The notion of mar constants

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I present a notion based on the digital root of a number, namely "mar constant", that highlights the periodicity of some infinite sequences of non-null positive integers (sequences of squares, cubes, triangular numbers, polygonal numbers etc).

Definition:

We understand by "mar constants" the numbers with n digits obtained by concatenation from the values of the digital root of the first n terms of an infinite sequence of non-null positive integers, if the mar values of the terms of such a sequence form themselves a periodic sequence, with a periodicity equal to n. We consider that it is interesting to see, from some well known sequences of positive integers, which one is characterized by a mar constant and which one it isn't.

Example:

The values of the digital root of the terms of the cubic numbers sequence $(1,8,27,64,125,216,343,512,729$, 1000 , 1331, ...) are 1, 8, 9, 1, 8, 9 (...) so these values form a sequence with a periodicity equal to three, the terms $1,8,9$ repeating infinitely. Concatenating these three values is obtained a mar constant, i.e. the number 189.

Let's take the following sequences:

(1) The cubic numbers sequence
S_{n} is the sequence of the cubes of positive integers and, as it can be seen in the example above, is characterized by a mar constant with three digits, the number 189.
(2) The square numbers sequence
S_{n} is the sequence of the square of positive integers (A000290 in OEIS): 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441 (...) and is characterised by a mar constant with nine digits, the number 149779419.
(3) The triangular numbers sequence
S_{n} is the sequence of the numbers of the form ($n *(n+$ 1)) $/ 2=1+2+3+\ldots+n(A 000217$ in OEIS): 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300 (...) and is characterised by a mar constant with nine digits, the number 136163199.
(4) The centered square numbers sequence
S_{n} is the sequence of the numbers of the form $m=2 *_{n}$ ($n+$ $1)+1$ (A001844 in OEIS): 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613 (...) and is characterised by a mar constant with nine digits, the number 154757451.
(5) The centered triangular numbers sequence
S_{n} is the sequence of the numbers of the form $m=3 *_{n *}(n+$ 1)/ $2+1$ (A005448 in OEIS): 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460 (...) and is characterised by a mar constant with three digits, the number 141.
(6) The Devlali numbers sequence
S_{n} is the sequence of the Devlali numbers (defined by the Indian mathematician D.R. Kaprekar, born in Devlali), which are the numbers that can not be expressed like $n+$ $S(n)$, where n is integer and $S(n)$ is the sum of the digits of n. The sequence of these numbers is (A003052 in OEIS): 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198 (...).

This sequence is characterized by a mar constant with 9 digits, the number 135792468.
(7) The Demlo numbers sequence
S_{n} is the sequence of the Demlo numbers (defined by the Indian mathematician D.R. Kaprekar and named by him after a train station near Bombay), which are the numbers of the form ($\left.\left.10^{\wedge} \mathrm{n}-1\right) / 9\right)^{\wedge} 2$. The sequence of these numbers is (A002477 in OEIS): 1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 1234567900987654321 (...).

This sequence is characterized by a mar constant with 9 digits, the number 149779419.

Comment:

I conjecture that any sequence of polygonal numbers, i.e. numbers with generic formula ($\mathrm{k}^{\wedge} 2^{*}(\mathrm{n}-2)-\mathrm{k}^{*}(\mathrm{n}-$ 4)) $/ 2$, is characterized by a mar constant:
: The sequence of pentagonal numbers, numbers of the form $n *(3 * n-1) / 2$, i.e. $1,5,12,22,35,51,70$, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, ...(A000326) is characterized by the mar constant 153486729;
: The sequence of hexagonal numbers, numbers of the form n* (2*n - 1), i.e. 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, ...(A000326) is characterized by the mar constant 166193139 etc.

Conclusion:

We found so far eight mar constants, six with nine digits, i.e. the numbers 149779419, 136163199, 154757451, 135792468, 153486729, 166193139 and two with three digits, i.e. the numbers 189 and 141.

