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Abstract

It is a common problem in statistics to determine the appropriate heuristic to select from
a set of hypotheses (or equivalently, models), prior to optimising that model to fit the

data. In this short note I sketch a technique based on the construction of an information
in order to compute the optimal model within a given model space and given data.

We assume from the outset the following: we are dealing with the class of linear
models. That is, if our data can be massaged into some form of continuous and/or
discrete variables xi, i = 1, ..., N for some finite N , then we define a model P to be
an N by N matrix Pij such that the response Yj to an input Xi will be given by

Yj = P (d)jiXi

where dki, k = 1, ...,M are the set of M data points that we already know over
the set of variables xi which are used to optimise P by linear regression.

So that seems relatively straightforward. But there is a problem here, or rather
two problems:

• What is the optimal choice for N?, and

• We are implicitly assuming that the space of data M is Euclidean. What if
it is not? For instance, what if it is endowed with some general Riemannian
metric σ? Then what is the optimal choice for σ?

The first question is a standard problem, which is the problem of overfit. If we
use too many variables to descibe our data set D, then the predictive power of our
model P will be hamstrung; in particular, the modelled response Y to a new input
X will tend to have more error than if we are not overzealous with fitting our model
to the existing data.

In a way, both of these problems can be dealt with, if we allow σ to be a
degenerate bilinear form, or a Riemann-Cartan metric over some general infinite
dimensional idealised variable space, M . Then presumably if we can compute σ,
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there will be some set of spanning geodesic eigenbasis for the vector space at each
point, or a set of normal coordinates for M . From this we should then theoretically
be able to back-deduce a choice of natural coordinates to describe the data.

So then, let us instead merely consider a metric σ on some idealised space M . σij
represents the failure of our space of coordinates M to be iid, ie, σij is to represent
the correlation between directions i and j at a point in M .

Consider now the space of degenerate infinite matrices, ie GL(∞). Call this our
model space, A.

Define a statistical distribution function f that takes a point in data space and
assigns a distribution of models to that point, such that the integral is 1 (ie, it is
a pdf), and also such that it is continuous and differentiable. In other words, let
f(m, a) where m ∈M and a ∈ A be this function st

∫
A
f(m, a)da = 1

for each and every m in M .

Then, define a section of this space to be a choice of correlation metric σ with
f(m, a) = δ(σ(m)−a), where σ is a Riemann-Cartan metric and δ is the Dirac delta
function.

Now define an information

J(f) =
∫
A

∫
M
f(m, a)(ln∂f(m, a))2dmda

Theorem 0.1. This information, which I will call by abuse of terminology the
Akaike information, satisfies the Cramer-Rao equality, that is, J(f) ≥ 0.

Proof. (sketch). ln, the inverse of the exponential mapping from TM → M , can
be viewed as a 1-category derivative ∂1, much as ∂ can be viewed as a 0-category
derivative ∂0. Hence, the Fisher information:

I(f) =
∫
A

∫
M
f(m, a)(∂0∂1f(m, a))2dmda

is almost exactly analogous to

J(f) =
∫
A

∫
M
f(m, a)(∂1∂0f(m, a))2dmda
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related by a Z2 symmetry. This is not a coincidence, and happens to be be-
cause these information functionals form separate information theories under the
umbrella of first order cybernetics (which can also be viewed equivalently as a 3-
tensor construction for its simplest level of abstraction), but that is getting perhaps
a bit further afield than absolutely necessary in this instance.

The basic point here is that the proof of the Cramer-Rao inequality for the Fisher
information easily extends to a proof for the Akaike information, as the flipping of
zeroth and first cat derivatives does not alter or change the flow of the arguments
therein.

Moreover, we have another observation, that in many respects that this func-
tional which I refer to as the Akaike information is a primitive for the invariants
used in the Akaike information criterion (hence the name). Central to the AIC is the
measure ln(L) where L is a maximised value of the likelihood function, λ - hence,
intuitively, we expect that since L is ’vaguely’ obtained from ∂λ = 0, that ln∂λ is a
more ’primitive’ measure, and, in order to make things dimensionally make sense -
as well as in terms of choice of which of the two information measures for first order
cybernetics - that λ(ln∂λ)2 is a natural integrand / density for a ’deeper’ AIC-like
understanding of model selection.

To make this slightly more concrete, one would need to indicate how the Kullback-
Leibler information which was used as a heuristic for the choice of the AIC in the first
place corresponds to a ’0-cat’ view of model selection, and show how this naturally
extends to the ’1-cat’ view of model selection embodied by the choice of functional
above. Alternatively, one could think of things in the following way: while the
Fisher information allows one to measure how quickly things are changing within a
model in a local manner, and thereby obtain some understanding of the dynamics of
a particular system, through reversal of the order of derivatives one considers more
how things are changing as one moves through the space of models locally around
a particular selected model in the case of the Akaike information.

Since the Akaike information satisfies the Cramer-Rao inequality, this leads us
to a compelling conclusion:

By optimising the Akaike information, we are optimising for the
optimal choice of model, given our assumptions about the nature of the
space of models we are dealing with in the first place. I think that this is
quite important, and if you, the reader, take little else away from this piece, this
would not be a bad snippet to bear in mind, as it is the key observation that I
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wished to communicate in this short article. Note, of course, that this observation
is contingent on the choice of the space of models in question. I have been assuming
GL(∞) endowed with a Riemann-Cartan metric of first order correlations (mild
departure from assuming that the variables are iid). Then there naturally arises the
further question as to how to choose from a set of sets of models, the optimal set of
models in which to apply the above criterion. Naturally, there should be some tool
or natural way to think about this, maybe in a cybernetic fashion. However, there
comes a point where one receives diminishing returns (dependent, of course, on the
quality and scope of one’s data), and such considerations are beyond the scope of
this document.

There is one final result that might be useful for computation:

It can be demonstrated that the Akaike information functional for a section
f(m, a) = δ(σ(m)− a) reduces to

J(σ) =
∫
M
Rσ̂(m)dm

where σ̂ is the Riemann-Cartan metric dual to σ over M . I will not provide a
proof of this statement here, but the details translate roughly from a similar result
that holds for the Fisher information for a section in a similar situation.

This has the simple consequence that to optimise σ, we should solve the equation
Rσ̂(m) = 0 for σ, using the data d to calibrate the process. This should allow us to
determine which variables are important, find some appropriate normal basis, and
then perform a standard linear regression to fit σ to d. Then, to determine our
response Y to an input X, we would calculate Y = σX.

In many respects, this general approach could be viewed as a generalisation of
other approaches, such as, in the case of linear models, an extension of the tech-
nique of ridge regression / Tikhonov regression, or the use of penalty functions to
approximate or forecast data.
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