# хмельник с. и. О потоке воды в воронку и из трубы

#### Оглавление

1. Введение

2. Основная математическая модель

3. Вычислительный алгоритм

4. Анализ уравнений

5. Выводы

Литература

#### Аннотация

Показывается, что вращение воды, втекающей в воронку, или вытекающей из трубы под действием силы тяжести, может быть объяснено существованием значительных по величине гравитомагнитных сил.

# 1. Введение

До настоящего времени не построена (насколько известно автору) строгая модель потока воды, втекающего в трубу под действием силы тяжести и образующего вращающийся вихрь воронку. Эксперименты позволяют установить только то, что вихрь образуется, когда скорость потока превышает некоторое пороговое значение [1]. Вода закручивается не только в воронке, но и при вылете из брансбойта, в отвесном водопаде, при вытекании из крана под большим напором и т.п.

В предлагаемой ниже математической модели воронки используется система максвеллоподобных уравнений гравитации [3]. Модель основана на следующих предположениях. Движение воды уподобляется массовым токам. Массовые токи в гравитационном поле описываются максвеллоподобными уравнениями гравитации \_ МПГ-уравнениями). Взаимодействие [3] (далее между движущимися массами описывается гравитомагнитными силами Лоренца (далее ГЛ-силы), аналогичными силам Лоренца В электродинамике, действующими между движущимися электрическими зарядами. ГЛ-силы имеют вид

$$F_L = J \times B$$
,

где гравитомагнитная индукция

 $B = G \xi H$ ,

Здесь G - гравитационная постоянная,  $\xi$  - гравитомагнитная проницаемость среды. Необходимо пояснить смысл этой величины. В [3] анализируются недавние результаты работ Самохвалова, который задумал и выполнил серию неожиданных и удивительных экспериментов. Эти эксперименты в [3] объясняются наличием гравитомагнитных сил Лоренца. Важно отметить, что наблюдаемые эффекты настолько значительны, что для их объяснения в рамках указанных максвеллоподобных уравнений гравитации необходимо ЭТИ уравнения некоторым эмпирическим дополнить коэффициентом  $\xi$ . Грубая оценка гравитационной проницаемости вакуума  $\xi \approx 10^{10}$ , но она резко уменьшается с увеличением давления. Можно что воздух является полагать, экраном ДЛЯ магнитогравитационной индукции благодаря тому, что в нем под действием этой индукции возникают массовые токи (аналогичные токам Фуко. Тогда надо ожидать, что в воде, где массовые токи воды взаимодействуют без воздушного экрана, величина гравитационной проницаемости приближается к указанному значению для вакуума.

Итак, в потоках воды действуют ГЛ-силы (1, 2) или

$$F_L = G\xi(J \times H). \tag{3}$$

В водовороте токи создают напряженности; токи вместе с напряженностями создают СИЛЫ Лоренца; СИЛЫ Лоренца воздействуют на массы, движущиеся в токе, изменяя тем самым направление токов. Все эти процессы вместе описываются уравнениями Максвелла, в которых силы Лоренца исключены. Однако эти процессы можно проследить последовательно и связать их с уравнениями Максвелла [4].

# 2. Основная математическая модель

МПГ-уравнения для <u>гравитомагнитных</u> напряженностей *H* и плотностей массовых токов *J* в стационарном гравитомагнитном поле имеют вид:

$$div(H) = 0, (1)$$
  
rot(H) = J, (2)

rot(H) = J,

моделировании водоворота будем При использовать цилиндрические координаты  $r, \varphi, z$ . Тогда МПГ-уравнения примут вид:

(2)

$$\frac{H_r}{r} + \frac{\partial H_r}{\partial r} + \frac{1}{r} \cdot \frac{\partial H_{\varphi}}{\partial \varphi} + \frac{\partial H_z}{\partial z} = 0, \qquad (3)$$

$$\frac{1}{r} \cdot \frac{\partial H_z}{\partial \varphi} - \frac{\partial H_{\varphi}}{\partial z} = J_r, \tag{4}$$

$$\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} = J_{\varphi},\tag{5}$$

$$\frac{H_{\varphi}}{r} + \frac{\partial H_{\varphi}}{\partial r} - \frac{1}{r} \cdot \frac{\partial H_{r}}{\partial \varphi} = J_{z}.$$
(6)

Кроме того, токи должны удовлетворять условию непрерывности  $\operatorname{div}(J) = 0$ , (7)

или, в цилиндрических координатах,

$$\frac{J_r}{r} + \frac{\partial J_r}{\partial r} + \frac{1}{r} \cdot \frac{\partial J_{\varphi}}{\partial \varphi} = 0.$$
(8)

Эти уравнения описывают, в сущности, процессы взаимодействия токов, напряженностей и сил Лоренца, что подробно описано в [4].

ГЛ-силы можно найти следующим образом. Преобразуем (1.3):

$$F_L = G \cdot \xi \cdot S_o. \tag{9}$$

где

$$S_o = (J \times H). \tag{10}$$

Это векторное произведение в цилиндрических координатах имеет вид [2]:

$$S_{o} = \begin{bmatrix} S_{r} \\ S_{\phi} \\ S_{z} \end{bmatrix} = \begin{bmatrix} J_{\phi}H_{z} - J_{z}H_{\phi} \\ J_{z}H_{r} - J_{r}H_{z} \\ J_{r}H_{\phi} - J_{\phi}H_{r} \end{bmatrix}$$
(11)

Таким образом, при известном решении системы уравнений (3-6, 8) могут быть найдены ГЛ-силы по (9-11).

Решение будем искать для случая, когда вода вытекает под действием напора - силы давления, действующего на уровне выходного отверстия, в свободное пространство. Этот напор может создаваться силой тяжести некоторого объема воды. Для дальнейшего важно, что на уровне выходного отверстия вода имеет значительную начальную скорость  $v_o$ . Важно еще отметить, что предложенная модель не учитывает силы тяжести.

# 3. Вычислительный алгоритм

Рассматривается решение уравнений (1.3-1.6, 1.8). Из физических соображений ясно, что поле должно быть однородным вдоль вертикальной оси, т.е. должны отсутствовать производные по аргументу  $\varphi$ . При этом решение указанной системы имеет следующий вид (что можно проверить непосредственной подстановкой):

$$H_r = \eta \cdot f_8(r) \cdot \exp(\eta \cdot z) \tag{1}$$

$$H_{\varphi} = \eta \cdot f_2(r) \cdot \exp(\eta \cdot z) \tag{2}$$

$$H_{z} = f_{3}(r) \cdot \exp(\eta \cdot z) \tag{3}$$

$$J_r = -\eta^2 f_2(r) \cdot \exp(\eta \cdot z), \qquad (4)$$

$$J_{\varphi} = -\eta^2 f_8(r) \cdot \exp(\eta \cdot z) \,. \tag{5}$$

$$J_{z} = \eta \cdot f_{10}(r) \cdot \exp(\eta \cdot z), \qquad (6)$$

где

$$f_8(r) = h(1-X)e^{-\ln(r)},$$
 (7)

$$f_2(r) = q \cdot r(1 - X),$$
 (8)

$$f_{10}(r) = f_2(r) / r, (9)$$

$$f_3(r) = 2r^2 f_8(r), \tag{10}$$

$$X(r,s) = 1/(1 + \exp(-2g(r-s))),$$
(11)

$$s = \gamma \cdot \exp(-\eta \cdot z), \qquad (12)$$

*h*, *q*,  $\eta$ , *g*,  $\gamma$  – некоторые константы.



Здесь X – аппроксимация функции Хевисайда, а s - то значение координаты r, в которой функция меняет значение с 0 на 1. На рис. 1 показаны функции (14) и  $\exp(\eta \cdot z)$  при  $\eta = 1.5$ ,  $\gamma = 1.6$ . При этом предполагается, что ось *ог* направлена вверх, а на уровне отверстия z = 0.

## 4. Анализ уравнений

Функция *s* определяет форму потока. Функция  $\exp(\eta \cdot z)$  определяет плотность силы тока  $J_z$  при постоянных  $r, \varphi$  в зависимости от z - см. (6). Следовательно,

$$J_{z} \equiv \exp(\eta \cdot z) \,. \tag{15}$$

Функция s определяет площадь сечения струи в зависимости от z. Поскольку масса струи постоянна по сечению, то плотность струи в сечении на уровне z

$$\rho \equiv 1/s \,. \tag{16}$$

Плотность тока через сечение этой струи

$$J_z = \rho \cdot v_z. \tag{17}$$

где *v<sub>z</sub>* – вертикальная скорость струи. Произведение

$$s \cdot \exp(\eta \cdot z) = \gamma \,. \tag{18}$$

Из (15, 16, 18) следует, что

$$\frac{1}{\rho} \cdot J_z \equiv \gamma \,. \tag{19}$$

Из (17, 19) следует, что

$$v_z \equiv \gamma \,. \tag{20}$$

Таким образом, из предложенной модели следует постоянство вертикальной скорости струи, а параметр  $\gamma$  пропорционален этой скорости. Это соответствует тому, что (как указывалось) предложенная модель не учитывает силы тяжести.

Из (5, 7) следует, что плотность массового тока, текущего по окружности внутри струи при данном *z* 

$$\boldsymbol{J}_{\varphi} = h e^{-\ln(r)}. \tag{21}$$

В то же время

$$J_{\varphi} = \rho v_{\varphi}, \qquad (22)$$

где  $\rho$ ,  $\nu_{\phi}$  - плотность струи и окружная скорость соответственно. Из (21, 22) следует, что угловая окружная скорость



На рис. 1а показаны функции (23) и  $e^{-\ln(r)}$ . Таким образом, угловая скорость изменяется в зависимости от радиуса. Из (14, 16, 23) находим:

$$\omega \equiv \gamma \cdot \exp(\eta \cdot z) \,, \tag{24}$$

т.е. угловая скорость уменьшается книзу – см. рис. 1а.



Итак, каждый элемент массы струи воды вращается с угловой скоростью (24), опускается вниз со скоростью  $v_z \equiv \gamma$  (сопротивление воздуха не учитывается в модели) и тем самым перемещается по винтовой линии. Кроме того, этот элемент

отходит от центральной линии столба с радиальной скоростью  $v_r \equiv J_r$ , т.е. струя расширяется книзу и при этом уменьшается её плотность - см. рис. 1в.

Далее мы будем анализировать решение (4.1-4.6).

Рассмотрим векторное поле токов  $J_r$ ,  $J_z$  в вертикальной плоскости сечения водоворота. На рис. 2 представлен фрагмент этого поля для части плоскости  $r = \overline{0, 20}$  и z = [0, -2] при  $h = 0.01, q = -0.05, \eta = 1.5, g = 33, \gamma = 1.6$ . Показана также функция (15).



Рассмотрим те части сепарабельных функций токов  $j_r$ ,  $j_{\varphi}$ ,  $j_z$ , которые зависят от координаты r. На рис. 3 представлены графики этих частей токов при z = -1.

Рассмотрим теперь векторное поле токов  $J_r$ ,  $J_{\varphi}$  на окружностях с радиусами  $r \approx 0.3k$ ,  $k = \overline{1, 8}$  в горизонтальной плоскости при z = 0 и том же значении констант – см. рис. 4, где представлено векторное поле токов  $J_r$ ,  $J_{\varphi}$  на этих окружностях. Видно, что на окружностях с радиусами  $r > r_o$  круговые токи практически отсутствуют.



Рассмотрим еще зависимости токов  $j_r$ ,  $j_{\varphi}$ ,  $j_z$  от координаты *z*. На рис. 5 показаны эти зависимости при  $\varphi = 0.3$ , r = 0.25 и тех же значениях констант.

## 5. Выводы

Вращение воды, втекающей в воронку или вытекающей из трубы, может быть описано максвеллоподобными уравнениями гравитации. При этом движение воды уподобляется массовым токам. Существует такое решение этих уравнений, которое согласуется с наблюдаемым движением: масса струи воды вращается с угловой скоростью, уменьшающейся книзу, опускается вниз с постоянной вертикальной скоростью и тем самым перемещается по винтовой линии; кроме того, существует радиальная скорость расширения струи книзу и уменьшения её плотности.

## Литература

- R. Fernandez-Feria and E. Sanmiguel-Rojas. On the appearance of swirl in a confined sink flow. Universidad de Ma'laga, E.T.S. Ingenieros Industriales, 29013 Ma'laga, Spain. Received 3 March 2000; accepted 2 August 2000, http://atarazanas.sci.uma.es/docs/articulos/16669083.pdf
- 2. Хмельник С.И. Структура потока электромагнитной энергии в проводе с постоянным током, там же и <u>http://vixra.org/pdf/1504.0061v1.pdf</u>
- Хмельник С.И. Еще об экспериментальном уточнении максвеллоподобных уравнений гравитации, «Доклады независимых авторов», изд. «DNA», printed in USA, ISSN 2225-6717, Lulu Inc., ID 14407999, Россия-Израиль, 2014, вып. 25, ISBN 978-1-304-86256-3, <u>http://lib.izdatelstwo.com/Papers/25.62.pdf</u>, см. также <u>http://vixra.org/pdf/1404.0089v1.pdf</u>
- 4. Хмельник С. И. Уравнение водоворота, <u>http://vixra.org/pdf/1506.0090v2.pdf</u>