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Zero-point energy in the Johnson noise of resistors: Is it there? 
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 There is a longstanding debate about the zero-point term in the Johnson noise voltage of a resistor: Is it indeed there or is it only 

an experimental artifact due to the uncertainty principle for phase-sensitive amplifiers? We show that, when the zero-point term 
is measured by the mean energy and force in a shunting capacitor and, if these measurements confirm its existence, two types of 
perpetual motion machines could be constructed. Therefore an exact quantum theory of the Johnson noise must include also the 
measurement system used to evaluate the observed quantities. The results have implications also for phenomena in advanced 
nanotechnology. 

 
 
 
1. Introduction 
 
The thermal noise (Johnson noise) in resistors was 
discovered 1 by Johnson and explained 2 by Nyquist in 
1927, a year after the foundations of quantum physics were 
completed. The Johnson-Nyquist formula states that 
 
Su ( f ) = 4R( f )hfN( f ,T )      (1) 
 
where Su ( f )  is the one-sided power density spectrum of 
the voltage noise on the open-ended complex impedance 
Z( f )  with real part Re Z( f )[ ] = R( f ) ; and h is the Planck 
constant. The Planck number N( f ,T )  is the mean number 
of hf  energy quanta in a linear harmonic oscillator with 
resonance frequency f , at temperature T : 
 
N( f ,T ) = exp(hf / kT )−1[ ]−1   ,   (2) 
 
which is N( f ,T ) = kT / (hf )  for the classical physical 
range kT >> hf . Eq. 2 results in an exponential cut-off of 
the Johnson noise in the quantum range f > fP = kT / h , in 
accordance with Planck's thermal radiation formula. In the 
deeply classical (low-frequency) limit, f << fP = kT / h , 
Eqs. 1-2 yield the familiar form used at low frequencies: 
 
Su,l ( f ) = 4kTR( f )       (3) 
 
where the Planck cut-off frequency fP  is about 6000 GHz
at room temperature, well-beyond the reach of today's 
electronics. 
 
The quantum theoretical treatment of the one-sided power 
density spectrum of the Johnson noise was given only 24 
years later by Callen and Welton 3 (often called Fluctuation-
Dissipation Theorem (FDT). The quantum version 3 of the 
Johnson-Nyquist formula has an additive 0.5 to the Planck 
number, corresponding to the zero-point energy of linear 
harmonic oscillators: 

 
Su,q ( f ) = 4R( f )hf N( f ,T )+ 0.5[ ]  .  (4) 
 
Thus the quantum correction of Eq. 1 is a temperature-
independent additive term of Callen-Welton's one-sided 
power density spectrum (Eq. 2) is  
 
Su,ZP ( f ) = 2hfR( f )  ,   (5) 
 
which linearly depends on the frequency and it exists for 
any f > 0  frequency, even in the deeply classical, 
f << fP = kT / h , frequency regime, and even at zero 

temperature. The zero-point term described by Eq. 5 has 
acquired a wide theoretical support during the years, e.g. 4-8. 
 
A note of clarification: the Callen-Walton's derivation 
works solely with the one-sided spectrum while subsequent 
quantum theoretical approaches often utilize asymmetrical 
power density spectra of fluctuations, e.g. 7,8 and they are in 
full agreement with the Callen-Welton result. 
 
 
2. The debate 
 
2.1 The ground state 
 
However, there have also been contra-arguments and 
debates. MacDonald 

9 and Harris 10 argued that extracting 
energy/power from the zero-point energy is impossible thus 
Eq. 5 should not exist.  
 
2.2 Planck's black-body radiation 
 
Grau and Kleen 

11 and Kleen 12 (similarly to the original 
treatment of Nyquist 2), argued that the Johnson noise of a 
resistor connected to an antenna, see Fig. 1, must satisfy 
Planck's thermal radiation formula thus the noise must be 
zero at zero temperature, which would imply that Eqs. 4,5 
are invalid. It is obvious even by naked-eye observations: at 
6000 K temperature, at 600 nm (orange color), the Planck 
number N = 0.0164 . Thus the zero-point term (0.5) in Eq. 
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4 is 30 times greater than the classical term, yet it is 
invisible for the eye and a photocell. 
 
However, defenders of Eq. 4 may say that the same zero-
point term exists also in the thermal radiation field and that 
makes the net energy flow between the resistor and the 
radiation field zero for the zero-point term just like it does 
for the classical term by satisfying the Second Law of 
Thermodynamics. Nevertheless, this argument is unable to 
against a more advanced objection based on fluctuations, 
even if we neglect the obvious problem that photon 
absorption is irreversible. The zero-point terms in Eqs. 4,5 
represent noises and that means statistical fluctuations 12, 13 
of their finite-time mean square values. The implication is 
that for independent zero-point noises in the resistor and the 
radiation field (it is easy to shield the resistor to make that 
sure) a "zero-point energy flow" with fluctuating direction 
and value of the short-time average were observable 
between the antenna's input and its radiation field. This is 
not the case and it is a hard experimental fact that neither 
zero-point term nor its fluctuations are observable in the 
thermal radiation. 

 

 
 

Figure 1. Measurement scheme based on an antenna and a photon 
counter, which does not show the presence of the zero-point term 
(Eq. 5) or its fluctuation in the Johnson noise at its output 11,12.  
 
2.3 Divergent noise energy 
 
Later, Kish 14 pointed out that the existence of the zero-
point term, which has and "f"-noise implies a 1/f noise and 
related logarithmic divergence of the energy of a shunt 
capacitor in the high-frequency limit. While this does not 
disprove the existence of Eq. 5, it may indicate that the 
problem is a renormalization problem, a mathematical 
artifact, which is not actually present at measurements. 
 
2.4 The crucial experimental proof 
 
Yet, on the contrary of all the criticisms above, the 
experimental test by Koch, van Harlingen and Clarke 

15 
fully confirmed Eqs. 4,5 by measurements on resistively 
shunted Josephson-junctions, which is a heterodyne 
measurement method (required by the high frequency), see 
Fig. 2. The scheme is understood to be equivalent to the 
standard linear amplifier/filter method that determines the 
one-sided power density spectrum of the noise but allows 

accessing very high frequencies. 
 
2.5 The uncertainty principle argument 
 
However, Haus 16 and Kleen 17, by using Heffner's theory 18 
of the uncertainty principle in linear amplifiers, state that 
the zero-point term (Eq. 5) in Eq. 4 is the direct 
consequence of the uncertainty principle at phase-sensitive 
amplitude measurement (Fig. 2). The same argumentation 
implies that the antenna arrangement 11,12 (Fig. 1) will not 
show uncertainty (and zero-point term) in the photon 
number. Nevertheless, the uncertainly principle argument 
cannot disprove Eqs. 4,5. The claimed zero-point term in 
the noise voltage may still exist and also satisfy the 
uncertainty principle instead of being solely an 
experimental artifact. 

 

 
 

Figure 2. Heterodyne measurement scheme 15 based on a 
Josephson junction that mixes down the noise in the frequency 
range of interest. The mixing is represented by an analog 
multiplier driven by the noise and by the sinusoidal voltage 
oscillation at the Josephson frequency  f = 2qUdc / h , where q is 
charge quantum and  Udc  is the dc voltage on the Josephson 
junction. The dc component of the down-converted noise is 
proportional to Su

0.5 ( f )  and it is extracted by time average unit of 
time constant τ . Other filters and devices are not shown.  
 
2.6 Criticism of the Callen-Welton theory 
 
Recently, Reggiani, et al. 19 objected the mathematical 
derivations 3-6 of Eq. 4 by arguing that the calculations are 
valid only at the resonant frequencies of the physical 
system. They were unable to give a new quantum physical 
derivation of the Johnson noise that would satisfy their 
requirements. 
 
 
3. Energy and force in a capacitor 
 
Regarding our present considerations, the main conclusion 
of the debates described above is that the actual 
measurement scheme has a crucial role in the outcome of 
the observation. Thus the natural question emerges: can we 
use other types of measurements and check if the 
implications of Eq. 4,5 are visible in those experiment, or 
not? 
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Here we design two new measurement schemes utilizing 
the energy and force in a capacitor shunting a resistor. 
 
 
3.1 Energy in a shunting capacitor 
 
Consider first the mean energy in a capacitor shunting the 
resistor. Fig. 3 shows this system, which is a first-order 
low-pass filter with a single pole at frequency 
fL = 2πRC( )−1 . 

 

 
 

Figure 3. Resistor shunted by a capacitor. 
 
The real part of the impedance is given as 

 
Re Z( f )[ ] = R 1+ j ffL

−1( )−1  thus, in accordance with Callen-
Welton 3 and Equation 4, the one-sided power density 
spectrum Su,C ( f )  of the voltage on the impedance (and that 
on the capacitor) is: 
 

Su,C ( f ) =
4RhfN( f ,T )
1+ f 2 fL

−2 + 2Rhf
1+ f 2 fL

−2  ,  (6) 

 
where the first term is classical physical while the second 
one is its quantum (zero-point) correction. 
 

 
 

Figure 4. The Boode plot (with the low and high frequency 
asymptotes) of the classical and quantum (zero-point) component 
of the power density spectrum of the voltage on the capacitor at a 
finite temperature. The classical Lorentzian spectrum has white 
and 1/f 2 spectral regimes. At zero temperature, only the quantum 
term exists, which is an f-noise at low frequencies and converges 
to 1/f at f > fL. 
 
The mean energy in the capacitor is given as: 
 

EC = 0.5C UC
2 (t) = 0.5C Su,C ( f )df

0

fc

∫  ,       (7) 

 
where fc >> fL  is the cut-off frequency of the transport in 
the resistor. At near-to-zero temperature, the classical 
component UC ,c

2 (t)  of UC
2 (t)  vanishes: 

 

lim
T→0

UC ,c
2 (t) = lim

T→0
 4Rh f exp(hf / kT )−1[ ]−1

1+ f 2 fL
−2 df

0

fc

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0  (8) 

 
but the quantum (zero-point) term remains: 
 

UC ,q
2 (t) = 2hfR

1+ f 2 fL
−2 df

0

fc

∫ = hRfL
2 ln 1+ fc

2

fL
2

⎛
⎝⎜

⎞
⎠⎟

.      (9) 

 
Thus the energy in the capacitor, in the zero-temperature 
approximation, is: 
 

EC = h
8π 2RC

ln 1+ 4π 2R2C 2 fc
2( )  .        (10) 

 
Eq. 10 implies that by choosing different resistance values, 
the capacitor is charged up to different mean energy levels. 
This energy can be measured by, for example, switching 
the capacitor between two resistor of different resistance 
values and evaluating the dissipated heat, see Section 4.1. 
 
 
3.2 Force in the capacitor 
 
In a plane capacitor, where the distance x between the 
planes is much smaller than the smallest diameter d of the 
planes, x << d , the attractive force between the planes is 
given as 20 : 
 

F = EC

x
      (11) 

 
From Eqs. 10 and 11, the mean force in the plane capacitor 
shunting a resistor (see Fig. 3) is: 
 

F(x) =
EC

x
= 1
x

h
8π 2RC(x)

ln 1+ 4π 2R2C 2 (x) fc
2⎡⎣ ⎤⎦ ,    (12) 

 
where the x-dependence of the capacitance is given by 
C(x) = εε0A / x , and A is the surface of the planes. 
 
Eq. 12 indicates that, at a given plane distance x, different 
resistance values result in different forces. 
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4. Two "perpetual motion machines" 
 
The above energy and force effects, if the zero-point term 
were visible at these kinds of measurements, could be used 
to build two different perpetual motion machines. 
 
4.1 Zero-point noise based "perpetual heat generator" 
 
In Fig. 5, the "heat-generator" is shown. It is an ensemble 
of N Units, each one containing two different resistors and 
one capacitor. The capacitors in the Units are periodically 
alternated between the two resistors by centrally controlled 
switches, in a synchronized fashion, that makes the relative 
control energy negligible 20. The duration τ h  of the period 
is selected so long that the capacitors are "thermalized" by 
the zero-point noise, that is, τ h >>max R1C,R2C{ } . 

Suppose: R1 < R2  and that the parameters satisfy 

max 4πRiC( )−1{ } << fc . In this case, whenever the switch 

makes the 1⇒ 2  transition, the energy difference will 
dissipate in the system of R2  resistors: 
 
0 < Eh =

N h
8π 2C

ln 1+ 4π 2R1
2C 2 fc

2( )
R1

−
ln 1+ 4π 2R2

2C 2 fc
2( )

R2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     (13) 

 
After the reverse, 2⇒1  transition, the capacitors will be 
recharged by the system of R1  resistors to their higher 
mean energy level. 

 

 
 

Figure 5. The heat generator based "perpetual motion machine". 
The switch is periodically switched between the two states. If the 
zero-point term existed in the Jonson noise voltage then energy 
were pumped from the system of resistors of the smaller resistance 
into the system of resistors of the greater resistance. 
 
In conclusion the "heat-generator" system is pumping 
energy from the system of R1  resistors to the system of R2  
resistors where this energy will dissipate to heat, which can 
be utilized to drive the switches of this perpetual motion 
machine. This process violates not only the Second Law of 
Thermodynamics by its negentropy production but it 
directly violates the Energy Conservation Law, too. 
 

 
 

Figure 6. The moving-plate capacitor piston based "perpetual 
motion machine". The switch is periodically switched between the 
two states. See also Figure 7. 
 
4.2 Zero-point noise based "perpetual motion engine" 
 
The second perpetual motion machine is a two-stroke 
engine, see Fig. 6. This is the zero-point energy version of 
the two-stroke Johnson noise engine described earlier 20. 
The engine has N parallel cylinders with identical elements 
and parameters as in the system in Fig. 5. The only 
difference is that the capacitors have a moving plate, which 
acts as a piston. The moving plates are coupled to a 
flywheel, which moves them in a periodic, synchronized 
fashion. When the plate distance reaches its nearest and 
farthest distance limits, xmin  and xmax , where the 
corresponding capacitance values are Cmax  and Cmin , 
respectively, the switch alternates the driving resistor, see 
Fig. 7. During contraction and expansion, the driver is R1  
and R2 , (R1 < R2 ) , respectively. At a given distance x, the 
difference between the attractive force between the 
capacitors is 16  
 

ΔF(x) = 1
x

h
8π 2C(x)

1
R1
ln 1+ 4π 2R1

2C 2 (x) fc
2⎡⎣ ⎤⎦ −

1
R2
ln 1+ 4π 2R2

2C 2 (x) fc
2⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

 

 
where x is the distance between the plates and C(x)  is the 
capacitance versus the distance. Thus the total force 
difference in N cylinders is: 
 
ΔFN (x) = N ΔF(x)  .      (15) 
 
With R1 < R2 , at any given plate distance x (and 
corresponding capacitance value), the force N F(x)  is 
stronger during contraction than during expansion, c.f. Fig. 
7. During a full cycle, a positive net work is executed by 
the engine: 
 

  
W = N F(x) dx =

xmin, xmax
∫ ΔFN

xmax

xmin

∫ (x)dx > 0  .  (16) 

 

(14) 
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Wile this two-stroke engine produces a positive work 
during its whole cycle, at the switching at Cmax, the heat-
generation effect also kicks in, that is, heat is generated in 
R2, similarly to the first perpetual motion machine. 
 

 
 

Figure 7. The capacitance-resistance diagram of the two-stroke 
perpetual motion engine. 
 
 
5. Conclusions 
 
Both perpetual motion machines directly violate not only 
the Second Law of Thermodynamics but also the Energy 
Conservation Law. Thus the key assumption leading to 
their creation, that is, the presence of the zero-point term 
(Eqs. 4,5) in the voltage at these experiments, must be 
incorrect. 
 
As this assumption directly leads to the feasibility of the 
two perpetual motion machines described in Section 4, we 
must conclude that, during these types of measurements, the 
zero-point term of the Johnson noise voltage spectrum 
cannot be correct in the form given by Eqs. 4 and 5.  

 
Note, the Casimir-effect also implies an attractive force 
between the plates. However, the Casimir-pressure decays 

21 with x−4 , which implies that the Casimir force at fixed 
capacitance decays with x−3 . At the same time, the force 
due to the zero-point noise decays as x−1 . Thus, in the 
perpetual motion machines introduced above the Casimir 
effect can always be made negligible by the proper choice 
of the range of distance x between the plates during 
operation. 
 
Our main conclusions is as follows: 
 
An exact quantum theory of the Johnson noise must include 
also the measurement system used to evaluate the observed 
quantities.  
 
Finally, it is important to mention that the above 
considerations are not only fundamental scientific but they 
can also be relevant for technical applications. The issue of 
the force in a capacitor has potential importance in 
advanced nanotechnology where the van der Waals/Casimir 
forces are present 22. In systems where there is electrical 
connection between nanostructural conductors forming 
capacitors, such as coated cantilevers, the zero-point noise 
would imply forces that could dominate over the van der 
Waals/Casimir forces. 
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