Wave-particle «paradox» as a wave-like form Gosdas's wave function replaces Schrödinger's equation

Michael Tzoumpas
Mechanical Electrical Engineer
National Technical University of Athens

Email: m.tzoumpas @ gmail.com

Abstract

In this paper, the inductive-inertial phenomenon G is developed, as well as the force F_{G}, which acts on the units of the dynamic space (see http://viXra.org/abs/1410.0040). This explains the nature of the magnetic forces, that are Coulomb's electric forces (see http://viXra.org/abs/1503.0210) between grouping units (namely electric charges or forms of the electric field), created by the accelerated electron. Also, Coulomb's Law for magnetism, the physical significance of magnetic intensities and the strangeness of the fluctuation of nucleons magnetic moment are interpreted.

De Broglie's wave-particle is Gosdas's motion wave (wave-like form) and his wave function replaces Schrödinger's equation. So, the wave phenomena of particles, the atomic orbitals and the wave-particle «paradox» are interpreted.

1. Phenomenon G - Force F_{G} - Pressure difference ΔP as motion arrow - Magnetic force

In a changing motion of an electron a shift of units of the proximal space is caused and a pressure difference ΔP is created. This shift of units at a proximal area of an electron is the inductive-inertial phenomenon G and the force F_{G} is the cause that moves the units. This inductive force (Figure 1), is applied on the positive units (F_{G+}), has the same direction with the acceleration γ of the electron, while if applied on the negative units $\left(F_{G-}\right)$, it has the opposite direction to γ. The inductive-inertial phenomenon G takes place, when an external force is applied on an electron, due to which it reacts, hindering the change of its kinetics by sending positive units in front and negative units behind.

Figure 1: Phenomenon G and its inductive-inertial forces F_{G+} and F_{G-}

The phenomenon G is another expression of the antithesis (opposition) principle and the cause is the acceleration of the electron. Therefore, due to the principle of antithesis, the electron reacts to the change of its kinetics and tries to hinder the approach of the positive charge by which it is attracted, by placing positive units in front and removing negative ones behind (Figure 2). Like in uncharged particles inertia is the reaction mechanism to the change of its kinetics, the same in charged particles the corresponding reaction mechanism to this change is the phenomenon G.

In front of the uniformly moving $(\gamma=0)$ electron (right in figure 2), a positive unit of its electric field is balanced. However, the accelerated electron leaves (due to acceleration γ) a part of the electrostatic attraction that acts on the positive unit, proportionally to force F_{G+}, by which the unit is moving to the right at the same direction with acceleration γ.

Figure 2: Dynamics of phenomenon G (the electron acceleration γ imposes a loosening of electrostatic attraction and repulsion in front and a strengthening of them behind)

A similar analysis of the phenomenon G can be done for a negative unit in front of the electron (right in figure 2), since the accelerated electron leaves a part of the electrostatic repulsion that acts on the negative unit, proportionally to force F_{G}., by which the unit is moving to the left at the opposite direction to acceleration γ.

Also, the same dynamic analysis can be done behind the electron (left in figure 2), but here the electrostatic attraction and repulsion on the positive and negative units are strengthened, due to the electron acceleration γ, resulting the positive units to move to the right and the negative ones to the left in figure 2 .

This loosening of the electrostatic attraction and repulsion of the units in front is created, due to the thickening of them (inertial phenomenon G-geometric deformation), imposed by the electron acceleration γ, resulting in the reduction of dipole forces $F=k L_{0}$ (see http://viXra.org/abs/1410.0040). The opposite happens behind the electron, where the strengthening of attraction and repulsion is created due to the dilution of units, imposed by the electron acceleration γ, thus increasing the dipole forces F.

This tends to increase the cohesive pressure of space behind the electron and reduce it in front of it (inertial phenomenon G). However, the dynamic space reacts to this change with the inductive phenomenon G, reversing the phenomenon (principle of antithesis). This is achieved by placing positive units in front and negative ones behind (electric or quantitative deformation-inductive phenomenon G), forming the grouping units, thus increasing the cohesive pressure in front of and reducing it behind the electron, since the positive units in front are added to the negative ones of the electron field, increasing the pairs of oppositely charged units and, consequently, the cohesive pressure of space. The opposite happens behind the electron, wherein the negative units of electron field are increasing, due to the negative grouping units of the inductive phenomenon G, decreasing the pairs of oppositely charged units, resulting in reducing of the space cohesive pressure.

Therefore, in this geometric deformation (inertial phenomenon G) the dynamic space reacts with the inductive phenomenon G and imposes an electric or quantitative deformation of the space in front of and behind the electron, installing a pressure difference ΔP as a motion arrow of the electron. This extremely fine texture of motion is developed in site http://viXra.org/abs/1507.0079.

The achieved pressure difference ΔP, in front of and behind the electron, is the cause of the accumulated forces on the electron spherical zone. Of course, during the electron deceleration, a discharge of grouping units happens and therefore a reduction of pressure difference ΔP, by a discharge of forces at the spherical zone of electron.

Therefore, acceleration creates the grouping units (the phenomenon G) and uniform motion maintains them. To confirm the conservation of grouping units with uniform motion, we suppose that, as oppositely charged units, they are attracted and tend to coincide, causing the electron to receive a force $F_{G \text { - }}$ backwards (Figure 3), due to the acceleration γ_{1} of the negative units and a force F_{G+} also backwards, due to the acceleration γ_{2} of the positive ones. These two forces would have neutralized the kinetic force of the electron as opposite of motion, but that is contrary to the principle of conservation of kinetic force or energy. Therefore, acceleration γ of the electron creates the grouping units and its constant speed u maintains them.

Figure 3: The constant speed u maintains the grouping units
This phenomenon G occurs also at the acceleration of the grouping units, resulting in the reproduction of new grouping units, called extra grouping units (Figure 4).

Figure 4: The first pair of extra grouping units
Thus, as the positive grouping units of electron are accelerated, they send in front negative extra grouping units of the same form, while no positive units are placed behind. Respectively, behind the electron the negative grouping units form positive extra grouping units, without negative ones in front of them. Additionally, other extra grouping units are created, with a charge decreasing by geometric progression, as it will be developed at a next paper.

The phenomenon G creates the grouping units and the uniform motion of the charged particle maintains them. So, the magnetic force between two parallel electric conductors is interpreted (Figure 5), by the fact that their electrons create grouping units during their motion.

Figure 5: Interpretation of the magnetic force F between two parallel electric conductors

For electrons moving at the same direction, the oppositely charged grouping units (at speeds u_{1} and u_{2} of the moving electrons) are always as in Figure 6 and are attracted.

Figure 6: Attraction between electrons moving at the same direction
For electrons moving at the opposite direction, the homonymous grouping units (at speeds u_{1} and u_{2} of the moving electrons) are always as in Figure 7 and are repelled.

Figure 7: Repulsion between electrons moving at the opposite direction

Thus, the phenomenon G is the cause for the creation of magnetic forces that occur as a result of attractive or repulsive Coulomb's electric forces between the grouping units of the moving electrons.

2. Coulomb's Law for Magnetism

In the above paragraph, magnetic forces are described as electric ones created by grouping units of the moving electrons. If Q_{1} and Q_{2} are the moving charges at speeds u_{1} and u_{2}, while $Q_{1}{ }^{\prime}$ and $Q_{2}{ }^{\prime}$ are the respective charges of their grouping units, then it is obvious that $Q_{1}{ }^{\prime}=K Q_{1} u_{1}$ and $Q_{2}{ }^{\prime}=K Q_{2} u_{2}$, where K a ratio constant. However, between grouping units a Coulomb's electric force (see http://viXra.org/abs/1503.0210) is exercised, being a magnetic force $F_{m}=K_{c} Q_{1}{ }^{\prime} Q_{2}{ }^{\prime} / r^{2}$, where K_{c} the electric constant and r is the distance between grouping units. Substituting $Q_{1}{ }^{\prime}$ and Q_{2}^{\prime} from the above formulas, it is $F_{m}=K^{2} K_{c} Q_{1} u_{1} Q_{2} u_{2} / r^{2}$, where $K_{m}=K^{2} K_{c}$ is the magnetic constant, $Q_{1} u_{l}=m_{1}, Q_{2} u_{2}=m_{2}$ are the magnetic quantities and, hence, it is the magnetic force $F_{m}=K_{m} m_{1} m_{2} / r^{2}$ representing Coulomb's Law for magnetism.

If in formula $Q_{I}{ }^{\prime}=K Q_{1} u_{I}$, we put speed $u_{l}=u_{\alpha} C_{0}$, where u_{α} the timeless speed (see http://viXra.org/abs/1507.0079) of charge Q_{1}, then $Q_{1}{ }^{\prime}=K Q_{1} u_{\alpha} C_{0}$. As u_{α} is a dimensionless value, it should obviously apply $K C_{0}=1$.

If in formula $F_{m}=K^{2} K_{c} Q_{1} u_{1} Q_{2} u_{2} / r^{2}$, we put $K=1 / C_{0}, u_{1}=u_{\alpha 1} C_{0}$ and $u_{2}=u_{\alpha 2} C_{0}$, then the magnetic force becomes $F_{m}=K_{c} Q_{1} u_{a l} Q_{2} u_{a 2} / r^{2}$.

3. In-phase motion of grouping units causes parallel common course of their electrons Superposition of motion waves (wave-like forms) Atomic orbitals

Dividing the magnetic force $F_{m}=K_{c} Q_{1} u_{a 1} Q_{2} u_{a 2} / r^{2}$ (see paragraph 2) by Coulomb's electric force $F_{e l}=K_{c} Q_{1} Q_{2} / r^{2}$, it is $F_{m} / F_{e l}=u_{a l} u_{a 2}$.

Timeless speeds of electrons are $u_{a 1}<1$ and $u_{a 2}<1$ and their product is very small, so that F_{m} is far smaller than $F_{e l}$ and at long distances magnetic force is negligible. However, this situation changes at short distances, where the parallel components of magnetic force F_{m} (Figure 5) cause slippage of electrons in positions of stable balance and in-phase motion, in which magnetic force is zero, since opposite electric charges are neutralized.

In positions of stable balance and in-phase motion of the parallel moving electrons a superposition of their motion waves (see paragraphs 5 and 6) takes place with an amplitude equal to the algebraic sum of the fluctuation amplitudes of the cohesive pressure P_{0} (Figure 9). So, parallel and in-phase motion waves of moving electrons are created.

The superposition of motion waves takes place at phase difference multiples of 2π or at wavelength λ, namely in positions of stable balance. Any other parallel motion of electrons at a different phase from the above creates an unstable balance, which tends to be restored at a stable balance with a parallel slippage of electrons under the influence of the parallel components of magnetic force.

Therefore, motion waves slide in positions of stable balance so as to be in-phase motion. In the famous double-slit experiment moving electrons follow positions in-phase motion of their wave-like forms (motion waves), where a quantum superposition picture, caused by the above waves, is displayed, stimulated and created, though, by the electrons!

Also, motion waves (wave-like forms) of the electrons are the cause of the self-superposition (standing waves), that are creating the atomic orbitals. This self-superposition happens so that the recycled formation of a motion wave takes place by the superposition of the corresponding in-phase amplitudes of cohesive pressure, between the in front and behind of its spindles (Figure 9). For example, if $n=2$ is a principal quantum number, then the condition atomic orbital $(2 \pi r=n \lambda)$ of radius r requires a self-superposition of symmetrical pairs of extra grouping units-spindles (Figure 4) on the orbital length $2 \pi r=2 \lambda$, thereby creating a standing wave of four spindles. The self-superposition of a recycled motion wave presupposes in-phase positions, achieved by rotation of the symmetrical spindles at multiples of $-\pi / 2$ for the in front and multiples of $+\pi / 2$ for the behind. It is noted that Professor Physicist N. Gosdas describes in excellent detail the above (see bibliography: Unified Timeless Mechanics), clearly interpreting all of the quantum numbers!

4. Fluctuation of nucleons magnetic moment

Magnetic saturation is due to the phenomenon G, in which the moving electron sends positive units in front and negative ones behind. Thus, the separation of the units creates a lack of positive units behind the electron and a saturation of those in front, thereby the weakening of the magnetism phenomenon due to the presence of grouping units (see paragraph 1). Therefore, the increase of the electric field reduces magnetism and vice versa. This phenomenon is also observed in the nuclei, where their lower inverse electric field is changing rapidly (see http://viXra.org/abs/1503.0210) and affects directly their magnetic field. This dependence of both fields (electric and magnetic) is the phenomenon N, which has an enormous significance for the nuclei structure.

The phenomenon G is observed, of course, during of the particles spin, wherein the quarks act as moving charged «particles» (see http://viXra.org/abs/1502.0097). Thus, the $+2 e / 3$ quarks (two positive poles) of the rotating proton send easily negative units in front. The latter are in abundance in the inverse electric field of the proton, which has difficulty to repel positive units behind due to the lack of them. As result it comes the reduction of the proton magnetic moment (will be developed at a next paper).

Correspondingly, the $-e / 3$ quarks (two negative poles) of the rotating neutron send easily positive units in front. The latter are in abundance in the inverse electric field of the neutron, which has difficulty to repel negative units behind due to a lack them. As result it comes the reduction of the neutron magnetic moment.

However, this situation improves significantly in the nuclear environment. As the rotating neutron enters in the lower inverse field of the proton, which has negative units in abundance, it acquires the possibility to increase the quark grouping units, by sending
negative units behind and positive ones in front, thus increasing the magnetic dipole moment. Additionally, this entrance of the neutron increases the magnetic dipole moment of the proton, the electric field of which is enhanced by the positive units of the neutron field. Thus, the proton is facilitated to repulse the positive units behind and an equal number of negative ones in front.

It is noted that, upon the interaction of same nucleons, their magnetic moments are reduced. So, the strangeness of fluctuation of the nucleons magnetic moment is interpreted!

5. Gosdas's motion wavelength is identical

 to de Broglie's wavelengthThe creation of the grouping units (phenomenon G) causes a change of the electric field in front of and behind the electron, resulting in the change of space cohesive pressure.

Thus, a pressure difference ΔP at the proximal field in front of and behind the electron is created, resulting in the accumulation of forces on a sphere meridians with axis to the direction of motion and having as center the particle (see http://viXra.org/abs/1507.0079). The displacement of this forces spherical formation at the space takes place, of course, by time and spatial fluctuation. The above accumulated forces are created by talantonia (oscillators) on vertical meridian pairs of particle spherical zone as a quantum phenomenon.

On site http://viXra.org/abs/1502.0097 the physical significance of Planck's constant h is mentioned and it is found equal to $h=\varepsilon_{\tau} \tau$, where $\varepsilon_{\tau}=6,626 \cdot 10^{-29}$ Joule the talantonion (oscillator) of energy and $\tau=10^{-5} \mathrm{sec}$ the quantum time in the formations region. The accumulation of the above forces takes place with talantonia of force $f_{\tau}=\varepsilon_{\tau} / L_{0} \approx 10^{26} \mathrm{~N}$ on pairs of vertical meridians with diameter in the direction of motion, wherein $L_{0}=0,558 \cdot 10^{-54} m$ (see http://viXra.org/abs/1410.0040) the quantum dipole length of units. This idea is derived from the conclusion, that motion is the only and unique natural phenomenon of Universe. However, in the dynamic space motion is made by two kinds of moving formations: by the accompaniment formations of particles and by the formations of autonomous motion of the \mathbf{E} / \mathbf{M} waves (will be developed at a next paper). Moreover, the E/M wave derived from the change of kinetics of a charged particle and, therefore, it is reasonable that dynamics of E / M wave is created from the dynamics, which is accumulated in the particle. Hence, by studying the dynamic elements of E/M wave, we probe the way by which they accumulate in the particle. It is also understood that there is no difference between charged and uncharged particles in the allocation form of these dynamic elements. Their difference is limited only in the property of the charged particles to release part of their dynamic elements, whenever there is change of their kinetics. Therefore, the E/M wave is concentrated, as an accompaniment formation, in the charged particle.

The accumulation of grouping units (and forces) continues for as long as the acceleration of electron does (see paragraph 1), up to the emission limit of the E/M wave with the less energy. This weakest E / M wave in Nature has a frequency $v_{\tau}=10^{5} \mathrm{~Hz}$ (known by Thomson's oscillating circuit), corresponding to period $\tau=1 / \nu_{\tau}=10^{-5} \mathrm{sec}$ of the rotary oscillations of an electron (will be developed at a next paper). It is the quantum time in formations region and corresponds to the time of accumulation of force talantonia f_{τ} on vertical meridian pairs of spherical zone of the particle.

Therefore, up to the so-called strength frequency $v_{\tau}=10^{5} \mathrm{~Hz}$ of the dynamic space there is no radiation of E / M wave, but phenomena of electric induction due only to the phenomenon G.

For a higher acceleration of the electron, a talantonion f_{τ} is accumulated on a pair of vertical meridians of the spherical zone and another talantonion is emitted as a E/M wave, according to the mechanism of its emission, which will be described at a next paper. Hence, the E / M wave consists of force talantonia f_{τ}, that are released from the motion formation of the electron, after violent change of its kinetics. Therefore the talantonion, that gives the weakest-fundamental E/M wave, is necessary to be accumulated on a pair of meridians (Figure 8), the diameter d of which is equal to $d=\lambda / 2$, so that when released to become equal to two spindles of diameter $\lambda / 2$.

Figure 8: Correlation of a meridians pair (talantonion) with a fundamental E / M wave ($d=\lambda / 2$ and $u_{a}=1$ the constant timeless speed of light)

The weakest-fundamental E/M wave with a period $\tau=10^{-5} \mathrm{sec}$ and a frequency $v_{\tau}=10^{5} \mathrm{~Hz}$ has a wavelength $L=C / v_{\tau}=3 \cdot 10^{8} / 10^{5}=3 \cdot 10^{3} \mathrm{~m} \Rightarrow L=3 \cdot 10^{3} \mathrm{~m}$. This wavelength is called photon length L and at $L_{0}\left(\sim 10^{-54} \mathrm{~m}\right)$, it is $L / L_{0}=3 \cdot 10^{3} / 10^{-54} \approx 10^{58}$.

This admirable number $L / L_{0} \approx 10^{58}$ is the same, that is described as the number of units (see http://viXra.org/abs/1502.0097), by which the neutron is structured and is here identical with the units number of the E / M wave. Of course, in different regions of the Universe, the
dipole length L_{0} depends on the local cohesive pressure $P_{0 x}$ and is denoted $L_{0 x}$, as a function of the distance x from the Universe center. Accordingly, the photon length L is denoted L_{x} and $L_{x} / L_{0 x} \approx 10^{58}$.

In figure 8 it appears the correlation of a meridians pair and a fundamental E / M wave, wherein a force talantonion f_{τ} corresponds to a length $2 \pi d$, where d is the spindles' diameter of wavelength $L=2 d$. Therefore, the πL or $\pi 3000 \mathrm{~m}$ or $\pi L_{0} 10^{58}$ is the length of the helix, into which there can be accumulated one or more force talantonia f_{τ}. For example, two talantonia $\left(2 f_{\tau}\right)$ need two pairs of vertical meridians, corresponding to photon length $L=4 d$, given that four spindles form the E / M wave, while the length of the helix remains constant, i.e. πL. Thus, photon length $L=3000 \mathrm{~m}$ or $L_{0} 10^{58}$ and helix length $\pi L=\pi 3000 \mathrm{~m}$ or $\pi L_{0} 10^{58}$ remain constant.

Wavelength λ_{1} of the fundamental E / M wave coincides with the photon length L, namely $\lambda_{1}=L$ and the next will be $\lambda_{2}=2 d$, where $2 \cdot 2 d=L$ (four spindles of the photon), therefore, $2 \lambda_{2}=L$, i.e. $\lambda_{2}=L / 2, \lambda_{3}=L / 3, \ldots, \lambda_{v}=L / v$ (1). Then, the total force that is accumulated on the entire length of the helix (πL), is $F_{s}=v f_{\tau} \Rightarrow v=F_{s} / f_{\tau}$, so the (1) becomes $\lambda_{v}=L f_{\tau} / F_{s}$.

It is noted that, in the units region, the motion force F is accumulated as $F_{s}=F S_{p} / L_{0}$ (S_{p} is the interval traveled by force F at light speed per $\tau_{0}=0,186 \cdot 10^{-62} \sec$ with «click»-shifts at each $L_{0}=0,558 \cdot 10^{-54} \mathrm{~m}$) on pairs of vertical meridians of the particle' spherical zone (in the formations region) as quanta of force talantonia $f_{\tau}=11,87 \cdot 10^{25} \mathrm{~N}$ per $\tau=10^{-5} \mathrm{sec}$ (see http://viXra.org/abs/1507.0079).

If the numerator and the denominator of formula $\lambda=L f_{\tau} / F_{s}$ is multiplied by L_{0} / C_{0}, then $\lambda=\left(f_{\tau} L_{0}\right)\left(L / C_{0}\right) / F_{s} L_{0} / C_{0}$ where $F_{s} L_{0} / C_{0}=p$ (see above site), $f_{\tau} L_{0}=\varepsilon_{\tau}$ and $L / C_{0}=\tau$, then $\lambda=\varepsilon_{\tau} \tau / p$. However, $\varepsilon_{\tau} \tau=h$ and $p=m u$ and therefore $\lambda=h / m u$ as the so-called de Broglie wave length, which coincides with the length of Gosdas's motion wave (wave-like form), as a result of the dynamics of the particle motion formation. Specifically, in charged particles, this motion formation is a concentrated E/M wave, which is released from the particles during a violent change of their kinetics, as will be developed at a next paper.

6. Gosdas's wave function replaces Schrödinger's equation

In the above paragraph 5 it is described the time and spatial fluctuation of the forces spherical formation of the electron, which implies the harmonic fluctuation of the difference ΔP of space cohesive pressure, the fluctuation amplitude of which appears in figure 9 .

Figure 9: Descending change of fluctuation amplitude of space cohesive pressure of the electron motion formation with a formation diameter $d=\lambda / 2$, where λ the wavelength of the harmonic fluctuation amplitude $A\left(A_{1}=P_{0} u_{a}{ }^{2} / 2, A_{2}=P_{0} u_{a}{ }^{4} / 2, A_{3}=P_{0} u_{a}{ }^{6} / 2\right.$, where u_{a} the timeless speed of the electron)

Gosdas's wave function (will be proved at a next paper) is a sinusoidal fluctuation of ΔP as a function of distance x from the particle, namely

$$
\Delta P=\frac{P_{o}}{2} u_{a}^{\frac{4 \mid x+\lambda}{\lambda}} \cdot \sin \frac{2 \pi x}{\lambda}
$$

where $-\lambda / 4 \leq x \leq+\lambda / 4,|x|$ the absolute value of $x, u_{a}=u / C_{0}$ the timeless speed of the particle, u its time speed, C_{0} the light speed, $\lambda=h / m u$ de Broglie's wave length, i.e. the length of Gosdas's motion wave (wave-like form), h Planck's constant, m the mass of the particle and P_{0} the cohesive pressure of space.

Consequently, de Broglie's wave-particle is Gosdas's motion wave and his wave function replaces Schrödinger's equation, while it interprets the wave phenomena of particles, the atomic orbitals and the wave-particle «paradox».

Bibliography

Gosdas I.N. (1999), The Unified Theory of Dynamic Space, Published by Trohalia, Greek Edition in Athens

Gosdas I.N. (2001), The Structure of Nuclei, Published by SALTO, Greek Edition in Thessaloniki

Gosdas I.N. (2003), Unified Timeless Mechanics, Published by Hellenic Physicists Society, Greek Edition in Athens

Gosdas I.N. (2004), The Structure and the Dynamics of Space, Published by M. \& G. Zorzos, Greek Edition in Athens

Gosdas I.N. (2006), The Structure and Function of the Universe, Published by Hellenic Physicists Society, Greek Edition in Athens

Gosdas I.N. (2008), Theory of Dynamic Space-The Universal Truth, Self-Published by the author, English Edition in Kastoria Greece

Tzoumpas M. (2013), The Timeless Universe, Published by Lefkiselida, Greek Edition in Athens

