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Abstract: Shifting the frequency of a spectral line to a frequency bin of the FFT and omitting the 
window function improves significantly the frequency resolution. The algorithm works without zero
padding and is applicable even with bad SNR.

Introduction
The Earth has many different resonances that are excited by earthquakes. The study of the internal 
structure of the earth requires the precise knowledge of the frequencies. Permanent weak earth-
quakes affect the signal-to-noise ratio of gravity data and make it difficult to accurately determine 
the spectral frequencies. Because the phase insensitive FFT can determine the frequencies only 
relatively inaccurate, a new method is presented here that is applicable even in bad SNR for its 
extreme narrow band.

The use of short periods has several advantages: short-term frequency changes can be tracked and 
measured; Short-duration spikes and amplitude reductions hardly affect the accuracy. By the way, 
the process acts as a precision rectifier, which can also measure rapid changes in amplitude.

The required Bandwith
In nature there are no undamped oscillations with a constant
amplitude and (theoretically) zero bandwidth. Signals have
always a finite bandwidth, which is why each measurement
may be affected by neighboring frequencies. In particular geo-
physical signals are very noisy and must be filtered with narrow
bandwidth before any processing (in compliance with the line
width). 

In most cases, the amplitude of a spectral line can be described
by the formula

y=A0⋅exp
−ωt
2Q

sin(ωt+φ)  

with the initial amplitude A0 past the excitation of the oscillation
and the frequency ω = 2 π f . No exciting earthquake is
synchronized with our clocks, so we need the phase φ to
describe this shift. Due to friction inside the earth, the oscillation loses energy and the amplitude 
descends. The rate is characterized by the quality factor Q. 

Changing the amplitude always broadens the line width, as shown in the picture. The total bandwith
of an exponentially damped oscillation is infinite and must be limited before analysis. It is hard to 
define the required bandwith Δf of these filters, because every cutting of sideband frequencies at 
least changes the envelope of the damped oscillation. An estimate with the formula Δf = f /Q
leads to a much too small value, because it is based on an amplitude reduction to 70.7 %. At Q = 
500, a reduction to the 10% - level increases the bandwith from 0.6 µHz to 6 µHz and decreases the 
SNR significantly. Gravity data are normally buried in noisy data streams of gravimeters and a 
reliable detection requires an improvement of the SNR by narrow frequency filters. Another 
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concern is that after interference, some filter types cause a strong phase modulation, hindering an 
accurate frequency determination. In particular, IIR filters should be avoided.

Reducing the Bandwith 
Some of these problems can be decreased if the measuring signal is multiplied by an appropriate 
exponential function that compensates for the natural reduction in the amplitude. Then, the desired 
signal is (apart from the inevitable faults) a finite-length sinusoid of constant amplitude and may be 
described by y=A⋅sin(ωt+φ) . As the frequency is only approximately known, the bandwidth 
can not be made arbitrarily small, because then there is a danger to analyze the narrow filter ringing,
induced by noise. If the in-band signal changes (or ceases) relatively suddenly, the energy stored 
from previous times still has to be released, and this is the ringing that is observed after the in-band 
signal has disappeared. However, this ringing may bridge very short data gaps. Experiments with 
real data have shown that a minimum bandwidth of 0.5 µHz leads to good results. 

Of particular importance is the choice of the proper filter type. The subsequent frequency analysis 
requires narrow-band filters with special properties. IIR filters are not suitable because they produce
too much phase modulation. FIR filters have a much lower phase response, but both types tend to 
distort the measured curve at the beginning of the record strongly. Unsurpassed are Sinc filters 
having a rectangular passband. The distortions near the end points of the data record are much 
lower than with other types of filters, an essential prerequisite for the subsequent spectral 
calculation. The only drawback is the time-consuming process of convolution.

Frequency determination by FFT
The Fourier transform (FFT) is very well suited to gain a quick overview of the frequency distri-
bution in a data record containing N readings. For many reasons FFT is an unsuitable tool for the 
precise determination of frequencies. It was never designed for this purpose. There are various 
causes: Each Discrete Fourier transform (DFT) calculates always a limited number of frequencies, 
depending on the sampling frequency fS and the data length N. The FFT calculates exactly N/2 bins 
between zero and the Nyquist frequency, and therefore the fundamental frequency df = f s/ N
limits the accuracy. By zero-padding, intermediate values can be generated to allow a more accurate
guess of position of the amplitude maximum. But the accuracy can not be improved, because the 
extra zeros provide no additional information. Therefore, the method is similar to an interpolation, 
assuming a symmetrical bell curve.

Additional inaccuracy is caused by another property of the DFT, which users are not always aware. 
The DFT transforms not the isolated input data block, extended by zeros on both sides, but an 
infinite repetition of this data block. The last sample is followed by the first one, as if all samples 
would lie on a circle. The data block is repeated endlessly. At the junction of two blocks, almost 
always a discontinuity arises with devastating effects on the spectrum. This is not based on 
erroneous data, it is a mathematical consequence of the algorithm of DFT. Details are described 
here[1] worth reading.

Each discontinuity in the data flow generates additional spectral components. Usually, the most 
harmful consequences of these discontinuities are reduced by multiplication of the data block with a
bell-shaped window function. This corresponds to a modulation of the measured data and generates 
additional spectral lines in the environment of strong lines, whereby the FWHM is broadened 
remarkably. All window functions broaden the linewidth, which contradicts the aim of a precise 
frequency determination.

Window functions prefer the samples near the center of the data record. The first and last samples 
are more or less neglected, even if they have better SNR than samples in the central region of the 
record. Weighing the positive against the negative effects of "windowing" is not an easy job and led 
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to the invention of about twenty different windows. Therefore, an algorithm is presented below that 
avoids a window function.

What happens if one does not use a Window
(some people call it a rectangular window)? If the
actual frequency of the sinusoid happens to coin-
cide with an integer multiple of the fundamental
frequency df, the maximum value of the spectrum
is accurately measured by that bin. Even more
important: the neighbor bins are zero, if the signal
is undisturbed. No other window function can
achieve this selectivity. If the actual frequency of
the sinusoid does not match the frequency comb,
the results deteriorate.

In the left picture, the frequency of a noisy signal is exactly 20 times the fundamental frequency df 
of the FFT analysis. At the junction of successive data sequences, there is no phase discontinuity. 
The peak is exactly one bin wide without spectral leakage to neighboring frequencies. A dream 
result! A Dirac delta function and not a wide bell curve with blurred peak.

In the right picture, the signal frequency is in the middle between two frequency bins, resulting in a 
maximum phase shift of the signal at the junction of successive sequences. While the amplitude 
reduction is not serious, the spectral broadening is very disturbing and can not be eliminated by zero
padding or other tricks. 

All window functions equalize the two pictures: The left, perfect result (a Dirac delta function) is 
broadened, the right bell curve becomes narrower. Regardless of their frequency, all the spectral 
lines are represented by a uniformly shaped bell curve (unless the actual FWHM is even wider). 

A problem arises, if two spectral lines have approximately the same frequency but different ampli-
tude. Then the bell-shaped curves add up and the spacing of the peaks decreases. This prevents an 
accurate frequency determination by FFT.

Tuning the frequency
It is highly unlikely that the frequency of the sinusoid coincides with one of the frequency bins of 
the FFT. Therefore, the frequency must be shifted by a programmable amount. Geophysical signals 
are always severely disturbed and require a narrow-band filtering to detect weak signals in noise. 
Fortunately, a method[2] was developed many years ago by Weaver (for an entirely different 
purpose), which satisfies both requirements in a perfect manner. It is a frequency-shifting bandpass 
filter. In analog technology, the implementation was difficult, but in the era of digital signal 
processing this filter is programmed with a few and simple lines of code.

The oscillator-1 determines the central
frequency f1 of the filter and should match
the value of the expected spectral frequen-
cy. The first two mixers produce the sum
and difference of both frequencies. The
following identical low-pass filters let pass
through only signals within a narrow
range around f1 . The second pair of
mixers shift the Signal to the arbitrary
frequency f2 . For f1 = f2, the circuit is a
complex bandpass filter. More valuable is
the case f1 ≠ f2 , because an arbitrary



spectral frequency may be shifted to any predetermined value. Here, the signal frequency will be 
shifted so that it exactly matches a frequency bin of the downstream FFT. In radio-frequency 
technology, the corresponding principle is a superheterodyne receiver, where the signal frequency is
shifted to a better processable intermediate frequency without changing the message content.

The precise determination of the frequency
It is highly unlikely that the frequency of a spectral line coincides with a multiple of the fundamen-
tal frequency df of the FFT, called frequency bin. Shifting the frequency of the sine wave (with the 
above-described band-pass filter) to exactly the point of highest resolution makes the window 
function redundant with all its disadvantages. The correct displacement is easy to check: it 
corresponds to a maximum of the calculated amplitude of the spectral line. 

The process can probably be best explained with an example based on real data. A seismometer in 
Membach supplied a data record of 256 samples, which were taken at intervals of 360 seconds. In 
the data, a signal near 318. 4 µHz could be hidden whose frequency is to be determined precisely. 
The 256-point-FFT calculates the fundamental frequency 10.850694 µHz and multiples thereof. A 
rather coarse resolution. The nearest neighbor in the frequency comb is bin number 30 with the 
value 314.6701 μHz. Other bins are just as well suited.

The offset -3.73 µHz is the starting value of an iteration, which uses the frequency-shifting band-
pass filter described above. The three target frequencies f2A = 314.57 µHz, f2B = 314.67 µHz and f2C 
= 314.77 µHz yield three amplitudes YA, YB and YC of bin number 30. These three pairs of numbers 
define a parabola whose vertex is located at offset -3.7913 μHz. A repetition of the process results in
the final offset -3.791215 μHz. Now it is an easy job to calculate the signal frequency. YB is the 
average signal amplitude during the sampling period.

If the iteration does not converge satisfactorily after the fourth iteration, it should be terminated due 
to insufficient SNR.

Summary
The method is based on an infinitely long chain of measurements. The FFT algorithm creates this 
chain automatically, although the underlying record contains only 256 samples. The chain must not 
have any discontinuities, which is why only certain frequencies are allowed and the record must 
include exactly N=2m samples. With the sampling frequency fS , the allowable frequencies are 
integer multiples of the fundamental frequency df = f S / N . 

Prior to FFT, the signal must be band-pass filtered. After filtering the record, the sampled data 
correspond essentially to a single frequency of constant amplitude. Since only the amplitude of this 
single frequency is required, the FFT process may be replaced by the faster Goertzel algorithm. The
use of window functions and zero padding destroys the foundations of this method.

This method has all the qualities of a synchronous rectifier and measures very accurately the 
average amplitude during the measurement period.

In the course of an iteration, the frequency f1 of the bandpass filter can track the currently calculated
frequency. It may also be useful to reduce the bandwidth gradually to improve the SNR (adaptive 
filter).

http://en.wikipedia.org/wiki/Goertzel_algorithm


[1]  Steven W. Smith, Ph.D., The Scientist and Engineer's Guide to Digital Signal Processing, 
http://www.dspguide.com/ch10.htm 

[2]  D K Weaver Jr., A Third Method of Generation and Detection of Single-Sideband Signals, Proc. IRE, Dec. 1956


	A New method for High-resolution Frequency Measurements
	Introduction
	The required Bandwith
	Reducing the Bandwith
	Frequency determination by FFT
	Tuning the frequency
	The precise determination of the frequency
	Summary

