An Elementary Proof of Gilbreath's onjecture

Hashem Sazegar

Training department of National Iranian Gas Company,pipeline, Zone4

Abstract

Given the fact that the Gilbreath's Conjecture has been a major topic of research in aritmatic progression for well over a century, and as bellow: ```23571113171923293137414347535961 12242424626424662 1022222244222204 120000020200024 12000022220022 1200020002020 120022002222 12020202000 1222222200 100000020 10000022 1000020 100022 10020 1022 120 12 1```

The Gilbreath's conjecture in a way as easy and comprehensive as possible.
He proposed that these differences, when calculated repetitively and left as bsolute values, would always result in a row of numbers beginning with 1,In this paper we bring elementary proof for this conjecture.

Introduction:

Given the fact that the Gilbreath's Conjecture has been a major topic of research in aritmatic progression for well over a century, the Gilbreath conjecture in a way as easy and comprehensive as possible.
Hopefully it will help the right person take this conjecture out of the unsolved list and into the list of accomplishments of mathematics.
To begin the story, the anecdote goes that an undergraduate student named norman Gilbreath was doodling on a napkin one day in a cafe and found a very interesting characteristic of the list of sequential prime numbers and the
diferences between them. He proposed that these diferences, when calculated repetitively and left as absolute values, would always result in a row of numbers beginning with 1 (after the first row). No one has been able to prove it.
In 1878, eighty years before Gilbreath's discovery, François Proth had, however, published the same observations along with an attempted proof, which was later shown to be false.
Andrew Odlyzko_verified that d_{1}^{k} is 1 for $k \leq n=3.4 \times 10^{11}$ in 1993, but the conjecture remains an open problem. Instead of evaluating n rows, Odlyzko evaluated 635 rows and established that the 635 th row started with a 1 and continued with only 0 's and 2 's for the next n numbers. This implies that the next n rows begin with a 1 ,see[1]

Notation

We define d_{n}^{k} is K th row, n th Number, and as $d_{n}^{k}=\left|d_{n+1}^{k-1}-d_{n}^{k-1}\right|$ We should prove that $d_{1}^{k}=1$,for any k

Theorem: $d_{1}^{k}=1$,for any k
Proof: assume that the Gilbreath's Conjecture is correct until p_{m}, that is m th ,prime in first row by induction we prove that this Conjecture is correct for p_{m+1},so below table is correct by induction:

$$
\begin{aligned}
& 23571113171923293137414347535961 \ldots \ldots . p_{m-2} p_{m-1} p_{m} \\
& 12242424626424662 \\
& 10222222422204 \\
& 120000020200024 \\
& 1200002220022 \\
& 1200020002020 \\
& 12002200222 \\
& 12020202000 \\
& 122222200 \\
& 100000020 \\
& 10000022 \\
& 1000020 \\
& 100022 \\
& 10020 \\
& 1022 \\
& 120 \\
& 12
\end{aligned}
$$

1
Notice that in above table for every sentence in any row ,we have $d_{n}^{k}=\left|d_{n+1}^{k-1}-d_{n}^{k-1}\right|<p_{n} \leq p_{m}$,Now we prove that this table is correct for p_{m+1},

For simplifying this conjecture we state some Lemmas as below:
Lemma 1:Second row is correct, i.e $d_{m}^{2}=\left|p_{m+1}-p_{m}\right|<p_{m}$
Proof, this is obviously correct by refer to [2]

Lemma 2:third row is correct ,i.e $d_{m-1}^{3}=\left|\left|p_{m+1}-p_{m}\right|-\left|p_{m}-p_{m-1}\right|\right|<$ p_{m-1},

Proof :this is obviously correct by refer to [2]
Lemma 3 :fourth row is correct ,i.e $d_{m-2}^{4}=\left|d_{m-1}^{3}-d_{m-2}^{3}\right|<p_{m-2}$
Proof :if $d_{m-2}^{3} \geq d_{m-1}^{3}$, so $d_{m-2}^{4}<p_{m-2}$, since $d_{m-2}^{3}<p_{m-2}$, according to induction, otherwise we have:

If , $d_{m-1}^{3}=\left|\left|p_{m+1}-p_{m}\right|-\left|p_{m}-p_{m-1}\right|\right|<p_{m-2}$, we have the result, but if $p_{m-2}<d_{m-1}^{3}<p_{m-1}$ like shape above we should prove:
$d_{m-2}^{4}=\left|d_{m-1}^{3}-d_{m-2}^{3}\right|<p_{m-2}$, but according to assume of induction $d_{m-2}^{3}=\left|\left|p_{m}-p_{m-1}\right|-\left|p_{m-1}-p_{m-2}\right|\right|<p_{m-2}$, the shape of $-d_{m-2}^{3}$ is as below:

Since $p_{m-2}<d_{m-1}^{3}<p_{m-1}$, so $d_{m-1=}^{3} p_{m-2}+a$ that $a<p_{m-1}-p_{m-2}<p_{m-2}$, Now suppose that we shift (shape 1) a downward or $-a$, and other hand we shift (shape 2) p_{m-2} upward , and connected two shape to each other such that (shape 2) is started in the end of (shape1)

According to (shape 3) $<p_{m-2}$, notice that the number of the point transferred in (shape 1) are the same of (shape 2) so the number of the end of the arrows in the (shape 1) and(shape 2) are the same ,the number of the d_{m-2}^{4} are 6 ,
$\left(\left(p_{m+1}-p_{m}\right)-\left(p_{m}-p_{m-1}\right)\right)-3 p_{m-2}+$ $\left(\left(p_{m}-p_{m-1}\right)-\left(p_{m-1}-p_{m-2}\right)\right)+3 p_{m-2}$
$<\left(\left(p_{m+1}-p_{m}\right)-\left(p_{m}-p_{m-1}\right)\right)-3 a-$
$\left(\left(p_{m}-p_{m-1}\right)-\left(p_{m-1}-p_{m-2}\right)\right)+3 p_{m-2}=b+p_{m-2}<p_{m-2}$

So we proved the lemma. Notice : if we have any change in absolute values in both shapes the result would be without change.

Lemma 4: k th row is correct ,i.e $d_{m-(k-2)}^{k}=\left|d_{m-(k-3)}^{k-1}-d_{m-(k-2)}^{k-1}\right|<$ $p_{m-(k-2)}$

Proof: the prove of this lemma is similar to lemma 3, notice that for $d_{m-2}^{4}=$ เก $\left|d_{m-1}^{3}-d_{m-2}^{3}\right|<p_{m-2}$ we have 6 points, for d_{m-3}^{5}, we have 12 points, so for造 $k \geq 3$,we have $3 \times 2^{k-3}$ points, then for $k=m+1, d_{1}^{m+1}<2$, so $d_{1}^{m+1}=1$

So we proof the Theorem.

References:

[1] Killgrove, R. B.; Ralston, K. E. "On a Conjecture Concerning the Primes."
[2] "SWAC (Computer)."
http://en.wikipedia.org/wiki/SWAC (computer) Accessed February15, 2012.
[3] Weisstein, Eric W. "Proth's Theorem." From MathWorld \{A Wolfram
Web Resource. http://mathworld.wolfram.com/ProthsTheorem.html
[4] Proth, Francois, Theoremes Sur Les Nombres Premiers, C. R. Acad.
Sci. Paris, 1877, Volume 85, Pages 329-332,
[5] Weisstein, Eric W. "Mertens Conjecture." From MathWorld \{A Wolfram Web Resource.
http://mathworld.wolfram.com/MertensConjecture.html
[6] C. B. Haselgrove (1958). "A disproof of a conjecture of Polya."
Mathematika, Volume 5 , Pages 141-145
doi:10.1112/S0025579300001480
[7] Caldwell, Chris K. "Largest Known Primes." Univery of Tennesse At Martin. http://primes.utm.edu/top20/page.php?id=3
[8] Caldwell, Chris K. "Probable Prime." Univery of Tennesse At Martin. http://primes.utm.edu/glossary/page.php?sort=PRP [9] Mulcahy, Colm. Card Colm. http://www.maa.org/columns/colm/cardcolm201008.html [10] Andrew Odlyzko: Home Page http://www.dtc.umn.edu/ odlyzko/ Accessed February 16, 2012. [11] Weisstein, Eric W. "Fermat's Little Theorem." From MathWorld \{A Wolfram Web Resource.
http://mathworld.wolfram.com/FermatsLittleTheorem.html
[12] Weisstein, Eric W. "Mersenne Prime." From MathWorld \{A Wolfram
Web Resource. http://mathworld.wolfram.com/MersennePrime.html
[13] C. B. Haselgrove (1958). A disproof of a conjecture of Polya.
Mathematika, 5, pp 141-145 doi:10.1112/S0025579300001480
[14] Dubuque, Bill. (Number of oddly factored numbers $<=$ n) - (number of evenly factored numbers $<=$ n). July 032002.
http://oeis.org/A072203. Accessed April 9, 2012.
[15]An interesting Opportunety:the Gilbreath Conjecture, www.carroll.edu/library/thesisArchive/Sturgill-Simon_2012final.pdf [16]Research Proposal, Elan A. Segarra, Harvey Mudd College ,Senior ThesisMathematics Spring(2005

