*} p(m)$ where $p(1), p(2), \ldots, p(m)$ are the prime factors of n, which has often the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the
number $\mathrm{p}(\mathrm{k})+\mathrm{p}(\mathrm{h})$ - 1 allows iterative the operation mentioned until eventually is reached a prime.

Example: $45761=53 * 4637$ is a m-composite because $4637+$ $53-1=4689=3^{\wedge} 2 * 521$ and $3^{\wedge} 2+521-1=529=23^{\wedge} 2$ and $23+23-1=45=3^{\wedge} 2 \star 5$ and $5+3 * 3-1=13$, a prime.

Definition 3:

We name a cm-composite a number which is both c-composite and m-composite.

Conjecture:

Any term (beside the first) of the sequence obtained through the iterative formula $a(n+1)=2 * a(n)-1$, where $a(1)$ is a square of prime minus nine, is either a prime, a c-prime, a m-prime, a cm-prime, a c-composite, a m-composite or a cm-composite.

Verifying the conjecture:

(for the first 15 terms of the sequence, beside a(1), when the prime is 5, 7 or 11)

```
For a(1) = 5^2 - 9 = 16 we obtain the following terms:
```

: a(2) = 31, a prime;
: a(3) = 61, a prime;
: $a(4)=121=11^{\wedge} 2$, a cm-prime (c-prime because is square
of prime and $p-p+1=1$, a c-prime by definition, and
m-prime because $11+11-1=2=3 * 7$ and $7+3-1=9$
and $3+3-1=5$, a prime);
: a(5) = 241, a prime;
: $a(6)=481=13 * 37$, a cm-prime (c-prime because $37-13+$
$1=25=5^{\wedge} 2$ and m-prime because $37+13-1=49=7 * 7$
and $7+7-1=13$, a prime;
: $\mathrm{a}(7)=961=31^{\wedge} 2$, a cm-prime (c-prime because is a
square of prime and m-prime because $31+31-1=61$, a
prime;
: $\mathrm{a}(8)=1921=17 * 113$, a c-prime because $113-7+1=97$,
a prime;
$: \quad a(9)=3841=23 * 167$, a c-prime because $167-23=145=$
$5 * 29$ and $29-5+1=25$, a square;
: a(10) = 7681, a prime;
: a(11) = 15361, a prime;
: a(12) = $30721=31 * 991$, a cm-prime (c-prime because 991 -
$31=961=31^{\wedge} 2$, a square and m-prime because $31+991$ -
$1=1021$, a prime;
: a(13) = 61441, a prime;
$: \quad a(14)=122881=11 * 11171$, a c-prime because $11171-11+$
$1=11161$, a prime;
: a(15) = $245761=$ 53*4637, a cm-composite (c-composite because $4637-53+1=4585=5 * 7 * 131$ and $131-5 * 7+1$ = 97, a prime, and m-composite because $4637+53-1=$ $4689=3^{\wedge} 2 * 521$ and $3^{\wedge} 2+521-1=529=23^{\wedge} 2$ and $23+23$ $-1=45=5 * 9$ and $5+9-1=13$, a prime.

For a(1) $=7 \wedge 2-9=40$ we obtain the following terms:
: a(2) = 79, a prime;
: $\quad a(3)=157$, a prime;
$: \quad a(4)=313$, a prime;
: a(5) = $625=5 \wedge 4$, a mc-composite (c-composite because $5 * 5$ - $5 * 5+1=1$, a c-prime by definition, and m-composite because $5 * 5+5 * 5-1=49=7 * 7$, a m-prime because $7-7$ + 1 = 1);
: a(6) = 1249, a prime;
: a(7) = $2497=11 * 227$, a c-prime because $227-11+1=$ $217=7 * 31$ and $31-7+1=25=5 * 5$ and $5-5+1=1$; $a(8)=4993$, a prime;
: a(9) = $9985=5 * 1997$, a c-prime because 1997-5 + $1=$ 1993, a prime;
: $\quad \mathrm{a}(10)=19969=19 * 1051$, a cm-prime (c-prime because 1051 - $19+1=1033$, a prime, and m-prime because $19+1051$ $1=1069$, a prime;
: $a(11)=39937$, a prime;
$: \quad a(12)=79873$, a prime;
: a(13) = 159745 = 5*43*743, a c-composite because 5*743$43+1=3673$, a prime;
: $\quad a(14)=319489$, a prime;
: $\quad a(15)=638977$, a prime;
: a(16) = 1277953 = 101*12653, a c-prime because 12653 $101+1=12553$, a prime.

For a(1) = 11^2 - 9 = 112 we obtain the following terms:
: a(2) = 223, a prime;
: a(3) $=445=5 * 89$, a cm-prime (a c-prime because $89-5+$ $1=85=5 * 17$ and $17-5+1=13$, a prime and m-prime because $89+5-1=93=3 * 31$ and $3+31-1=33=3 * 11$ and $3+11-1=13$, a prime);
: a(4) = $889=7 * 127$, a cm-prime (c-prime because $127-7+$ $1=11^{\wedge} 2$, a square and m-prime because $7+127=133$, a prime);
: $\quad \mathrm{a}(5)=1777$, a prime;
: a(6) = $3553=11 * 17 * 19$, a c-composite because $11 * 17$ - 19 $+1=169=13^{\wedge} 2$, a square;
: $a(7)=7105=5 * 7 \wedge 2 * 29$, a cm-composite (c-composite because $5 * 29-7 * 7+1=97$, a prime and m-composite because 5*29 + 7*7 - 1 = 193, a prime);
$: a(8)=14209=13 * 1093$, a c-prime because $1093-13+1=$ $1081=23 * 47$ and $47-23+1=25=5 \wedge 2$, a square;

```
: a(9) = 28417 = 157*181, a cm-prime (c-prime because 181 -
        157 + 1 = 25 = 5^2, a square and m=prime because 157 +
        181 - 1 = 337, a prime);
    : a(10) = 56833 = 7*23*353, a c-prime because 353 - 7*23 =
        193, a prime;
        a(11) = 113665 = 5*127*179, a cm-prime (c-prime because
        5*179 - 127 + 1 = 769, a prime and m-prime because 5*179
        + 127 - 1 = 1021, a prime;
: a(12) = 227329 = 281*809, a c-prime because 809 - 281 + 1
        = 529 = 23^2, a square;
    : a(13) = 454657 = 7*64951, a cm-composite (c-composite
        because 64951 - 7 + 1 = 64945 = 5*31*419 and 419 - 5*31 +
        1=265 = 5*53 and 53 - 5 + 1 = 47, a prime and m-
        composite because 64951 + 7 - 1 = 454663 = 11*41333 and
        41333 + 11 - 1 = 41343 = 3*13781 and 13781 + 3 - 1 =
        13783 = 7*11*179 and 179 + 7*11 - 1 = 255 = 3*5*17 and
        3*5 + 17 - 1 = 31, a prime);
: a(14) = 909313 = 17*89*601, a cm-composite (c-composite
        because 17*89 - 601 + 1 = 913 = 11*83 and 83 - 11 + 1 =
        73, a prime and m-composite because 17*89 + 601 - 1 =
        2113, a prime;
: a(15) = 1818625 = 5^3*14549 is a c-composite because
        5^2*14549 - 5 + 1 = 557*653 and 653 - 557 + 1 = 97, a
        prime.
```

