The null ortho-linearity

Ihsan Raja Muda Nasution

May 27, 2015

Abstract

We diagnose the body of the critical strip. Thereby, we can extract the deterministic location of the critical line.

MSC: 11M26 Keywords: critical line, critical strip, Riemann zeta-function

1 Introduction and results

In 1896, Hadamard [Had96] proved the prime number theorem:

Theorem 1.1. $\zeta(1+it) \neq 0$.

In this paper, we prove the Riemann hypothesis. Our mission is to isolate the ecology of the critical line.

We denote ℓ as the critical line. We denote \mathfrak{s} as the critical strip. And we denote \mathbf{C} as the complex plane.

Definition 1.2. A spiral curve of the Riemann zeta-function is denoted by λ .

Proposition 1.3. ℓ is a 0-generator.

Proof. Case I. Delete (0,0) in λ . Then, ℓ contains zeros nowhere. The strip $0 \leq t \leq 1$ is an inverse of the critical strip \mathfrak{s} , say \mathfrak{s}' . Because $\ell \subset \mathfrak{s}$, then there is an inverse of ℓ , say ℓ' . Hence, ℓ' is a line t = 1/2.

Case II. By the invertibility of ℓ and ℓ' , if ℓ is 0-free then ℓ' is dense of zeros. Then, rotating **C** as $-\pi$. ℓ' becomes orthogonal and contains many zeros; i.e., $\ell' = \ell$.

References

[Had
96] J. Hadamard. Sur la distribution des zéros de la fonction
 $\zeta(s)$ et ses conséquences arithmétiques ('). Bull. Soc. Math. France, 24:199–220, 1896.