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Abstract: We consider here equations of motion of three-body problem in a Lagrange 

form (which means a consideration of relative motions of 3-bodies in regard to each 

other). Analyzing such a system of equations, we consider in details the case of 

moon’s motion of negligible mass around the 2-nd of two giant-bodies (which are 

rotating around their common centre of masses on Kepler’s trajectories), the mass of 

which is assumed to be less than the mass of central body. 

Under assumtion of R3BP, we obtain the equations of motion which describes the 

relative motion of the centre of mass of 2-nd giant-body m₂ (Planet) and the centre of 

mass of 3-rd body (Moon) with the effective mass m₂ in the centre of mass of the 

Moon (which are rotating around their common centre of masses on Kepler’s elliptic 

trajectories), where  is the proper dimensionless parameter. 

Besides, if the dimensionless parameter  → 0 equations of motion should describe a 

quasi-circle motion of 3-rd body (Moon) around the 2-nd body m₂ (Planet). But only 

in case of the Earth’s Moon such a parameter increases to the maximal meaning 

0.0055. It means that the orbit of Earth’s Moon should be considered as strictly quasi-

elliptic with the effective mass m₂ placed in the centre of mass for the 3-rd body 

(Moon). The position of such a centre of mass should obviously differ for the real 

mass m₃ and effective mass m₂ placed in the centre of mass of 3-rd body (Moon). 
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Introduction. 

 

The stability of the motion of the Moon is the ancient problem which leading scientists 

have been trying to solve during last 400 years. A new derivation to estimate such a 

problem from a point of view of relative motions in restricted three-body problem 

(R3BP) is proposed here. 

Systematic approach to the problem above was suggested earlier in KAM-

(Kolmogorov-Arnold-Moser)-theory [1] in which the central KAM-theorem is known 

to be applied for researches of stability of Solar system in terms of restricted three-

body problem [2-5], especially if we consider photogravitational restricted three-body 

problem [6-8] with additional influence of Yarkovsky effect of non-gravitational nature 

[9]. 

 

KAM is the theory of stability of dynamical systems [1] which should solve a very 

specific question in regard to the stability of orbits of so-called “small bodies” in Solar 

system, in terms of restricted three-body problem [3]: indeed, dynamics of all the 

planets is assumed to satisfy to restrictions of  restricted three-body problem (such as 

infinitesimal masses, negligible deviations of the main orbital elements, etc.).  

Nevertheless, KAM also is known to assume the appropriate Hamilton formalism in 

proof of the central KAM-theorem [1]: the dynamical system is assumed to be 

Hamilton system as well as all the mathematical operations over such a dynamical 

system are assumed to be associated with a proper Hamilton system. 

According to the Bruns theorem [5], there is no other invariants except well-known 10 

integrals for three-body problem (including integral of energy, momentum, etc.), this is 

a classical example of Hamilton system. But in case of restricted three-body problem, 

there is no other invariants except only one, Jacobian-type integral of motion [3]. 

Such a contradiction is the main paradox of KAM-theory: it adopts all the restrictions 

of restricted three-body problem, but nevertheless it proves to use the Hamilton 

formalism, which assumes the conservation of all other invariants (the integral of 

energy, momentum, etc.). 

To avoid ambiguity, let us consider a relative motion in three-body problem [2]. 
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1. Equations of motion. 

 

Let us consider the system of ODE for restricted three-body problem in barycentric 

Cartesian co-ordinate system, at given initial conditions [2-3]: 

 

 

- here q₁, q₂, q₃ - mean the radius-vectors of bodies m₁, m₂, m₃, accordingly;  - is the 

gravitational constant. 

 

System above could be represented for relative motion of three-bodies as shown below 

(by the proper linear transformations): 
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Let us designate as below: 

 

 

Using of (*) above, let us transform the previous system to another form: 

 

 

 

Analysing the system (1.1) we should note that if we sum all the above equations one 

to each other it would lead us to the result below: 

 

If we also sum all the equalities (*) one to each other, we should obtain 
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Under assumption of restricted three-body problem, we assume that the mass of small 

3-rd body m₃ ≪ m₁, m₂, accordingly; besides, for the case of moving of small 3-rd 

body m₃ as a moon around the 2-nd body m₂, let us additionaly assume R ₂,₃ ≪ R ₁,₂. 

 

So, taking into consideration (**), we obtain from the system (1.1) as below: 

 

 

 

- where the 1-st equation of (1.2) describes the relative motion of 2 massive bodies 

(which are rotating around their common centre of masses on Kepler’s trajectories); 

the 2-nd describes the orbit of small 3-rd body m₃ (Moon) relative to the 2-nd body m₂ 

(Planet), for which we could obtain according to the trigonometric “Law of Cosines” 

[10]: 

 

- here  – is the angle between the radius-vectors R ₂,₃ and R ₁,₂. 

 

Equation (1.3) could be simplified under additional assumption R ₂,₃ ≪ R ₁,₂ for 

restricted mutual motions of bodies m₁, m₂ in R3BP [3] as below: 
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Moreover, if we present Eq. (1.4) in a form below 

 

- where Eq. (1.5) describes the relative motion of the centre of mass of 2-nd giant-

body m₂ (Planet) and the centre of mass of 3-rd body (Moon) with the effective mass 

m₂ in the centre of mass of the Moon (which are rotating around their common 

centre of masses on Kepler’s elliptic trajectories). 

Besides, if the dimensionless parameter  → 0 equation (1.5) should desribe a quasi-

circle motion of 3-rd body (Moon) around the 2-nd body m₂ (Planet). 

 

 

 

2. The comparison of the moons in Solar system. 

 

 

As we can see from Eq. (1.5),  is the key parameter which determines the character of 

moving of the small 3-rd body m₃ (the Moon) relative to the 2-nd body m₂ (Planet). Let 

us compare such a parameter for all considerable known cases of orbital moving of the 

moons in Solar system [12] (Tab.1): 
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Masses of 

the 

Planets 

(Solar 

system), 

kg 

Ratio m₁ 

(Sun) 

to mass m₂ 

(Planet) 

Distance  

R₁,₂ 

(between 

 Sun-Planet), 

AU 

Ratio m₃ 

(Moon) 

to mass m₂ 

(Planet) 

Distance  

R ₂,₃ 

(between 

Moon-

Planet) 

in 10³ km 

 

Parameter 

Mercury, 

3.310²³ 
 

0.387 AU    

Venus, 

4.8710²⁴ 
 

0.723 AU    

Earth, 

5.9710²⁴ 

1 Earth = 

332 946 kg 

1 AU = 

149 500 000 

km  

12’30010ˉ⁶ 383.4 

Moon 

5’53210ˉ⁶ 

Mars, 

6.4210²³ 

 

1.524 AU 

1) Phobos 

0.0210ˉ⁶ 

2) Deimos 

0.00310ˉ⁶ 

1) Phobos 

9.38 

2) Deimos 

23.46 

1) Phobos 

0.21710ˉ⁶ 

2) Deimos 

3.410ˉ⁶ 

Jupiter, 

1.910²⁷ 

 

5.2 AU 

1) Ganymede 

7910ˉ⁶ 

2)  Callisto 

5810ˉ⁶ 

3)   Io 

4710ˉ⁶ 

4)  Europa 

1) 

Ganymede 

1 070 

2)  Callisto 

1 883 

3)   Io 

422 

4)  Europa 

1) Ganymede 

2.7310ˉ⁶ 

2)  Callisto 

14.8910ˉ⁶ 

3)   Io 

0.16810ˉ⁶ 

4)  Europa 








 

055.0

946233


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
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946233
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107.0
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8.317

946233
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2510ˉ⁶ 671 0.67410ˉ⁶ 

Saturn, 

5.6910²⁶ 

 

9.54 AU 

1) Titan 

24010ˉ⁶ 

2) Rhea 

4.110ˉ⁶ 

3) Iapetus 

3.410ˉ⁶ 

4) Dione 

1.910ˉ⁶ 

1) Titan 

1 222 

2) Rhea 

527 

3) Iapetus 

3 561 

4) Dione 

377 

1) Titan 

2.210ˉ⁶ 

2) Rhea 

0.17710ˉ⁶ 

3) Iapetus 

54.4610ˉ⁶ 

4) Dione 

0.06510ˉ⁶ 

Uranus, 

8.6910²⁵ 

 

19.19 AU 

1) Titania 

4010ˉ⁶ 

2) Oberon 

3510ˉ⁶ 

3) Ariel: 

1610ˉ⁶ 

1) Titania 

436 

2) Oberon 

584 

3) Ariel: 

191 

1) Titania 

0.08110ˉ⁶ 

2) Oberon 

0.19510ˉ⁶ 

3) Ariel: 

0.00710ˉ⁶ 

Neptune, 

1.0210²⁶ 

 

30.07 AU 

1) Triton 

21010ˉ⁶ 

2) Proteus 

0.4810ˉ⁶ 

3) Nereid 

0.2910ˉ⁶ 

1) Triton 

355 

2) Proteus 

118 

3) Nereid 

5 513 

1) Triton 

0.0110ˉ⁶ 

2) Proteus 

0.000410ˉ⁶ 

3) Nereid 

35.8110ˉ⁶ 

Pluto, 

1.310²² 
 

39.48 AU 

Charon 

124’62010ˉ⁶ 

Charon 

20 

Charon 

0.006210ˉ⁶ 








 

16.95

946233








 

37.14

946233








 

15.17

946233








 

002.0

946233
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3. Discussion & conclusion. 

 

As we can see from the Tab.1 above, the dimensionless key parameter , which 

determines the character of moving of the small 3-rd body m₃ (Moon) relative to the 

2-nd body m₂ (Planet), is varying for all variety of the moons of the Planets (in Solar 

system) from the meaning 0.000410ˉ⁶ (for Proteus of Neptune) to the meaning 

54.4610ˉ⁶ (for Iapetus of Saturn); but it still remains to be negligible enough for 

adopting the stable moving on quasi-circle Kepler’s orbit around their common centre 

of masses with the 2-nd body m₂. 

If the dimensionless parameter  → 0 equation (1.5) should describe a quasi-circle 

motion of 3-rd body (Moon) around the 2-nd body m₂ (Planet). 

But only in case of the Earth’s Moon such a parameter increases to the crucial 

meaning 5’53210ˉ⁶ = 0.0055. It means that the orbit for relative motion of the Moon 

in regard to the Earth could not be considered as quasi-circle orbit and should be 

considered as strictly quasi-elliptic orbit with the effective mass m₂ placed in the 

centre of mass for the 3-rd body (Moon). As we know, the elements of that elliptic 

orbit depend on the position of the common centre of mass for 3-rd small body 

(Moon) and the planet (Earth). But such a position should obviously differ for the real 

mass m₃ and effective mass m₂ placed in the centre of mass of the 3-rd body 

(Moon). For example, in the case of mutual moving “Moon-Earth”: m₂ = 

0.0055m₂, m₃ = 0.0123m₂. 
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